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It is demonstrated that relativity predicts a variable G. The proof begins by considering a dimension-
less particle in an empty universe. The analysis then extends to two particles, three particles, and an
infinite set of particles. This approach enables the calculation of space-time structure for any realistic
energy distribution. The proof employs the interchange of limits theorem and ad hoc sequences of
energy distributions. With only one particle, the result is a singularity everywhere if the universe is
empty outside the particle. These singularities completely disappear with three particles. The calcula-
tion is then generalized for any realistic energy distribution, naturally yielding an equation for G. This
equation provides a correct approximation for most realistic energy distributions. The fundamental
principles underlying Einstein’s equation remain valid. However, it is shown that the anthropocentric
solar system constant G must be replaced by a variable value, which is weaker in high matter density
environments and stronger in low matter density environments. This was called a surrounding effect
in previous works [1,2]. This effect has been shown to resolve current gravitational mysteries in astro-
physics and cosmology. Additionally, under a unifying relevant assumption, several puzzles in nuclear
physics are either explained or solved, and a solution to the Yang-Mills Millennium problem is also
provided.
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deplacer comment surrounding de la conslution en annexe si GW a la vitesse de la
lumiere mettre une demonst directe en annexe que la deform st est celle de cette vitesse
avec une particule quasi surfeuse qui va quasi a la vit de la lum par rapoprt au GRF new
de la GW il y a une defom differentte donc mouvement. contradiction car la geodesique
suivie par la GW de la particule en mouv circulaire est justement celle du cercle dans le cas
de l absence de force autre que gravitation. Donc rajouter demonst que le cercle infiniment
peti de la trajectoire de cette particule asymptotiquement donc partout est une sphere se
propageant a la vit de lalum donc deform en corresojndance avec cette virtesse bijection
particule boost mais aussi boost referentiel. ce lien est central en relat c est l identification
des evts, cela va forcement de pair avec la structure de l espace temps ? Non par forcement.
Dire plutot que l etude faire ici est basee sur la notion de referentiel et en particulier de
GRF. Er determine a leur maniere la structure de l espace temps, de fcon tres locale et
”inflexible”. A partir de la une GW deformant l espace temps le fait localement de cette
facon boost de deformation GRF etc. il doit y avoir moyen de prouver que une GW se
deplace a la vitesse de la lumiere mais attention ce n est deja pas le cas pour la particule
vit de la lum traject rectiligne unif. Dans ce cas on peut prouver que cette vitresse de la
GW est constante pas variable car energie statique donc espace temps statique. s interesser
a la propagation perpendiculairement, qui est donc constante. si cette vitesse est pas c alors
perobleme par exemple dans les chgts de ref. il y a aussi la demonst du fameux cercle
infiniment petit de traj de particule a la vit de la lumiere. SI le cercle a le rayon de schwarts
comme rayon alors la deform recur en dehors est celle propagee perpendiculairement, etc.
dans un ref en muvement tres rapide par rapport au cercle le cercle est une sorte de spirale
et la GW ne se propage plus du tout dans le sens du mouvement de ce ref en mouvement.

1. Introduction

The purpose of this document is to demonstrate that relativity predicts a variable G and to
describe a solution to the Millennium Problem [3, 4].

This study builds upon previous works, particularly [2], which showed that a partic-
ular assumption implies that G is a variable. Here, it is demonstrated that this variability
is a theoretical prediction of relativity, independent of the speed of quarks or any other
experimental information about energy distributions.

The proof begins by considering a dimensionless particle in an empty universe. The
space-time structure is then calculated for several particles up to an infinite set of particles,
employing the interchange of limits theorem.

There are several motivations for this study, listed below in order of importance:

1) Solving the Yang-Mills Millennium problem.
2) Addressing today’s gravitational mysteries.
3) Searching for a link between energy and the first metric derivative.
4) Resolving the slight caveats of General Relativity (GR) [2].
5) Seeking a theoretical justification for Newton’s law.
6) Replacing the anthropocentric solar system value of G with a more general and

sound value.
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7) Retrieving the information lost in the construction of the stress-energy tensor.
8) Studying the behavior of rest frames.

The concept of rest frames will be further detailed. These frames generalize the tradi-
tional rest frames. Exploring this motivation will reveal that Special Relativity (SR) is more
than just an algebraic rule of GR; it describes the local space-time deformation caused by
energy. This will be the first step in addressing item 3. Item 3 relates to a new chapter of
GR that needs to be written and exploited. The most important parts will be addressed in
this document.

Initially, only items 2 and 3 were considered. Item 4 encompasses several motivations.
Items 1, 3, 5, 6, and 8 will be directly addressed in this document. Item 7 will be indirectly
addressed. Item 2 has been addressed in [1]. Item 4 has been addressed in [2], which can
be considered a previous version of this document.

It will be proven that relativity predicts a variable G. This variation is driven by the
surrounding effect [1], which, in its weaker version, states that gravitational force increases
in low matter density environments and decreases in high matter density environments. An
equation for G will naturally emerge from this process. Finally, the Yang-Mills Millennium
problem will be addressed.

The document is written as a mathematical demonstration. To ease reading, many parts
are included in the appendix, and a glossary is provided at the beginning.

2. Glossary

Energy distribution: In this document, energy distributions are assumed to share the same
bounded domain. Each distribution is null except for a bounded subset of space-time. They
are assumed to be a finite set of dimensionless particles with non-zero masses. No space-
time event can contain two different dimensionless particles. The reasons for these restric-
tions will be explained throughout the document.

Frame in which time elapses the most: This concept comes from the study of the twin
paradox, where the twin on Earth experiences time passing faster than the traveling twin.
In this document, this concept is used didactically to introduce the concept of GRF.

GRF: Generalized rest frame. This is the central and new concept of the new chapter
of relativity developed in this document. It is introduced didactically by the frame in which
time elapses the most but is defined as the generalization of the rest frame.

Matter at rest: Matter that is at rest in an inertial frame.
Matter in motion: Matter that is in motion at the speed of light.
Rest frame: A frame in which a particle is at rest. In this document, only sets of di-

mensionless particles are considered, and only gravitation is taken into account, with other
forces either ignored or resulting from gravitation. In this context, a rest frame, with its
meaning in relativity, can always be associated with a test particle that is at rest in this
frame.”

S: The function giving space-time structure from energy distribution.
Test particle: A particle with no mass. In this document, this term refers more precisely

to a dimensionless particle with no mass in free fall.
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3. Demonstration

3.1. Principle and contexts of the demonstration

The principle of the demonstration is based on a physics remark about a dimensionless
particle P . For such a particle, two extremely different assumptions can be made about the
nature of its energy:


 Assumption (1): Its energy is made of matter at rest. This means there is an inertial
frame in which the content of this particle is a solid block of matter at rest.


 Assumption (2): Its energy is made of matter in motion. This means the internal
matter of P is always in motion, regardless of the chosen inertial frame. Hence,
the speed of this matter is the speed of light. The simplest model is to consider P
made of a set of dimensionless bunches of matter in a Brownian distribution, each
moving at the speed of light.

The first assumption appears natural and obvious. The second assumption might seem
unusual because P is dimensionless and composed of a set of bunches of matter. However,
this assumption is as legitimate as the first, where P is dimensionless and composed of a
solid block of matter at rest. Therefore, one can state that the second assumption is always
true. Hence, one can state that matter is always internally made of infinitely small bunches
of matter always moving at the speed of light along infinitely small closed trajectories in a
Brownian motion and distribution.

The bunches of matter in the second assumption are unrelated to the particles of par-
ticle physics, even though reality in this field has proven to be more compliant with this
assumption.

Regardless of the assumption chosen, the result is always a dimensionless particle P .
Thus, the generated space-time structure will be the same. However, as will be seen later,
the calculation of the space-time structure will be entirely different.

From this remark, the principle is to calculate this deformation under the second as-
sumption. Let S be the function giving space-time structure from energy distribution. The
first constraint for the domain of S is that it is assumed to be the set of energy distributions
following the rule of energy conservation. Therefore, for each of them, the following is
true:

∇µT
µ0 � 0 (1)

Tµν is the stress energy tensor. ∇µ is the partial covariant derivative with respect to
the µ dimension. This equation is simpler for energy distributions composed of a set of
dimensionless particles: it represents the conservation of the number of particles and their
energy at rest.

For ease of demonstration, a second constraint is added: the energy distributions are
restricted to sets of dimensionless particles. Apart from these two constraints, there are no
further constraints for the domain of the S function.
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The context described in this paragraph applies only to the calculation of the space-
time deformation generated by P under the second assumption. This will be done from
paragraph 3.4 to 3.7. Outside of these paragraphs, this context will be withdrawn. The new
context will be indicated when needed.

3.2. Mathematical reminder: interchange of limits theorems

Norms are equivalent in finite dimensions, hence this is true for the four-dimensional space-
time of GR. By other means, spacetime structure is a function of energy distribution. In the
present document, the considered energy distributions will be assumed to share the same
bounded domain. This will allow the demonstration of the continuity of S. This restriction
is allowed since the size of this bounded domain can be huge, for example, it can contain
the observable universe.

Under the previous restriction, S is a continuous function using the uniform norm for
the two involved spaces. Indeed, if any amount of energy at any spacetime location is
decreased to 0, then the effect of this amount of energy on spacetime structure decreases
also to 0. This continuity is the result of the conservation of energy principle. The detailed
proof is given in Appendix A.

From this continuity of S, the interchange of limits theorem is valid. If any fn sequence
of energy distributions over spacetime tends uniformly to some limit energy distribution,
then the following equation arises.

S
�
limu
nÑ�8

pfnq
	
� limu

nÑ�8

�
Spfnq

	
(2)

In equation (2), limu means the uniform limit, for energy distributions, and for space-
time structures.

The continuity of the determination of spacetime structure as a function of energy distri-
bution has another interesting consequence. It is possible to imagine thought experiments
in which energy is increased or decreased progressively, having a continuous effect on
spacetime structure. And this can be done without violation of the conservation of energy
principle. Indeed, GR is a mathematical framework which can, and sometimes must be
watched independently of reality. Moreover, it is possible in this framework to imagine
different universes.

3.3. A generalized rest frame in relativity

3.3.1. Definition and properties

In relativity, there exist rest frames. This concept can be generalized, and then called a
generalized rest frame (GRF). The generalization is done in such a way that the timeline of
the generalized frame exists and is a congruent geodesic (part of the same set of geodesics
congruence [9]) with respect to the timelines of the rest frames. (A ”congruent geodesic” is
the generalization of the concept of ”parallel straight line” in curved spacetime). Moreover,
the boost which is associated with the motion of matter in this GRF describes the evolution
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of this GRF. This is what will be seen in the present paragraph. More details are given in
Appendix B.

This new concept can be introduced with a thought experiment, avoiding then any com-
plicated and tedious calculation. It is done in Appendix B. The conclusion is that there ex-
ists a GRF in any spacetime event (using the extension of identification which is presented
in Appendix B). And for any particle located in a given x event, this GRF exists in x and is
transformed by the particle, using the boost which is associated with the four-momentum
of the particle. Roughly speaking for the understanding, let’s write that this boost is cal-
culated in the ”old GRF”, that is, the one ”just before the particle”, and that it transforms
this old GRF into the new one, that is, the one ”just after the particle”. Another definition
is that the old one describes spacetime locally without the existence of the particle, and the
new one does it just after the existence of the particle. Moreover, the identification of the
new GRF from the old one can be done progressively, using the continuity of the function
giving spacetime structure from energy distribution. For this identification, the following
scenario is unrealistic but mandatory, and is allowed as a thought experiment, as previously
mentioned. The energy of the particle is increased progressively from 0 to its real value.

Also, a rescaling of time and space units occurs after the boost. This will be shown
further. But in the present document, it will be written abusively that the local deformation
is described by a boost. Indeed, only the context will allow to deduce if a rescaling occurs
also, or not. There will be more information about that in Appendix C.

This concept of GRF is central in GR. It is referenced in the literature as the ”rest
frame” (please refer to the glossary, paragraph 2). This concept of rest frame is generalized
in Appendix B, and then called ”GRF”. It will be associated in the present document with
the rule governing its evolution with respect to matter and with the motion of matter. The
link between local spacetime deformation and matter will be given by this concept and this
rule. This link is local and implies only the first degree of derivation of the metric. It should
be possible to induce from that the second degree of derivation, and then compare the result
with Einstein’s equation. Whatever the result is, a new view of spacetime deformation by
energy arises.

