
STRATEGIES FOR A MORE RESILIENT GREEN 
HABER-BOSCH PROCESS

1. Introduction
• In 2020, worldwide production of  NH3 reached around 183 million MT. Over 96 % of  all NH3 produced comes from the Haber-Bosch (HB) 

process, which accounts for c. 1 – 2 % of  global CO2 emissions [1].
• Changing the fossil-based feedstock to a greener alternative will help decarbonize the HB process. However, renewable power fluctuates 

over time, meaning H2 production is not constant. How can the HB synthesis loop be operated if  it has traditionally been run at steady-state?
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4. gPROMS® FBCR model assumptions
• System of  PDAE equations defined for the fluid and solid phases. 
• 2D model (axial, z, and radial, r, directions). Main flow direction 

is radial, and axial mixing is considered.
• Model is heterogeneous. Catalyst pellets are uniformly reactive 

and lumped. Temkin-Pyzhev kinetics considered, using Dyson-
Simon data [3].

• Reactor beds are adiabatic.

2. Background & research questions
How can the HB synthesis loop be operated dynamically?
• Dynamic operation of  NH3 converters is associated with reaction extinction and sustained temperature oscillations [2]. Therefore:
§ What type of  reactor configuration performs best in a Power-to-Ammonia system? 

• Flexibility of  the synthesis loop (with and without control measures) operating under dynamic conditions must be quantified.
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6. Conclusions and Future Work

3. Methodology
• Model Topsoe S-100 adiabatic quench cooled converter 

configuration.

INPUTS

Monitor high-level variables:
• Overall conversion
• Axial average fluid/catalyst 

temperature
• Average residence time per bed

OUTPUTS

Disturb process variables at the 
converter inlet:

• Feed flow rate
• Feed temperature
• Mass composition

• Goal: develop a disturbance map for a given reactor configuration.
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Disturbance in the converter feed 
flow rate, Fin:
• Type: Ramp
• Duration: 3600 s
• Magnitude: ± 10 % & ± 25 % 

• This analysis, which clarifies the intricate mass and energy dynamics of  these converters, will be applied to other reactor configurations.
• Through a comprehensive set of  dynamic tests, the best reactor configuration for Power-to-Ammonia applications can be determined and 

subsequently tested within the synthesis loop.

• Increased conversion when Fin 
is reduced, due to greater solid-
fluid contact time.

• Fluid temperature captured when      
r = 0.5 and averaged along the z-
direction.

• Fluid temperature increases when 
Fin decreases. Higher conversion 
higher fluid temperature.
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