This ends what is a reminder about a feature of relativity. But it allows to define this
new concept of GRFs which is the starting point of the new chapter of relativity which is
partially developed in the present document. In this chapter, the next step will be to study
the behavior of these frames with respect to energy.

3.3.2. Example

A simple example is a P particle in motion along a straight line in a static universe filled
with a constant matter density. Without P , this universe results in a flat Minkowskian uni-
verse. The old R0 system system of GRFs is represented by the same and constant R0

frame, a frame for which the universe is at rest. This is called the ”frame of fixed stars” in
old literature. The R1

0 system new system of frames is the real existing one. It results from
the existence of P .

This can be refined by assuming a progressive appearance of P in space and time. Then
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a continuous set of GRFs is constructed progressively, from R0 system to R1
0 system.

For a gravitational wave (GW), the same definition applies: the ”old GRF” is the one
which would be GRF if the GW was not existing, the ”new GRF” takes this GW existence
into account.

3.4. Fundamental assumption

From now on in the present document, it will be assumed the following assumption.
Assumption (I): a GW propagates at the speed of light.
The relevance of this assumption (I) is well described in the literature [5]. This is for the

experimental data. Also a theoretical argument is made by the usual study of a GW using
the linearized Einstein equation.

3.5. Spacetime structure around a particle moving at the speed of light

Now the aim is to describe the local spacetime deformation of a GW generated by a particle
moving at the speed of light. The usual following assumption will be assumed. The P par-
ticle is moving at the speed of light along a D straight line in an empty universe previously
structured by a flat Minkowskian spacetime.

The spacetime deformations of the GW will be studied at the locations where the GW
deformations are the greatest. Being only local, the studied deformation is transforming the
time and space axes into new ones. That is, the old GRF is transformed into the new one.
Therefore, this local deformation is described by a linear transform.

Whatever the R inertial frame is chosen, this trajectory will always be a straight line

Fig. 1. The GW generated by a P particle moving at the speed of light is shown in two space dimensions. D is
the trajectory of P . The spacetime deformation generated by P propagates perpendicularly to D from C to N at
the c speed, and also from H to M at the c speed. H is the middle of CC1 and M is the middle of NC1. ∆ is the
envelope of the GW. This envelope propagates at the c{?2 speed from C to M .
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and the speed of the particle will always be the speed of light. Moreover, the properties of
physics are the same whatever the chosen inertial frame. Therefore, the spacetime structure
generated by this particle will always be the same whatever the inertial frame is chosen. It
means that in R at any given time the locations in which the deformation is the greatest is
always the same space cone centered on D.

Figure (1) shows the GW in two dimensions. In RpC; ct, x, y, zq the P particle moves in
the direction of the x axis, and along the D line at the c speed. Let’s focus on the GW which
is generated by P from the EC event which is a given C space location pertaining to D, and
a given tC time. This GW propagates from C at the c speed along the space directions of the
py, zq plane which is perpendicular to x and therefore to D, starting from C. Let’s choose
an EN spacetime event composed of the N space point and the tN time in R, such that
CN is along the y axis perpendicular to D and EN receives the GW propagation starting
from EC . During the same tN � tC time interval, P moves from C to some C 1 space point
pertaining to D. Also, when P is located in H , which is the middle of C and C 1, the GW
starts another propagation from H in the direction of CN . This propagation is located in
M at tN , such that M is the middle of N and C 1. The propagations along CN and HM

are done at the c speed. Therefore, this GW propagation is also along the CM line at the
c{?2 speed. This is the speed of the envelope of the GW along its trajectory. The spatial
vector of this propagation speed is normal to the envelope. The envelope is a cone centered
on D. This cone is ”isosceles”. In other words, there is CN � CC 1 and HM � HC 1.

Now let’s study the deformation generated by the GW. First of all, in C the local de-
formation which is generated by P is the bC boost associated with the speed of light in the
same direction as P . This is proven in Appendix G.

Along the D line, exactly the same boost propagates itself, at the speed of light. This is
proven in Appendix G. Here, since the P trajectory is the same D line, of course, this can’t
be noticed. But it will be noticed as soon as P will deviate from this D trajectory.

Outside of D, the local GW deformation is still described by the bC boost. Indeed, this
is the initial deformation in C. As such it is the deformation which is propagated. Also,
this is coherent with the propagation speed of the envelope. More details are available in
Appendix I and Appendix J.

Let’s study the space submanifold at some given time. It is assumed that a slicing of
space-time along time is possible. The space-time deformation at any X space location
depends on the position of X with respect to the cone of the maximum GW deformation.
Outside of the cone (external part of the cone), the space-time structure is unchanged for
causality reasons. Indeed, here P has no possible causal link. In other words, it means that
here the old and new GRFs are equal. Inside the cone, each event has been reached in the
past by the GW generated by P . Indeed, nothing more has ever happened there (no more
GW or any effect due to any other matter than P has ever happened there, since there is a
vacuum instead of P in the universe). Therefore, here the local space-time deformation is
described by bC .
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3.6. Space-time structure around a particle moving along a circle at the speed of
light

3.6.1. Context and aim

The next step is to calculate the space-time deformation generated by a particle at rest,
under assumption (2). For modeling this particle, the best model would be a Brownian
motion of a huge set of bunches of matter moving at the speed of light. But a simpler
model will be used. It’s a bunch of matter moving along a circle at the speed of light. The
relevance of those models is discussed in Appendix L.

3.6.2. Space-time deformation generated by the particle moving along a circle

Therefore, it is assumed that the previous P particle is forced to move along a circle. Of
course, using the word ”particle” here is an abuse of language. Indeed, this identifies a
bunch of matter whose existence is only a hypothesis and this is assumed only for theoret-
ical purposes. But this abuse allows for easier reading.

Then the previous cone transforms into a more complicated geometric figure. But in-
finitely far from the circle, therefore asymptotically, the envelope of the GW propagation
at constant time is a sequence of spheres centered at O, the center of the circle. Asymptot-
ically, these spheres inflate themselves around O at the speed of light. The radiuss of these
spheres are separated by the same constant value d, which is the circle’s circumference.
Now the deformation that is propagated asymptotically is described by a boost associated
with the speed of light. This speed is the vector that is normal to the propagation sphere, in
the direction that goes out of the sphere. Also, this deformation propagates with this speed.
This is proven in Appendix K.

3.6.3. When the circle’s radius tends to 0

In the mathematical framework of relativity, if the radius of the circle decreases progres-
sively and tends to zero, it means in reality that the circle tends to its limit, which is a
dimensionless particle located in O. Then the envelope of the GW transforms itself into
the previous sequence of spheres, but also d tends to O. The final result is a sequence of
spheres which are infinitely close to each other, all centered on O.

The interchange of limits theorem can be applied to this Dirac distribution of matter,
namely here, the dimensionless particle located in O. Let’s denote P 1 as this particle. This
can be applied because the circle-like trajectories of microscopic particles represent energy
distributions that tend toward this Dirac distribution. If any doubt exists because P is in
a rotating motion around O, then it is possible to add another particle sharing the same
energy and moving along the same circle-like trajectory in the opposite direction. This
would cancel the whole rotating motion without changing the final result, which is the
following. Finally, this distribution tends to the Dirac distribution centered in O, when d

tends to 0.
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limu
nÑ�8

�
Sn

� � mδ (3)

Sn is this energy distribution made of one circle-like trajectory of one bunch of matter
like P , in an empty universe, this circle being centered in O. m is the mass of P 1, which
is assumed to be located in O, the center of the δ Dirac distribution. Equation (3) tells that
Sn tends to the Dirac distribution of P 1 since the radius of the Sn circle tends to O.

3.6.4. Space-time deformation generated by a particle at rest

Therefore, let’s apply the interchange of limit theorem. The space-time structure generated
by a 3D Dirac distribution centered in O is the limit of the previously described sequence
of spheres, limit when d tends to 0, as written in the following equation.

S
�
mδ
� � S

�
limu
nÑ�8

�
Sn

�
 � limu
nÑ�8

S
�
Sn

�
(4)

Those limit deformations are described in any M space point by the boost associated
with the speed of light which is oriented along OM . Let’s write R, a rest frame attached
to P 1 (in which P 1 is at rest). M belongs to a sphere centered in O which contains all the
deformations arriving at the same time in R. Moreover, these spheres are now infinitely
close to each other. It means that each space-time event of the universe is modified by this
singular boost. This is the space-time structure generated by the 3D Dirac distribution.

Hence the result is radically different from what is told by today’s literature. Let’s
remind that with today’s literature the space-time deformation here is the one which corre-
sponds exactly to Newton’s law occurring in the solar system. But what has been proven
here is that this deformation is a singularity everywhere.

This huge difference will explain why G is not a constant but a variable.

3.6.5. Avoiding the unknown forces

P was forced to follow the circle-like trajectory which is not a geodesic. Therefore, there
is an unknown force which allows this trajectory not to follow a geodesic. This force is
not gravity. Therefore, at first glance, modeling the Dirac distribution under assumption (2)
would not be possible in a coherent way and implying only gravitation. But this apparent
result is wrong; the final result is quite the opposite, as shown in Appendix L. Interestingly,
the result here is a very important result. The result is that in relativity, assumption (1) is
impossible and must be replaced.

3.7. Partial resolution of the issue of Mach’s principle

This resulting space-time structure might be argued to be wrong because it is not realistic.
But the correct argument is the opposite. This description appears to be more accurate
than the one given in the literature because the distribution was initially assumed to be
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unrealistic. Indeed, a Dirac distribution of matter is inherently unrealistic since it assumes
an empty universe outside of the center of the Dirac distribution. For that reason, only an
unrealistic result should be expected.

Moreover, this GR prediction is in perfect agreement with Mach’s principle [6]. Let’s
briefly recall one aspect of the problem with Mach’s principle in GR. For example, the
issue arises in the case of a static spherically symmetric universe. A particle is located at
the center of this spherical symmetry. If ρ is the matter density filling the universe, then
one can distinguish two assumptions. The first is ρ ¡ 0, and the second is ρ � 0. Close to
the particle, ρ appears insignificant in both cases. Therefore, in this region, the spacetime
deformations will be approximately the same for the two assumptions. However, in the
first assumption, it is possible to find an inertial frame, R, at rest with the particle, which
is not in rotation with respect to the universe. In R, there are no fictitious forces such as
centrifugal forces. But in the second assumption, it is not possible to find such a frame.
Assuming that R is at rest with respect to the object is not enough. It is not possible to
determine if R remains inertial or not. One cannot say if fictitious forces will appear in R.

The new GR prediction solves this problem. Now, the space-time structure becomes
singular everywhere for the second case. An answer is provided: in each frame at rest with
the particle, no fictitious force could ever appear, since those singularities would dissolve
them completely. Therefore, with this new, correctly unrealistic prediction, GR becomes
more Machian.

3.8. Two particles

Now let’s add another particle, apart from the first one. So there are two particles, at differ-
ent locations, and the universe outside them is still empty. Everything is still assumed to be
static, meaning that the two particles are at rest in some given inertial frame.

There are still singularities, but they are located only along the straight line containing
the particles’ locations, and only at the points that are not between the particles’ locations.
They are described by the boost associated with the speed of light in the direction moving
away from the particles.

Outside of the particles and those singularities, the space-time structure is determined
by the conservation of the GR Lagrangian in vacuum. It is simpler to say that the Ricci
tensor is null in vacuum, as shown by the following equation.

Rν
µpgµνq � 0 (5)

Rν
µpq is the function giving the Ricci tensor from the metric, and gµν is the metric. This

is a second-degree differential equation. An integration constant is still required at the end
of the calculation. Under today’s version of GR, the G solar system constant value and the
mass of each particle are used for this. Now, the determination of this integration constant
remains to be given. Hints and clues for this determination are provided in Appendix D.
Although this determination would be an improvement, it is not mandatory for the study of
the present document.
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Also, asymptotically, the space-time deformation is singular. Indeed, this asymptotic
deformation is the same as the previous asymptotic deformation of the distribution with
only one particle. And of course, each particle still generates locally a space-time singu-
larity. If the masses of the particles are not equal, a difficult calculation is required. Let’s
suppose that they are equal. Then, the calculation is simpler since there is perpendicular
symmetry with respect to the mediating plane between the particles. This picture is still
vastly different from what is written in today’s literature.

3.9. Three or more particles

Adding a third particle to the scene will dissolve those singularities located along the
straight line containing the particles. As usual, it is assumed that the third particle is at
rest with respect to the other particles.

With three or more particles, the space-time structure is still determined by equation
(5). And under the assumption that the rest mass of the particles is equal, symmetry con-
siderations might help to calculate the space-time structure. For the determination of the
integration constant, the same arguments apply as in paragraph 3.8.

3.10. Space-time structure for any distribution of energy

The studied distribution of energy is a realistic one: an infinite set of dimensionless parti-
cles. Indeed, modeling reality in this way is often a good approximation in astrophysics,
from planets to cosmology scales, and in particle physics, because of the sparse nature of
matter. Here the wave nature of particles of particle’s physics is simply ignored since only
gravity is studied at first. Of course, a more general distribution of energy might be stud-
ied. Notably, a uniformly continuous distribution of energy could still allow the use of the
interchange of limits theorem. But this is outside the scope of the present document.

Hence, let’s apply the interchange of limits theorem to this set of Dirac distributions of
matter, namely here, the dimensionless particles of the universe. Let’s recall that for each
Pi particle, where i is the particle’s number, i from 0 to infinity, there is a Si

n sequence of
energy distributions. For each i and n, Si

n is a distribution made of a circle-like trajectory
of a virtual microscopic particle moving at the speed of light in an empty universe, this
circle being centered on Pi. For each i, i from 0 to infinity, the circle’s radius of Si

n tends
to 0, and Si

n tends to the Dirac distribution of the Pi particle, as n tends to infinity.

limu
nÑ�8

�
Si
n

� � miδi (6)

In equation (6), δi is the Dirac space distribution centered on the Pi particle, and mi

is the mass of Pi. Although limu represents uniform convergence, from the perspective
of the set of Pi, this is simple convergence. This simple convergence for each Pi can be
transformed into uniform convergence for the entire set of Pi. To achieve this, it suffices to
choose, for each n, the same Si

n circle’s radius for any i. For example, the value of 1{pn�2q
can be chosen for the circle’s radius of Si

n�1, in the system of GRFs of space-time structure
generated by Si

n.
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The final picture is as follows. The space-time structure is the result of all the micro-
scopic GWs. These microscopic GWs are generated by the virtual microscopic particles
moving at the speed of light and representing the real Pi particles in the above study. From
now on in this document, these GWs generated by the microscopic virtual particles will
be called ”virtual gravitational waves” (VGW). Considering only the limit distributions
(n Ñ �8), the set of Si

n transforms into the set of miδi. Thus, each space-time event
receives a VGW from each real particle in the universe. This provides a clue for calculating
the space-time structure in a different way.

3.11. Calculating space-time structure with virtual gravitational waves

3.11.1. Four-momentum equation

The same distribution of energy is still assumed. In any x space-time event, the four-
momentums of all the GWs propagating in x add themselves. The fundamental reason
for this is conservation of energy principle. This is shown in Appendix N.

This is true for the VGWs as shown above, but let’s study how any kind of GWs com-
bine themselves when they encounter in x. This will be studied, generally, for any kind of
GWs, and then applied for the VGWs.

The resulting equation has been described in [2] and is the following.

Dµpxq � Σ8n�01wpx, ynqfpx, ynqCµpynq (7)

Equation (7) shows the calculation of the resulting four-momentum in x. For n from 0

to infinity, each yn event represents a space-time location in which the Pn particle is pos-
sibly propagating a GW in x. The 1wpx, ynq is equal to 1 if x and yn events are connected
by a null geodesic and if x is located after yn along this geodesic. It means that the GW
generated in yn is received in x. Considering only the limit distributions of equation (6),
1wpx, ynq is always equal to 1 and can be supressed from the equations. This will proven
further. fpx, ynq is a scalar positive function. It is assumed to be equal to 1 if yn is equal
to x. This allows to retrieve the rule of local space-time deformation generated by a par-
ticle. It expresses the attenuation of the GW energy which is emitted from yn. Cµpynq is
a four-vector which contains the information of the energy of the GW in yn. Later on, it
will be shown that C0pynq is not the effective energy of the GW, but is proportional to its
square root. Nevertheless, in order to avoid a heavy reading, the words ”four-momentum”
and ”energy” will be used respectively for Cµpynq and C0pynq. The context will allow to
understand if those are effective energy or contributions to equation (7). And this ”contri-
bution” word will mean the 1wpx, ynqfpx, ynqCµpynq terms which are in the sum of the
rhs of equation (7).

Equation (7) can be used for calculating the four-momentum describing the local space-
time deformation generated by any of the following objects.


 A single particle located in x,

 a GW propagating in x,
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 many GWs encountering in x.

A remark about equation (7) is the question of wether an infinite number can result
from this equation or not. For example if an infinite universe is filled with a constant and
uniform distribution of particles, then the result is infinite if the f attenuation function
decreases less than 1{r3. This problem is similar to the Olbers’s paradox problem [7]. But
a more practical solution can be found here. There is no need to understand the universe
expansion and horizon. When translating this equation (7) into a gravitational model such
as surrounding [1], a solution is found. Indeed, in surrounding, the fitting of the model
with experimental data forces this sum of equation (7) to be translated into a finite value.
A practical approach here is simply to ignore the possibility of divergence of this equation,
and to fix this issue later on, when working on gravitational models.

3.11.2. From the four-momentum to the boost

Let’s follow the natural calculations. The distribution of energy of paragraph 3.10 is still
assumed. Let’s write the resulting four-momentum of equation (7).

Dµpxq � γ
E

c

�
1,

v

c
, 0, 0

	
(8)

E and v are respectively the energy at rest of the four-momentum and its speed in
a frame. It has been used γ � 1{a1� v2{c2. This equation (8) has been written in a
R0pO; ct, x, y, zq frame, at rest with the universe, which is an old GRF with respect to
the GWs of equation (8). R0 is such that v is along the Ox line. It is possible to find
such a frame. Then, from Dµpxq is calculated the local space-time deformation which is
generated. This is done [2] by using the boost described in R0 by the following equation.

Bµ
ν pxq � γ

�
���

1 � v
c 0 0

� v
c 1 0 0

0 0 1 0

0 0 0 1

�
��
 (9)

This boost is directly deduced from the four-momentum of equation (8).

3.11.3. From the boost to the metric

Now it is possible to derive the space-time metric from Bµ
ν pxq.

The distribution of energy of paragraph 3.10 is still assumed, but now the universe is
filled with a constant matter density. It means, notably, that the grid of particles has cells
which are small enough for allowing such an approximation.

Let’s write R0, a frame at rest with the universe. Since the universe is filled with a
constant matter density, space-time structure is flat Minkowskian everywhere and R0 rep-
resents a whole system of frames such that R0 is the GRF everywhere. Now let’s assume
that a P particle is added to the scene, located in O at t � 0, at rest in R0. Let’s write x
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the event composed by a given M space point, M � O at t � 0 in R0. R0 can be assumed
to be the GRF in x, before adding P to the scene. Let’s call R1

0 the GRF after adding P to
the scene. Therefore, R0 is the ”old GRF”, and R1

0 is the ”new GRF”, with respect to the
existence of P and in the M space location. Let’s write x1 the first event in M when R0

has been transformed into R1
0, along the time of R0. R1

0 is obtained by transforming R0, in
x, using the Bµ

ν pxq boost.
From R0 to R1

0 it can also be generated a successive continuous sequence of GRFs,
starting with R0 and ending with R1

0. For that it suffices to add slowly the P particle energy
from 0 to its real value. (Let’s remind that avoiding the conservation of energy principle is
allowed in a thought experiment).

Then, it is required to rescale the lengths of the ”boosted” time and space axis. The
boosted time and space axis are the time and space axis which have been modified by the
boost, in their states after the boost. The rescaling is done in such a way that the resulting
time line described successively by those successive infinitesimal steps is a geodesic. This
is detailed by the following equations, relating X 1ν the coordinates after the boost, to Xµ

the coordinates in R0, and then relating X”ρ the final rescaled coordinates in R1
0 to X 1ν .

X 1νpx1q � Bν
µpxqXµpxq (10)

X”ρpx1q � Sρ
ν px1qX 1νpxq (11)

gαβpxq � Bρ
αpxqSµ

ρ px1qgµνpx1qSν
κpx1qBκ

βpxq (12)

Sµ
ρ px1q is a symetric linear map which has the ability of being diagonalized in R1

0. Its
value is determined by the constraint above (the time line of the set of successive GRFs
must be a geodesic). Equations (10) (11) and (12) show how gµνpx1q the new metric is
deduced from gαβpxq the old one, due to the action of Bν

µpxq, which results from the Dµpxq
added energy of P . Of course equation (12) can be inverted, using the inverse mixed tensors
pB�1qβκpxq and pS�1qρµpx1q of, respectively, Bν

µpxq and Sµ
ρ px1q. It results the following

equation.

gµνpx1q � pS�1qρµpx1qpB�1qαρ pxqgαβpxqpB�1qβκpxqpS�1qκν px1q (13)

Equations (10) (11) and (12) have been obtained by studying the spherically symmetric
static case. In the Schwarzschild metric, a P1 test particle (a ”test particle” is defined in
the glossary, paragraph 2), being at rest when located infinitely far from the center of the
symmetry, follows a time line which is transformed by those equations [8]. Those equations
are still valid in a more general case. This is proven in Appendix O. However in the scope
of the present document, only the particular spherically symmetric static case is required.

It is already known that gµνpxq is a diagonal matrix in the R0 frame and that gµνpx1q
is a diagonal matrix in the R1

0 frame. Using equation (8), since the direction of the boost
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is along the x space axis, only time and x space dimensions are modified by the metric
evolution. If the pS�1qρνpx1q rescaling is written with an α time rescaling and with a β

space rescaling, then, using equation (13) and αβ � 1 usual convention, the resulting
metric shows g00px1q � α2 and g11px1q � �α�2. This allows to check and understand the
involved mechanism of equations (10) (11) and (12).

As a conclusion, space-time structure is calculated first by calculating a one and only
four-momentum in x which contains the information about the local deformation in x gen-
erated by P . From it the final local space-time deformation is determined. This determi-
nation is deducing the speed associated with this four-momentum, and then the boost as-
sociated with this speed. This boost describes the final space-time deformation occuring
locally in x. Taking equation (7) into acount, and the VGWs of paragraph 3.10, the final
local space-time deformation in x is described by the boost which is associated with the
four-velocity which is the barycentric operation of all the four-velocity of the VGWs prop-
agating in x. This barycentric operation uses the total energy of each VGW as its weight.
The attenuation of the propagation of the VGWs follows the rule of Ricci tensor being
null in vacuum. From this boost is calculated the metric. This is done in each space-time
event. Therefore, the global space-time structure is calculated. The question of the stability
of this self-induced mechanism arises. But if the universe is static, with this mechanism,
space-time structure converges into a stable structure. Indeed if the universe is static, then a
thought experiment can be done in which the energy distribution is constructed by adding
progressively the particles one after the other. Also each of them can be added progres-
sively, their energy at rest being increased progressively. Each of those successive energy
distributions are static. As usual in GR, space-time structure for each of them can be de-
scribed with the system of Riemann normal coordinates [9], in which space-time appears
virtually flat Minkowskian. In this system, in any x space-time event, the sum of the mo-
mentum of the VGWs occuring in x is null. This is valid also for the limit of these energy
distributions and the limit of those system of frames.

3.11.4. An equation of G

The context and notations of paragraph 3.11.3 are used. The R0pO; ct, x, y, zq frame is still
used, the P particle is located in O, the x event is any possible space-time event. For trying
the construction of an equation of G, now let’s assume, also, the following.

Assumption (i): Newton’s law is valid. But G may differ from its solar system value.
This is based on experimental data. Newtons’ law must be supposed to be valid almost

in solar system because this law is validated with high accuracy, at least in solar system
[12]. And there are theoretical arguments for this law to stay valid out of solar system,
though being used with a different value of G. This will be studied in paragraph 5.

Assumption (ii): the energy of a GW propagating spherically evolves always following
the same attenuation function (function of the initial starting energy, and of the propagation
distance), regardless of its location and starting energy.

Assumption (iii): in equation (7) the sum of the energy of the contributions generated
by P is far weaker than the sum of the energy of the other contributions.
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This assumption will be confirmed with surrounding, where a sphere with a 15 kpc

radius, which is used for calculating the surrounding value, is fitted to experimental data.
The energy which is located in this sphere corresponds to the time component of the rhs of
equation (7), that is, the sum of the energy of the contributions of this equation.

Assumption (iiii): the contributions of equation (7) can be replaced by their asymptotic
values without modifying consistently the result.

This assumption can be valid if the particles of the universe are isolated enough from
each other. This might be realistic because matter is known to be extremely sparse in the
universe, whatever the scale is, from particle physics scale to cosmological scale. Assump-
tions (i) (ii) (iii) and (iiii) are easier to accept asymptotically.

The calculations are presented in Appendix P. They are based on assumptions (i) (ii)
(iii) and (iiii), equations (7), equation (8), and the geodesic equation for Newton’s law
which is reminded in Appendix P. They result in the following equation of G.

G � c4

2
�
Σ8n�0

b
Epynq
}x�yn}3

	2 (14)

In equation (14); Epynq � C0pynqc is the total energy of the particle located in yn.
This equation is valid only for VGWs. In Appendix P it is shown that this equation is a
good approximation under (i) (ii) (iii) and (iiii) assumptions.

The possible divergence of equation (7) might appear worse in equation (14) than in
equation (7). Indeed, the 1{aprq evolution of the contributions of equation (14) shows po-
tentially a quick divergence of the result of this equation. Nevertheless it must be noticed
that the resulting gravitational force will obey to the 1{r2 rule. Indeed, equation (14) has
been formed from that rule. Therefore the final possible divergence is the Olbers’s para-
dox divergence. And it is easy to modify equation (14), inserting a cut-off value of the
contributions, for example resulting in the following equations.

Φcut

�
a, b
� �

b ¤ Rcut :

c
a

b

b ¡ Rcut : 0

(15)

G � c4

2

�
Σ8n�0Φcut

�
Epynq, }x� yn}3

	
2 (16)

Here Rcut is the maximum GW propagation distance. The 15 kpc value is suggested
by surrounding [1].

This cut-off value does not alter much the qualification of ”asymptotic” in the previous
reasoning and in the calculations of Appendix P. Indeed in the surrounding gravitational
model, the Rcut � 15 kpc value is fitted to experimental data. It is a distance which would
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require an attracting object like a galaxy in order to contradict this ”assymptotic” qualifier.
And this equation (16) can still be improved. For example it is possible to replace the simple
0 cut-off value by a slow decrease of the contributions of equation (14).

4. Predicted surrounding effect

The above study shows that relativity predicts a variable G. And this variation given by
equation (14) follows the rule untitled ”surrounding” in [1]. Of course equation (14) has
been constructed under the (i), (ii), (iii) and (iiii) assumptions.

But equation (7) shows already this surrounding effect, without any added assumption.
Let’s show this by rewriting it, shifting the total energy from left to right, and isolating the
resulting speed.

v

c
� fpx, y0qC0py0q

Σ8n�0fpx, ynqC0pynq (17)

The context and notations of paragraph 3.11.4 are assumed. The universe is still as-
sumed to be at rest and filled with a constant matter density, except for only one P particle
at rest with the universe and spatially located in O. y0 is an event spatially located in O,
and Cµpy0q is the four-momentum of the unique VGW generated by P . The 1wpx, y0q
and 1wpx, ynq terms disappeared because now only VGWs are considered. Indeed, there
is always a unique VGW which is propagated by each particle located in yn and which
is received by any given x event. Equation (17) derives directly from equation (7), and
shows that the space velocity of the resulting four-velocity is inversely proportional to the
denominator, which increases with the energy surrounding the x location.

It can be noticed also that the denominator of the rhs of this equation is a sum of positive
scalars calculated in an isotropic manner. It induces naturally to translate this equation
(17) into a gravitational model, replacing this value by the energy of the surroundings of
the location where the gravitational force is exerted. The result is that the surrounding
gravitational model or a gravitational model close to it is predicted by relativity. Therefore
the so-called gravitational anomalies of today might be no anomalies at all, but regular
predictions of relativity.

The modified gravity theories of today must comply with the MOND [13] model pre-
dictions, for the greatest part of experimental data. This has been proven by decades of
work in astrophysics. This compliance is naturally acomplished by the surrounding model.
Indeed, when acceleration is low, MOND increases it. But when acceleration is low, most
of the time it means that the surrounding energy and matter are low, also, and then the
surrounding effect increases acceleration too.

5. Revisiting Newton’s law

A revisiting of Einstein equation is naturally required by the previous study. This equation is
nothing more than the most direct translation of Newton’s law from non relativistic physics
into relativity. Therefore, the first step is to revisit Newton’s law. The Poisson’s formulation
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of Newton’s law starts the construction of Einstein equation, not only because it’s about
Newton’s law.

First of all, in vacuum, this formulation expresses the following important non relativis-
tic principle.

(i) The flow of the acceleration vector field is constant in vacuum.
It results divpaq � 0 in vacuum, where a is the acceleration vector field. This is not

something new. But now it has been shown that space-time structure in vacuum can be
calculated by considering only the VGWs generated by theoretical particles moving at
the speed of light. This gives a new insight about this (i) principle: it corresponds to the
conservation of flow of GW energy in vacuum. Hence another argument for the Poisson’s
formulation of Newton’s law is given.

Secondly, matter plays the role of a source for this field: matter is a source of any in-
teraction force. And this is not only true for gravitation. Indeed, the force which attracts
a given A particle to another given B particle is acting on A in the direction of B. This
direction is tangent to the geodesic relying A to B. At the contrary, vacuum does not gen-
erate any force. Therefore the F force vector field has a divergence which is a function of
ρ, matter density. Let’s write Φ this function. It results the following equation.

divpF q � Φpρq (18)

Then, let’s write the fundamental principle of dynamics.

F � ma (19)

F is the force generated on A by ρ. m is the mass of A located in a M space location,
and a is the acceleration generated in M by ρ.

From equations (18) and (19) the following equation arises.

mdivpaq � Φpρq (20)

Now the reasoning becomes only valid for gravitation. The weak equivalence principle
(WEP) states that a is independent of m for a fixed ρ. It results the following equation.

divpaq � fpρq (21)

f is of course a function which is deduced from Φ. Newton’s law in its Poisson’s for-
mulation is almost retrieved by the previous theoretical considerations. The divergence of
the acceleration vector field should be a function of energy, such that for a null energy there
is a null divergence. This gives also the following equation.

fp0q � 0 (22)

In equations (21) and (22), nothing is told about neither the sign of fpρq nor the exact
feature of the f function. And the question of a possible proportionality of fpρq with ρ
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is related with conservation of energy and the principle of action and reaction. Let’s show
this. Equation (21) implies for a P particle in an empty universe the following equation.

a � fpρqV
4πx2

(23)

In equation (23), a is the acceleration in any given M location, such as MO � x, O
being the location of a P particle generating this acceleration. ρ and V are respectively the
matter density and the volume of P . It was supposed that ρ is constant in P . Then applying
the fundamental principle of dynamics, the following equation arises.

F � m1fpρqV
4πx2

(24)

Here, F is the force attracting a P 1 particle located in M , by P . m1 is the P 1 mass.
But the principle of action and reaction implies that this equation is invariant by P and P 1

permutation. The following equation arises, where m is the mass of P .

m1fpρqV � mfpρ1qV 1 (25)

This being true for V and V 1 being constant and for any value of m, m1, ρ, and ρ1, it
implies that fpρqV is proportional to m . A better demonstration of that would consider the
total energy E of P and P 1, in place of the principle of action and reaction. This energy is
the integral of the forces along space distances. Then it is the invariance of E by the P and
P 1 permutation which would be used. This proportionality would be written the following
way.

fpρq � Kρ (26)

Here K is of course the unknown coefficient of this proportionality. Using equation
(26) in equation (24), it yields the following equation.

F � Kmm1

4πx2
(27)

But now no theoretical argument can be given here for calculating the K{p4πq constant
of equation (27). Historically Newton’s law has been constructed based on experimental
data more than theoretical considerations. To say the least, the G determination was done
completely based on experimental data.

But an indirect theoretical argument can be given. Everything was done here under the
assumption that a complete vacuum exists outside of P and P 1. If the vacuum is not perfect
outside of the particles, the reasoning above becomes wrong. The energy surrounding the
particles must be taken into account. First of all, matter density of the universe outside of
P and P 1 generates also a divergence by applying equation (21). This added divergence
modifies the final result given by equation (24). Secondly, the principle of action and reac-
tion might not be true in its simplest formulation. It is easier to understand that the energy



April 11, 2025. Relativity predicts a variable G © 2024 23

version of the demonstration is wrong. Indeed, rigorously speaking, the total energy of P
and P 1 must be replaced by the total energy of the universe. Indeed, energy exchanges
might exist between the particles and their environment. A more practical version would
be to approximate the energy of the universe to P and P 1 energies plus the energy of the
surroundings of the particles, to some given extent suitable for a correct approximation.

The whole result of those theoretical arguments is Newton’s law. But these arguments
tend to prefer a variable G more than a constant G value, this variation depending of the
energy surrounding P and P 1 particles.

6. Revisiting Einstein equation

In the more general relativistic regime the same reasoning might be done, replacing the
divergence of equation (21) by Einstein tensor, and matter density by stress-energy tensor.
Then the reasoning might give Einstein equation. But this work is above the scope of the
present document. Nevertheless, since Einstein equation is the most direct formulation of
Newton’s law in the context of relativity, the reasoning above done in the non relativistic
regime applies indirectly to Einstein equation.

To say the least, what appears still seriously doubtful is the statement that K{p4πq is
a universal constant, in equation (27). At the contrary, the above discussion shows that
one would expect matter density of the universe to play a role in the determination of this
constant. A more practical formulation of that would be that the energy of the surroundings
of P and P 1 would play a role in this determination. This was true for Newton’s law, and is
therefore true for Einstein equation, since it is the most direct translation of Newton’s law
into relativity.

The ρ � 0 particular case implies divpaq � 0, from equations (21) and (22), but results
also directly from the (i) principle. And the present study shows absolutely no need to mod-
ify its relativistic formulation given by equation (5). At the contrary, this equation allows to
complete the new construction of space-time structure done in the present document. This
equation was used notably, above, in the study about two particles in an empty universe.

By other means, the construction of Einstein equation from Newton’s law is extremely
simple. It is the simplest way to proceed. Inserting a multiplicative tensor between the
stress-energy tensor and Einstein tensor is something natural which were rarely done in the
literature. This mutiplicative tensor can be only a function of energy: what else? Now the
present document shows that this is exactly the correct translation of Newton’s law into
relativity. The result would be surrounding, or a gravitational model close to it. A classical
way to proceed would be to calculate everything with such a Xµ

ν hypothetic multiplicative
tensor and then compare the predictions to experimental data. Very probably, it would show
that Xµ

ν must be proportional to the surrounding energy of the location where the force is
exerted. Indeed, the surrounding gravitational model indicates strongly that this is exactly
what would happen.

Also, today during the construction of the GR Lagrangian for matter, the G anthro-
pocentric solar system constant value is forced without any theoretical argument. This is
doubtful. At the contrary, the GR Lagrangian for vacuum is the simple and well sounded
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scalar curvature. This is another argument for applying it in the present study (it is equiva-
lent to equation (5)).

7. Conclusion about G

Apart from the previous demonstrations, it is coherent to adopt a physics view point and
add physics arguments in favour of a variable G following the rule of the surrouding ef-
fect. They will show that the previous demonstrations do not come from nowhere, but are
motivated by strong arguments in physics. They are the following.

1) Mach’s principle.
2) Correct theoretical construction of Newton’s law.
3) Sophisticating the construction of Einstein equation.
4) Loss of information in the construction of the stress-energy tensor.
5) Implicit assumption of GR.

Items 2) and 4) were listed as motivations in the introduction. Item 1) is part of the
motivation 4) of the introduction. Those items were transformed into arguments by the
present study. Items 1) 2) and 3) have been described above. Item 4) was used implicitly in
the present study. Indeed, there were no such loss of information in the descriptions of the
energy distributions of the demonstrations of the present document. This item, as well as
item 5), is described in [2]. Item 5) is related to the remark that the quarks are moving at a
speed which is close to the speed of light.

Therefore, forgetting one instant the previous demonstrations, from a physics point of
view alone the following statement is valid. Outside of solar system, it is much more rele-
vant to use equation (14), or its translation with surrounding, than its solar system value for
the determination of G. To say the least, a variable G following the rule of the surrounding
effect is much more relevant.

8. Yang-Mills Millennium problem

8.1. General statement

The remark done in [2] about the Yang-Mills Millennium problem is still valid. Moreover,
this remark is conspicuously reinforced by the study of the present document. Let’s remind
briefly this remark. It starts by assuming the following.

Assumption (A): unification of the four forces is driven by gravitation.
It is not indicated how this unification takes place. But it can be imagined that each

particle of particle physics is constructed by some, internal, amount of energy in motion,
the different trajectories of those amount of energy giving different behavior of the three
other forces.

Under this unifying assumption, the Yang-Mills Millennium problem finds a solution.
Indeed this assumption awake the full relativity in the context of particle physics: now not
only SR, but also GR underlines all the forces. Therefore each of four forces is driven by
the surrounding effect. And this effect modifies enormously the interactions between the
particles.
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8.2. Modified predictions and observations

The first kind of particle physics observations are particles interactions. The present study
modifies the physics predictions in the case of triple nuclear collisions [14]. Indeed those
collisions would be predicted to behave in a completely different manner, because of the
surrounding effect. But they are almost impossible to realize. The GR modification of the
present study predicts a different behaviour when the targetting particle is unchanged but
when the target of the interaction is modified. When the target energy decreases, the sur-
rounding effect increases and the scattering is expected to be wider. For example, the Ay
puzzle [15, 16] might be enlightened.

The second kind of particle physics observations is cosmic rays. But here the present
study will not modify the observed predictions.

The third kind of particle physics observations is static configurations of particles. Let’s
focus on the most stable group of particles, the atom. The electromagnetic force is now pre-
dicted to be much weaker than what is calculated by the simple 1{r2 rule, when the electron
is part of an atom, than when it is alone. For the nucleus, its most simple form is the hadron.
Let’s discard hadrons made of two quarks because of their life time. The confinement of
quarks is noticeable in hadrons of three quarks. This is very much explained by the present
study. The remaining question is why an electron can exist alone, while a quark cannot. The
present study gives a simple argument here. An answer is to be found in the difference of
magnitude between the electromagnetic force and the strong force, when they are exerted in
their confinement state, that is, when such groups are particles are formed. When a hadron
is formed, then the strong force is far stronger than the electromagnetic force between an
electron and a proton inside of an atom. But when an electron or a quark is left alone, then
the surrounding effect increases the interaction force with respect to its value when the par-
ticle were not alone. Therefore, for an electron it is increasing a relatively weak force. But
for a quark, it means increasing a force which was already strong. Therefore it can be un-
derstood why an electron can exist alone, while a quark cannot. It must be added that in this
description the strong force can’t be assumed to be a very short range force. In paragraph
8.3 it will be shown that this assumption might be wrong.

For the strong force a modification of the present study involves three body interactions.
Any group of three particles closed to each other would experience low values of the strong
force between them, because the surrounding effect would be strong, due to their close
proximity to one another. But any group of two particles, or any group of three particles
having one of them far enough from the two others, would experience stronger values of
the force, because the surrounding effect would be weak. This can explain why hadrons
with two quarks have a very short life-time, while a hadron with three quarks is stable. And
it explains why an isolated quark is unobserved.

Therefore this allows quark confinement for long duration only when they are close to
each other by groups of three. It results a solution of the Millennium problem [3, 4].
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8.3. Other observations in static configurations

Nuclear saturation [17,18] is the observation that the volume of a baryon does not vary with
the number of baryons inside of the same nucleus. In today’s literature this mechanism is
understood as suggesting a very short range for the strong force. But there are the two other
possible explanations for it, which follow.

1) The strength of the strong force repulsion allows this volume to stay constant when
N varies,

2) The strong force is driven by a surrounding effect.

The first explanation numbered 1) would mean that the repulsion of the strong force
would be far greater than its corresponding attraction, resulting probably in strange pre-
dictions. Moreover as it will be seen in paragraph 8.5 under assumption (A) each force
attenuates following the 1{r2 rule. Hence the repulsive strong force follows this rule and
the first explanation is wrong.

The present document gives arguments in favor of the second explanation. Indeed the
surrounding effect explains this mechanism in the same usual simple manner. The strong
force potential, exerted on one baryon, by the other baryons of the nucleus, is substracted
by its exact value, resulting in a constant potential. This is the same usual suppressing
effect predicted by surrounding [1], which happens for the cosmological version of Einstein
equation. It happens also for the bullet cluster. The calculation is presented in Appendix Q.

This explains why the volume of the nucleus is proportionnal to the number of baryons:
the strong force potential of the other baryons stays the same whatever is the number of
baryons.

8.4. Toward a strong force model

In particle physics the same issue arises as in gravitation, which were leading to the con-
struction of the surrounding gravitational model. Indeed, the equations of G are not prac-
tical here also. Moreover, the exact way in which the three forces of particle physics are
constructed from gravitation is unknown. Therefore it is required to model those three other
forces. The most important work is about the strong force, since it is the one which appears
the most promizing one.

For this the same modeling would be required as the one which were used in the con-
struction of surrounding. This construction were using an homographic function using dif-
ferent values of matter density. Such a recipe might be used in particle physics too. Then
fitting the four parameters of this homographic function would be required. It must be done
by comparing the predicted results with experimental data. It remains to be done.

8.5. Relevance of the fundamental assumption

Let’s try to discuss the validity of assumption (A). It is more than an assumption. Indeed,
the following argument can be done.
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Argument (*): acceleration generated by gravitation is explained by space-time curva-
ture. It is a simple and elegant rule. It is tempting to apply it to each force.

The only remark which would forbid it is that the ratio σ{m is not constant but depends
of the type of particle, where σ is the charge of the particle with respect to the considered
force and m is its mass. But this remark can be discussed under assumption (A). Indeed,
under this assumption this dependence of the WEP with σ can be explained by the possible
mechanism which were described previously: the particular behavior of the gravitational
force depends of the particular internal structure of each particle.

Another argument is the following. Under assumption (A), the WEP is applied for the
four forces. Nevertheless, it can be assumed to stay valid for any fixed type of particle. Then
the reasoning of paragraph 5 remains valid for any fixed type of particle. For example, in
electrostatic, if σ and m are respectivly the charge and the mass of the electron, then σ{m
is known for the electron, and the principle can be extended. Therefore the reasoning of
paragraph 5 remains valid for this fixed type of particle. Now equation (27) is yielded for
all the forces, having of course a different K value depending of the considered force. The
result is that under assumption (A), each force follows the rule of the 1{r2 attenuation.

The argument (*) comes from relativity and gravitation. It might appear difficult to find
such a convincing hint starting from particle physics. For example it might be difficult to
find such a convincing argument with the following assumption.

Assumption (B): unification of the four forces is driven by one of the three forces of
particle physics.

Under the (B) assumption, the strong force might be the better candidate. Indeed, for
example in figure 1 of [19], it is located on an extreme location as compared to the others.
The wave nature of matter proven in particle’s physics appears to be an argument here. But
this might argue also for (A) assumption since one can interpret them as being related to
space-time waves. Unfortunately, no convincing unification might be available under this
(B) assumption. Nevertheless assumptions (A) and (B) appear better than the following
one.

Assumption (C): no unification of the four forces exists.
Indeed, there is the apparent energy convergence at Planck scale [20] which contradicts

it. But assumptions (A) and (B) must be compared with the following one, which might be
done by today’s physics.

Assumption (D): unification of the four forces is driven by an effect in which no force
plays a leading role.

It might be this (D) assumption which is implicitly assumed todays [21, 22]. But the
main arguments for it are symmetry considerations. Their relevance must be compared
with the relevance of argument (*).

Also an experimental information in favor of assumption (A) is given by eclipses
anomalies. Indeed, under this assumption, strong deviations of the gravitational signal of
the sun, by the moon, might be expected during solar eclipses [10, 11].
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9. Discussion

A new determination of space-time by energy is presented. It uses the usual GR concept of
rest frame, which is generalized and then called GRF in the present document. A property
of those frames has been dismissed in the literature. This property is that the evolution
of those frames is driven by energy. And this particular behavior is proven to result in
equation (7). This equation allows to determine space-time structure from energy and deals
with the first degree of derivation of the metric. From there the second degree of derivation
is calculated and then compared to Einstein equation. Hence this GR feature relates energy
to the first degree of derivation of space-time structure, it is a new chapter of GR to be
exploited. Its starting part has been developed here.

It results a more complicated relativity, more Machian than before, in which gravita-
tion follows the rule of a surrounding effect. In its weaker formulation this effect is the
following. Increasing the energy of the surroundings of the location, where the gravita-
tional force is exerted, results in decreasing this force with respect to Newton’s law. It is
proven that G is not a constant, and that its variation is driven by this effect. An equation
of G is given, which is a good approximation under four assumptions, which might be
valid most of the time in gravitation. For most of the usual energy distributions Einstein
equation can be used. In particular it can be used for energy distributions of a small set of
sparse objects, (for example two objects), when matter density stays constant over space
and time apart from those objects. But this new value of G must be used. For calculating
this value, formally equations (14) and (16) exist, but they are not practical since the at-
tenuation function used in these equations remains to be calculated. And its value depends
of the energy distribution. However, it remains much better to use Einstein equation with
a G value driven by the surrounding effect than its constant anthropocentric solar system
value. Since these equations of G are not easy to use, the surrounding gravitational model
has been constructed [1].

When the complexity of the energy distribution does not allow to use Einstein equation,
then a method has been presented, allowing to calculate space-time structure from equation
(7) and from any kind of energy distribution made of dimensionless particles. But, even
though it might be calculated numerically, this method is complicated.

That’s why a general principle might be searched for, allowing to replace completely
Einstein equation. Another Lagrangian might be constructed, based on this new chapter of
relativity.

However, the compatibility of surrounding [1] with experimental data, so far, along
with the demonstration of the present document, shows the following. Each so-called grav-
itational anomaly might be simply a prediction of relativity. Of course the work is huge
until one can replace ”might be” by ”is” in the previous sentence. Indeed, it remains sev-
eral mysteries to address. And this model will have to be tuned. More details are given in
Appendix R.

Nevertheless, a significant step has been made in gravitation. It has been shown that far
enough from the sun, using the G value determined by the surrounding value is much more
relevant than using the solar system value.
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In particle physics, this surrounding effect emerges under the relevant unifying assump-
tion that the four fundamental forces are different aspects of the same unique force of grav-
itation. This assumption is supported by several theoretical reasons detailed in the present
document. The exact law of motion remains to be determined. The same process used for
constructing the surrounding effect might be applied, where a homographic function is
fitted to experimental data.

Applying this surrounding effect in nuclear physics resolves three puzzles. The Ay puz-
zle and the proton radius puzzle find convincing explanations. The nuclear saturation puzzle
is solved. This solution shows that the strong force can still follow a 1{r2 law, which can
be argued to be valid from theoretical considerations. This allows us to discard the pecu-
liar assumption about its supposedly extremely short range. A simple surrounding effect
applied at the nucleus scale completely solves this saturation observation.

It is the same effect operating at the same scale that predicts any isolated quark would
experience a much stronger force than when inside the nucleus. This provides a solution to
the Yang-Mills Millennium problem.



30 April 11, 2025. F. Lassiaille © 2024

Appendix
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Appendix A. Continuity of the S function

The S function gives space-time structure from energy distribution. S starts from the set of
energy distributions, which is a linear space of infinite dimension. It reaches another linear
space of infinite dimension, which is the space of space-time structures. The latter can be
defined using the matrices of the metric in some given system of coordinates. Then, this
space is the linear space of the distributions over space-time of 4 � 4 matrices. This defi-
nition depends on the choice of the system of coordinates. Both linear spaces are equipped
with the uniform norm. Let’s remind that the considered energy distributions are assumed
to share the same bounded domain.

With the uniform norm, and for this restricted set of energy distributions, the claim is
that S is continuous.

To prove this, let’s show that if any amount of energy at any space-time location is de-
creased to 0, then the effect of this amount of energy on space-time structure also decreases
to 0. For this demonstration, let’s assume that this is wrong (assumption ”w”). Then there
exists an fn sequence of energy distributions tending to 0 and such that their deformations
are greater than some given non-null value. This can be written as follows:

limu
nÑ�8

pfnq � 0

@ n in N, }SpE � fnq � SpEq} ¥M
(A.1)

In these equations, E is the energy distribution of the universe, to which the fn energy
is added. }.} is the uniform norm on the set of space-time structures. M is some strictly
positive real number. Therefore, the involved physics is such that an infinitely small amount
of energy provokes a non-null modification of space-time structure. Let’s remind that this
word ”small” means that the maximum density of energy which is added is small (uniform
continuity), and also that the whole quantity of added energy is ”small” (the considered
energy distributions share the same bounded domain). Since this added amount of energy
is infinitely small, it is possible to imagine a thought experiment in which this energy is
added instantaneously. But the result on space-time structure is noticeable. This generates
gravitational waves. If the universe is empty, then no contradiction arises. But this would
be unrealistic. If the universe is not empty, then those gravitational waves cause the motion
of matter in the universe. But with this infinitely small and sudden ”addition” of energy,
of course, nothing happens since the added amount is infinitely small. Therefore, a sudden
modification of energy distribution happens without anything to provoke it. This violates
the conservation of energy principle. Therefore, assumption ”w” was wrong, and the claim
is proven.

Then, writing this continuity property with the limit of sequences, equation (2) is given.

Appendix B. Generalized rest frame

The concept of a generalized rest frame can be introduced with a thought experiment.
This thought experiment is simply imagining the energy at rest of a particle P increasing
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progressively, and at the same time the whole energy of the universe decreasing. At the end
of the experiment, P and the universe have their roles permuted. Now P contains the energy
of the previous universe, and the universe contains the energy of the previous particle. The
first result is that the frame in which time elapses the most is no longer the frame attached
to the universe. Now this frame is the frame attached to P . It means that the space-time
structure is now the symmetrical result of a permutation of those two frames. It means also
that during the experiment, the space-time structure has been modified progressively from
the first state to the final one. And this operation has allowed to revert the time dilation. For
example, if this was a twin paradox configuration, at the end of his brother’s journey, the
older twin would become the youngest after the thought experiment. Therefore, this space-
time modification is simply described by the boost transporting one frame into another.
It can be noticed that this reasoning is using the well-established supposition that GR is
coherent.

Now the need for naming the frames appears. Let’s call Ru a frame attached to the
universe. It can be supposed that the universe is filled with a constant, homogeneous distri-
bution of matter; therefore, this matter is supposed to be at rest in Ru. Let’s call Rp a frame
attached to P . The result of the thought experiment is that P generates locally a space-time
deformation which is described by the boost from Ru to Rp. Of course, this deformation
is local to P , but the more energy at rest of P , the more this deformation is valid around
P . A ”more valid deformation” means that the space-time deformation exists significantly
over a larger space-time domain.

By the way, an important remark must be added here, which is used in other parts of
the present study. It is that, if increasing P energy will make this a ”more valid deforma-
tion”, nevertheless this will not modify the deformation locally to P . Indeed, increasing or
decreasing P energy will have no effect on the local deformation of space-time structure
generated locally by P . This deformation will always be described by the corresponding
boost, defined just below. This will be detailed in Appendix B.

The space-time deformation appearing in the experiment is described by the boost
which allows to transform progressively this frame from Rp to Ru. This frame remains
a rest frame during the whole process, even though it might no longer be the frame in
which time elapses the most. Indeed, this frame is a frame in which P is at rest. The result
is that it is possible to extend this identification of the frame in which time elapses the most
to any space-time event in which there exists matter. And this identification can be extended
even further to events in which vacuum prevails, by interpolation between those events in
which there is matter.

This interpolation is done by the following procedure:

1) Let’s choose a dimensionless particle P , located at a point M in space, and let’s
write R its rest frame.

2) In M , the time line of R is naturally created; let’s write it L, such that M pertains
to L, and such that for any point N of L, the time vector of R is tangent to L.

3) For each such L, let’s write Gc the geodesic congruence [9] such that L pertains
to Gc.
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4) For each geodesic L1 of Gc, there exists a unique frame R1 such that L1 is the time
line. By definition, this frame R1 is a generalized rest frame (GRF). And the set of
those R1 is the set of GRFs created around M .

The first point above (the dimensionless particle P ) takes into account the entire energy
distribution of the universe. Indeed, only energy distributions which are sets of dimension-
less particles are considered in the present document.

Rigorously, a geodesic congruence is not the entire universe (there are possible inter-
sections of such ”parallel” geodesics). But with the energy distributions considered in the
present document (set of dimensionless particles), it is the entire universe. Indeed, other-
wise, there would exist space-time events in which two different dimensionless particles
would exist (hence they would mix themselves). And an implicit property of energy distri-
butions is that this can’t happen. This is why this restriction has been added in the glossary
to the definition of energy distribution. Of course, this is not a strictly rigorous reasoning
since there can still exist time lines encountering in vacuum, even though the rest frames’
time lines are not. But this would require a strongly deformed space-time structure between
rest frame time lines. And this might be argued to be unrealistic.

How is a geodesic congruence created? Of course, this is done from the metric. And,
outside of events in which there is matter, therefore in vacuum, the metric is given by the
rule of the Lagrangian in vacuum. Therefore, the constraints allowing the determination of
this metric are the following:

1) Each time line of a particle is a geodesic.
2) In vacuum, the Ricci scalar is null.

After the definition of a GRF, let’s underline that its behavior is also a key point of
the chapter of relativity which is explored in the present document. This behavior has been
introduced at the beginning of the present appendix. It will be also illustrated throughout
the present document when using those GRFs.

Let’s also remark that the local space-time deformation around a dimensionless particle
P is inflexible. It means that this boost remains the same regardless of the energy distri-
bution outside of P . What causes this inflexibility is the fact that it is local, due to the
assumption that P is dimensionless but has non-zero energy. Specifically, no matter what
the surroundings of P are, the local deformation generated by P remains the same. This
remains true if P is no longer a dimensionless particle but instead has a high enough matter
density. This is a realistic model since matter is known to be extremely condensed. It is also
true for the virtual microscopic particles used in the thought experiments in this document.

Appendix C. Rescaling after the boost

Let’s consider P , a particle moving uniformly at speed v, where v   c, along the D space
line in a flat Minkowskian space-time. The RpO; ct, x, y, zq frame is chosen such that O
lies on D, and Ox is in the direction of P ’s motion. The local deformation around P is first
described by the bv boost associated with the v speed, as shown previously.
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But equations (10), (11), and (12) show that a rescaling of ct time and x space axis is
required. If no rescaling occurs, it means that the deformation generated by P is entirely
described by a boost. In that case, it is simply the usual change of coordinates following SR
rules, and no deformation is observed. Therefore, a rescaling occurs, and this is consistent
with time dilation between R and R1. From equations (8), (10), (11), and (12), if α and β

are the s rescalings of ct and x, respectively, we have α2 � β�2 � 1� v2{c2.
Hence, the complete deformation is described by bvs. This results from equations (10),

(11), and (12).
Moreover, the calculation of this rescaling can be done in the more general but usual

configuration of a flat Minkowskian space-time everywhere, into which an ξ energy dis-
tribution is added in a bounded space-time domain. The old and new GRFs refer to this ξ
bounded energy. The space-time deformation generated by ξ is described by the successive
local deformations of test particles at rest when located infinitely far from ξ, along their tra-
jectories. These calculations are described in Appendix O. Once again, the SR time dilation
factor is the time component of this rescaling.

Appendix D. Integration constant

This appendix deals with the integration constant in the space-time structure calculation for
the energy distribution of two particles in an empty universe.

This constant can potentially be determined from the following information. Singulari-
ties occur along the straight line containing the particles’ locations, but only at those points
that are not between the particles’ locations. These are described by the boost associated
with the speed of light in the direction moving away from the particles.

The rigorous approach is to calculate the space-time structure using symmetry consid-
erations and equation (5). Then, the asymptotic values of the deformation should allow the
calculation of the integration constant.

Let’s recall that this procedure has already been done for the energy distribution with
one particle in an empty universe. Symmetry considerations produce the Schwarzschild
metric. Equation (5) provides the information that the metric takes the form g00pxq �
1�M{r. Here, g00pxq is the time-time component of the metric at the x space-time event,
r is the spatial distance from x to the particle located at the center of symmetry, and M

is the unknown integration constant. Then, the asymptotic value of the local space-time
deformation, as given by paragraph 3.6, allows the calculation of M � 8.

Therefore, it should be possible to calculate this constant for the energy distribution of
two particles in an empty universe.

Appendix E. Particle moving at the speed of light: local deformation

Now, assume v � c. Let’s prove that the deformation in C is the bC boost associated with
the speed of light along the D line in the direction of the GW propagation.

Starting from Appendix C, taking the limit as v approaches c, the result is obtained. As
usual, the interchange of limits theorem is used. The simple convergence is sufficient for it
to work since the studied deformation is only local.
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Appendix F. Relation between the boost and the speed of a gravitational wave

Let’s study the GW generated by a given particle P in motion with respect to an R old GRF.
First of all, the space-time deformation generated by a GW is described by a linear map
because it is a local deformation. However, it first transforms an inertial frame into another
inertial frame. Therefore, the Minkowskian distance is invariant, and the linear map is an
isometry. Time inversions, space rotations, and space symmetries are discarded since they
are not realistic. Only boosts remain. This is the first linear map which is applied to R.
Then, a second linear map must be applied, resulting in time and space positive rescaling.
Indeed, no rescaling would mean no space-time deformation.

But let’s study the boost, that is, the first part of this complete linear map. This boost is
written in the old R GRF before the existence of the GW. For local symmetry considera-
tions, the V speed associated with the boost in R is in the direction of the GW propagation.
It will be assumed the existence of this GW generated by P , such that its speed is a given
positive constant value v along the direction of its propagation and with respect to the R

frame. What is the relation between v and the V speed? It might be guessed that V � v.
This demonstration is simple, but it will be carried out in as much detail as possible.

It is easier to present by contradiction. Let’s assume the result is incorrect. Therefore, we
assume that the GW speed is v and that the boost of its deformation is V , such that V � v.
Now consider a particle P 1 ”surfing” on the GW in a ”straight line.” To elaborate on this
consideration, a construction is required. A space point M is constructed, where the GW’s
local deformation is maximal, and such that the distance between M and P 1 is always mini-
mized. This can be done because the set of ”space points where the GW’s local deformation
is maximal” (which is the envelope of the GW) at a given time with respect to R, forms a
closed S surface in space. Therefore, a classical mathematical theorem states that the dis-
tance between S and P 1 is represented by such a point M belonging to S. Let’s define RM ,
a frame in which M is at rest and shares the same space axis orientations as R. Moreover,
as time progresses, the point M is constructed in such a way that it moves along the normal
to S. With this construction in place, P 1 is always located in close proximity, maintaining
a constant spatial distance from M with respect to RM (and therefore also with respect to
R, because v is assumed to be constant). Thus, the construction is such that P 1 is at rest
with respect to RM and that M is part of the envelope, moving along the normal to this
envelope.

With this construction complete, let us begin the demonstration. Since M is moving
along the normal to S, and since P 1 is at rest with respect to RM , then M and P 1 are
moving at speed v with respect to R. The local deformation generated by P 1 is independent
of its energy (this deformation is ”inflexible,” as shown at the end of Appendix B). For
the same reason, this deformation is also independent of the GW energy. However, this
may not be exactly the same for the GW. Therefore, let us resolve this uncertainty by
assuming that P 1’s energy is sufficiently low, so that its deformation is not noticeable at
M . That is, the local deformation generated by P 1 transforms more globally into the GW
deformation, which is a null deformation at M with respect to RM . In other words, in M

with respect to RM , the space-time still appears to be flat Minkowskian space, as described
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canonically by RM . The local space-time deformation generated by P 1 with respect to
R is the boost associated with v, and the GW deformation observed at M is described
by the boost associated with V , where V � v. Therefore, these deformations are not the
same, and with respect to RM , locally to P 1, a boost is observed, which is the result of
one boost subtracting the other, and which corresponds to a speed w that is non-zero and
represents the relativistic subtraction of V from v. However, there is a rule: with respect to
a frame, a particle modifies the local space-time structure with the boost associated with its
speed. The reverse is also true: with respect to a frame, a particle modifying the space-time
structure with the boost associated with speed w is moving with speed w. (This follows
from the fact that, with respect to any given frame, the relationship between a particle’s
speed and the boost describing its deformation is a bijection.) Applying this rule here, we
find that P 1 is moving with respect to RM at speed w, which is non-zero. This contradicts
the earlier construction, which assumed that P 1 was at rest with respect to RM . Since this
construction was possible, it is the assumption that v � V that must be incorrect. This
proves the previous claim.

Therefore, the boost part of the GW’s local deformation is associated with its v prop-
agation speed. (In fact, assumption (I) of paragraph 3.4 reminds that v � c, but this in-
formation was not necessary for the previous analysis, so a more general statement was
possible.) Now, the rescaling is still unknown. But if v � c, as is well-established in mod-
ern physics, (assumption (I) of paragraph 3.4), then the associated boost is degenerate, and
any further rescaling would produce no change to the final result, which is the following.
The local deformation generated by a GW is the boost associated with the speed of light.
This is the only information provided here in this appendix, which is truly necessary for
the demonstration presented in this document.

Appendix G. Particle moving at the speed of light: propagation of the
deformation along the trajectory

Let’s deduce the following from the result in Appendix E.
The deformation of P in C propagates along the D line in the same direction as the

motion of P and is described by the bC boost associated with the speed of light in the same
direction.

This can’t be really observed when P moves along D, because the deformation gener-
ated by P can’t be distinguished from the deformation generated by its GW propagating in
the same direction. But this can be observed as soon as P deviates from this D line trajec-
tory. First of all, the GW generated by P propagates along the D line for symmetry reasons.
The propagation speed is the speed of light, as assumed in assumption (I). The propagated
local deformation is described by bC : the demonstration is the same as in Appendix F. Al-
ternatively, it is possible to use Appendix F assuming v   c and then considering the limit
v � c.
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Appendix H. Simple description of the local space-time deformation

Let’s describe the local space-time deformation generated by a particle or a GW, using the
simplest possible approach. For that, the Poincaré-Einstein synchronization [26] will be
used. The Minguzzi synchronization is not strictly required since the transitivity of the pro-
cedure is not mandatory here. This procedure is used here for the construction of an inertial
frame R1pC, ct1, x1q, moving at speed v with respect to another frame, denoted RpO, ct, xq.
No Lorentz transform or boost is needed for that, only the Einstein synchronization rule
and geometry in two dimensions are used. Figure (2) represents this construction. After
this construction, x1 is the symmetric of ct1 through the orthogonal symmetry with respect
to the light trajectory in the increasing x direction. Indeed, the circle passing through O

and M , and having C as its center, also contains N because the OMN triangle is a right
triangle at N . Hence, CM � CN . Then, if H is the midpoint of M and N , then CH is
parallel to ON by Thales’ theorem applied to the OMN triangle. And, of course, CN is
the direction of the light trajectory in the increasing x direction.

Moreover, there is a natural coherence in the calculation of the space axis in four di-
mensions using the synchronization procedure. This is demonstrated by using different
light beam trajectories. For example, the procedure can be executed with a light beam in
the decreasing x direction, and then, after the turning point, in the increasing x direction.
The result is, of course, the same x1 axis. But also, using a trajectory along the y or z direc-
tions will show that along these space axes no deformation is noticed, which is the expected
result. Any other light beam back-and-forth trajectory in space will show a deformed axis,
which is also coherent since the procedure yields linear results.

The causal link is as follows. The starting point is that the motion of R1 with respect to
R is v, i.e., C is moving at speed v with respect to R. From this information, the ct1 axis of
R1 can be drawn with respect to R. Then, the synchronization rule determines the location
of the x1 axis. Even if mathematically there is an equivalence, and ct1 can be retrieved from
x1, nevertheless, for physics, the causal link is unambiguous.

Fig. 2. Two inertial frames are represented in two dimensions, RpO; ct, xq, and R1pC; ct1, x1q. The latter is
constructed with respect to the first using Einstein’s synchronization rule. ON and NM together represent the
trajectory of a light beam emitted from O in the direction of increasing x, and bouncing back at N . C is the
midpoint of OM . The x1 axis is supported by CN following the synchronization rule. H is the midpoint of
MN . A simple geometric reasoning in two dimensions shows that x1 is symmetric to ct1 through the orthogonal
symmetry with respect to CH , which is parallel to ON .
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A remark can be added about the rescaling studied in Appendix C. The boost transform-
ing R into R1 is deduced and, therefore, implicitly identified by the direction of the new
ct1 time axis with respect to R. The new GRF and the new metric valid after the insertion
of the particle or the new GW are deduced from this ct1 axis only, without the need for the
details of the boost itself. Even the usual rescaling of the new time and space units can be
done based on the ct1 axis alone.

Appendix I. Uniformly Moving Particle: Propagation of the Deformation
Everywhere

Figure (1) will illustrate the events described in the present appendix. Let’s argue the fol-
lowing.

Assumption (j): The space-time local deformation described by the bC boost, generated
by the particle P moving at the speed of light in the x direction, also generates a GW that
propagates at the speed of light along the directions perpendicular to x.

This is much more than an assumption. Indeed, the local deformation that generates
this GW is described by the bC boost. This is proven in Appendix F. Hence, it is more
than an assumption that this is exactly what is propagated by this GW. If D represents the
straight-line trajectory of P , then the point H on D, closest to any given point M , is such
that MH is perpendicular to D. Therefore, the propagation of the GW perpendicularly to
D is more than an assumption.

Moreover, let’s show in the present appendix that this is coherent with the fact that the
envelope of the GW propagates globally at the speed c{?2 along the CM direction. This
will be an additional argument for assumption (j).

Let’s start by studying the motion of the GW because this is the starting point, as shown
in Appendix H. The GW propagates at the speed of light, as stated by assumption (I) of
paragraph 3.4. This propagation at speed c occurs along directions perpendicular to the P

trajectory, as stated by assumption (j) above. Therefore, this propagation occurs from C to
N at speed c. Let’s study the ∆ half-line containing N and C 1, starting at C 1 and going in
the direction of N . The events along ∆ at time tN correspond to the propagation of events
at the locations of P along the CC 1 segment. This means that ∆ is the envelope of the GW
along the px, yq plane. It is noted that this ∆ envelope propagates along the CN direction
at speed c{?2.

From this motion, the new time axis is deduced, let’s call it ct2, starting the causal link
presented in Appendix H. This ct2 time axis in M is located in the pct, nq plane, where n is
the axis aligned with the CM direction. Due to the c{?2 motion of the GW, the equation
of the trajectory of the GW along the n axis is as follows.

r � c?
2
t (I.1)

In equation (I.1), r is the coordinate along the n direction starting from M , with respect
to R. It can be written as ct � ?

2r. Therefore, the angle β between ct2 and the px, yq plane
is given by the following equations.
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tanpβq �
?
2 (I.2)

cospβq � 1?
3

(I.3)

Now let’s show that this result is coherent with the local space-time deformation gener-
ated by P and its local propagation along the x axis. At time tN , along ∆, the ct time axis
has been rotated around the py, zq plane by an angle of π{4 in the direction of x, resulting
in the ct1 axis. Indeed, this is the effect of the bC boost along the space points of ∆: the
bC boost transforms R into the R1pct1, x1, y, zq frame in this way. There is ct1 � x1. This
creates a Π plane containing all these lines starting from the points of ∆ in the direction
of ct1. In other words, Π is the new plane of time after the action of the bC boost executed
along ∆ at t � tN in R. Let’s calculate the angle α between Π and the px, yq plane, with
respect to R. This is also the angle between the n direction and Π, and therefore the angle
between CM and Π. The calculation follows.

cospαq �
ÝÝÑ
CM � ÝÝÝÑCM 1

|CM |3|CM 1|3 �
�
L
2

�2 � �L2 �2b�
L
2

�2 � �L2 �2
b�

L
2

�2 � �L2 �2 � L2

� 1?
3

(I.4)

L is the CN � CC 1 distance. Let’s denote Π1 as the plane parallel to Π and containing
C. M 1 is the space-time point that is the projection of M onto Π1 along the ct direction.
Equation (I.4) is coherent with equation (I.3). The result is the following.

α � β (I.5)

This means that the GW propagation along its envelope creates a space-time deforma-
tion that is coherent with the propagation of the bC boost perpendicularly to the P trajec-
tory. It should also be noted that the Π plane makes a π{4 angle with respect to the px, yq
plane, but in the direction of y. In other words, the intersection of Π with the py, ctq plane
is a line that makes such an angle with respect to the px, yq plane. This is coherent with the
local GW propagation along the y axis at the speed of light.

The final result is a coherence between the following GW features:

1) Locally, the GW propagates the bC boost at the speed of light along the P trajec-
tory,

2) It also propagates this boost at the speed of light, perpendicularly to the P trajec-
tory. This describes the entire GW space-time deformation (in the whole space at
a given time).

3) The GW propagation along any space direction perpendicular to the P trajectory
occurs at the speed of light. This is a space-time deformation also described by
the boost associated with the speed of light in this direction. It describes exactly
the same entire GW space-time deformation as described above.
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4) Globally, the envelope of the GW propagates at the speed c{?2. The boost as-
sociated with this speed and direction also describes exactly the same entire GW
space-time deformation as described above.

Then, still following the causal link presented in Appendix H, the new space axis of
the GW deformation is deduced from the location of the new time axis. This new n2 space
axis is part of the pct, nq plane because the GW global motion is along the n axis. n2 is the
symmetric of ct2 with respect to the line supported by the c⃗t� n⃗ vector, where c⃗t and n⃗ are
the unit vectors of the ct and n axes, respectively. Of course, the same coherence arises for
the new space axes along the n, x, and y directions, that is, the same coherence as shown
above for the new time axis (items 1 to 4).

The conclusion of this appendix is that under assumptions (I) and (j), a coherent and
symmetrical picture of this GW is presented. Since assumption (j) has not been proven, the
picture cannot be considered definitively correct. Hopefully, the full picture is not required
for the demonstration in the current document. What is required is the result from Appendix
G, namely, the fact that the bC boost propagates itself along x and the increasing x direction.

Appendix J. Final picture for a particle moving at the speed of light

This follows from Appendix I. The final picture for a particle moving at the speed of light
is that, in R, the deformation occurring at event EC in C propagates globally along the Cn

spatial direction, at a speed of c{?2. This deformation is described by the boost associated
with the speed of light in the x direction, which propagates locally at the speed of light
along the Cx direction and also at the speed of light along the Cy direction. However,
along the Cn direction, the deformation is described by the boost associated with the c{?2

speed. This picture is Lorentz invariant.

Appendix K. Asymptotic space-time deformation around a particle moving at
the speed of light along a circle

The asymptotic local space-time deformation generated by a particle moving at the speed
of light along a circle is deduced from Appendix J. The GW propagates in the direction
perpendicular to the particle’s trajectory. This is what is assumed by assumption (j) of
Appendix I, and this assumption provides a coherent picture, as described in this appendix.
However, asymptotically, this direction is also the line starting from the particle’s location.
From Appendix J, we know that this propagation happens at the speed of light: this is the
propagation of the bC boost along D, which was described in section 3.5. It is also the
propagation of the envelope, now represented by a sequence of spheres (the sequence of
spheres described in section 3.6), all centered on O, the center of the circle. Asymptotically,
these spheres expand around O at the speed of light, and thus this envelope propagates at
the speed of light. Therefore, the boost describing this local deformation is associated with
the c motion vector, which is normal to these spheres.
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Appendix L. Avoiding the Unknown Forces

P was forced to follow a circular trajectory, which is not a geodesic. Therefore, there is
an unknown force that prevents this trajectory from following a geodesic. This force is not
gravity. At first glance, this suggests that modeling the Dirac distribution under assumption
(2) would not be possible in a coherent way which would only involve gravitation. How-
ever, this apparent result is incorrect. The final result is actually quite the opposite, as will
be shown.

Let us assume that P is at rest in a given inertial frame R, at the point O in space. The
goal is to model P using a set of energy distributions that converge to it.

Let us start by reformulating the constraint above, which is indeed necessary for model-
ing a dimensionless particle P . Another constraint is added, and the result is the following
two conditions, which must be satisfied by each energy distribution in the sequence con-
verging to P :


 The energy distribution has a non-zero size.

 The space-time structure generated by the energy distribution allows it to remain

static.

As usual, the definition of the word ”static” is that, as time passes, the energy distribu-
tion remains unchanged with respect to R, but matter may change. This means that matter
can still be in motion in R, but in such a way that the matter density remains the same at
any given space point.

The first constraint simply prevents trivial sequences. The second constraint is manda-
tory because the goal is to model the final Dirac distribution of matter for P by studying a
sequence of energy distributions that converge to this Dirac distribution. The Dirac distribu-
tion is static because the aim is to model the gravity of this dimensionless particle P , which
is at rest in R. Strictly speaking, this constraint may not be strictly mandatory. Indeed, one
could imagine a cumbersome sequence of complex energy distributions, each of which is
non-static, but still avoids any force other than gravity, allowing their existence, and ul-
timately converging to the energy distribution of P . However, the goal here is simply to
examine the remark made at the beginning of the present appendix regarding the required
unknown force for the static distribution of a circular trajectory. Moreover, the ultimate
goal here in the present document is to construct a static sequence of energy distributions
converging to the energy distribution of P without the need of any other force than gravity
and following the rule given by assumption (2).

However, under assumption (1), such a distribution does not exist. Indeed, for a static
distribution with a non-zero size, the space-time structure would generate a radial acceler-
ation toward some space point I , located somewhere within this energy distribution. For
example, if the distribution is symmetric with respect to O, then this point is I � O. There-
fore, matter would be accelerated toward I . Any infinitesimal chunk of matter located at
M , different from I , would be accelerated along and in the direction of the MI vector. The
result is that this is not a static energy distribution.

On the other hand, under assumption (2), such static distributions may be possible be-
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cause geodesic trajectories can be circles around O. It is more difficult to prove that as-
sumption (2) does not allow such a sequence of static distributions converging to P . And
it remains challenging to prove that such a sequence exists under this assumption. In Ap-
pendix M, this problem will be studied. In this appendix, it will be shown that, under
assumption (2), there exists a static energy distribution that is extremely close to the one of
P (it is important to recall that this is not possible under assumption (1), as shown above).

Therefore, the result is exactly the opposite of what was claimed at the beginning of the
present paragraph. It is straightforwardly modeling the Dirac distribution under assumption
(1), which is, obviously, not possible. Under assumption (2), no such obvious contradiction
arises, and some arguments suggest that it might be possible.

Interestingly, this result is very important. It shows that in relativity, assumption (1) is,
to say the least, not straightforward. For this replacement, assumption (2) might be a viable
alternative.

Appendix M. Existence of a static spherically symmetric distribution

Appendix M.1. Existence of a sequence of static distributions converging to P

Instead of proving the existence of such a sequence, let us list some specifications for such
energy distributions that might converge to P in a static manner.


 A set of particles moving at the speed of light,

 This set is distributed homogeneously around O, following the spherical symme-

try around O,

 At each point M different from O, an infinite set of such particles exists, each

moving perpendicularly with respect to OM . This means that the v speed of light
of each particle is perpendicular to OM ,


 The distribution of these v vectors is homogeneous in M .

There are many energy distributions that satisfy these constraints. The goal is to find
a sequence of such distributions converging to P , while also fulfilling the following con-
straint.


 The space-time structure generated by each energy distribution must allow it to
remain static.

This work is still in progress. However, the following example will show that assump-
tion (2) is better than assumption (1) for modeling P .

Appendix M.2. Existence of a static distribution close to P under assumption (2)

Let us try to roughly calculate the radius of the circle in the trajectory of a particle moving
at the speed of light, in such a way that the resulting energy distribution would remain
static. This radius is roughly the r Schwarzschild radius of the mass M of the particle at
rest which is being modeled.
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r � 2MG

c2
(M.1)

Let us calculate this using the gravitational constant G given by Surrounding. (Using
the usual gravitational value valid in the solar system would yield a very similar result.)

G � G0
α0ρ0 � ρu0
ρ15kpc � ρu

(M.2)

G0 is the gravitational constant valid in the solar system. ρ15kpc is the matter density in
the sphere centered on the measurement location, with a 15 kpc radius. ρu0 is the universe’s
matter density today, and ρu is the universe’s matter density at the time of measurement.
The result is the following:

r � 10�18 Planck Length (M.3)

We used G0 � 6.67�10�11 m3kg�1s�2, α0 � 1.6�10�5, ρ0 � 0.98�10�21 kg m�3,
ρ15 � ρu0 � ρu � 0.05 ρc with ρc � 8.5 � 10�27 kg m�3, and PlanckLength �
10�35 m. For the mass M , we used the proton mass of M � 1.67� 10�27 kg.

The result shows that the following modeling of a proton is possible:


 Modeling a proton as being made of an internal bunch of matter moving at the
speed of light along a circular trajectory,


 Using the gravitational constant given by Surrounding in the particular situation
of a proton located outside any galaxy at the current time,


 In a static manner, that is, without collapse,

 Without the help of any force except gravitation.

Of course, it has not been demonstrated that the resulting space-time structure allows
this energy distribution to remain static. Nevertheless, since the size of the circle is ex-
tremely small, this energy distribution is close to another one, which consists of a circle of
matter rotating at the speed of light around its center and in the plane of the circle. This
energy distribution generates a symmetric space-time structure with respect to the straight
line passing through the center of the circle and perpendicular to the plane of the circle.
Also there is a symmetry with respect to the plane of the circle. At the locations of the
circle, the attraction of matter towards O is exactly the one that allows the orbital motion
along the circle at the speed of light because the distance to O is r, the Schwarzschild ra-
dius. If any doubt exists about the fact that this orbital distance is r, then it is possible to
use this orbital distance as the radius of the circle. This orbital distance will be close to r.

Also, this model does not account for the fact that, in reality, a proton is made of quarks.
Nevertheless, this modeling is not far from reality. The goal here is purely theoretical: it
models a dimensionless particle P at rest in R. The mass of P has simply been assumed to
be equal to the mass of a proton.

Therefore, under the above conditions, it is realistic and possible to model a particle
with the mass of a proton, using only static distributions, and under assumption (2). This
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result must be compared with the fact that such a modeling is not possible under assumption
(1).

Appendix N. The gravitational wave four-momenta add themselves

Let’s suppose that n gravitational waves (GWs) are propagating and encountering each
other at a given space-time event x. Let GWi represent the i-th gravitational wave, for
i ranging from 0 to n. For each i, a Pi particle can be created such that its momentum
exactly counteracts the effect of GWi at x. This means that the Pi speed is the speed of
light and that its total energy in any reference frame R is the energy of GWi in R. It also
implies that the direction of Pi’s motion is opposite to that of GWi. The result is that Pi

and GWi together generate no local space-time deformation. Therefore, the overall effect
of all these Pi particles is such that they cancel the space-time deformation generated by
all the GWi. But the sum of all the Pi particles forms a large compound object, which we
will call P . Thus, the space-time deformation of all the GWi is exactly counteracted by
the space-time deformation generated by P . According to the principle of conservation of
energy, the four-momentum of P is the sum of the four-momenta of all the Pi. Therefore,
the four-momentum of the space-time deformation of the entire set of GWi is the sum of
the four-momenta of the GWi.

Fm

�tGWi, i � 0..nu� � �FmpP q

� �
ņ

i�0

FmpPiq

� �
ņ

i�0

�� FmpGWiq
�

�
ņ

i�0

FmpGWiq

(N.1)

Fmpq is a function that gives the four-momentum of a particle or a GW. This concludes
the proof.

Appendix O. The free-falling particle allows to calculate the space-time
structure

Let’s study, in the Schwarzschild metric, a P1 test particle, initially at rest when located
infinitely far from the P particle, which is located at the center of symmetry. We will
show that the local space-time deformation generated successively by P1 along its trajec-
tory is the same as the space-time deformation generated by P (that is, described by the
Schwarzschild metric itself). We will use the same context and notations as in paragraph
3.11.3, particularly with the R0 frame being attached to P .

First, we replace the null mass of P1 with an infinitesimally small mass. Once again, this
simplifies the calculations, and the final step will apply the interchange of limits theorem
to get the same result for the initial context.



April 11, 2025. Relativity predicts a variable G © 2024 45

In the R1 frame, which is attached to P1, let’s study another particle, P2, at rest with
respect to R1, which always stays infinitely close to P1 and has an energy at rest far weaker
than the rest energy of P1. P2 follows the same trajectory as P1. It must be noted that the
space-time gravitational deformation generated by P has no effect locally on P1 and is
completely replaced by the space-time deformation of P1. Therefore, the free fall of P2

completely ignores the effect of P . (This already proves what we want: P1 and P2 follow
the same trajectory, hence the space-time structure along their trajectories is the same.
However, let’s elaborate further to gain another perspective).

Thus, the space-time deformation caused by P1 is what forces P2 to follow the same
trajectory as P1. The R1 frame attached to P1 is a GRF because it’s a rest frame. It is
a rest frame from the start, when P1 is at rest infinitely far from P . But the space-time
deformation caused by P1 is described by the boost associated with its motion with respect
to the R0 frame. Let’s denote this boost by b1.

Now, let’s progressively decrease P1’s energy to zero, without changing P2’s energy
(this does not imply that the conservation of energy principle is violated). This decrease
in P1’s energy will not change its trajectory. This is because P1’s energy (and hence P2’s
energy as well) has been assumed to be weak enough to yield this result. Additionally, P2’s
trajectory will remain the same because it is initially infinitely close to P1, at rest in R1.
Hence, it continues to follow a free-fall trajectory, which is exactly the same as P1’s free-
fall trajectory. Indeed, since their energies are assumed to be sufficiently small, both P1 and
P2 are always in free fall. Therefore, their trajectories remain the same regardless of their
energies, as long as they are weak enough to allow free fall.

Thus, at the end of the energy decrease of P1, P2’s trajectory has not been altered.
Therefore, at P2’s location, the local space-time deformation generated by P1’s motion in
R0, along its trajectory, is the same as the gravitational space-time deformation generated
by P along P2’s trajectory. Hence, b1 describes the local gravitational deformation gener-
ated by P along P1’s trajectory. The rescaling after the execution of b1 is such that the time
unit is decreased by

a
1� v2{c2, the proper time dilation factor known from relativity.

Indeed, the proper time of a particle is deduced from its trajectory. The same reasoning as
above applies: proper time is a feature of the space-time structure along the trajectories of
P1 and P2, which are the same trajectories, but the space-time structure of P1 is dictated
by P , and that of P2 is dictated by P1.

This concludes the demonstration.
This demonstration can also be applied to a flat Minkowskian space-time, in which

an ξ energy distribution is added within a bounded space-time domain. The old and new
GRFs now refer to this ξ bounded energy. Therefore, in the above demonstration, the only
modification is that P is replaced by ξ. Then the demonstration can be re-executed without
change for these generalized energy distributions. Once again, the result is the following:
the space-time deformation generated by ξ is described by the successive local deforma-
tions of P1 along its trajectory. The SR time dilation factor is the time component of this
rescaling.
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Appendix P. An equation of G: calculations

In this appendix, an equation for G is derived. Assumptions (i), (ii), (iii), and (iiii) are made.
The same context and notations as in paragraph 3.11.3 are used. Let’s remind the properties
of the Schwarzschild metric. The first equation is as follows.

g00px1q � 1� R

r
(P.1)

Of course, g00px1q is the time-time component of the metric at the x1 event, R is the
Schwarzschild radius of P , and r is the distance between P and the x1 event. The following
is another important equation valid in this metric, which relates the metric to the free-fall
speed.

g00px1q � 1� v2

c2
(P.2)

Here, v is the speed of the usual P1 free-falling test particle, located at x1, which was
initially located infinitely far from P . The validity of equation (P.2) comes from assumption
(i). Indeed, equations (P.1) and (P.2) are valid together because Newton’s law is assumed
to be valid. Equation (P.4), which follows, can be used to confirm this statement. From
equations (8) and (P.2), using e � D1pxq{�D0pxq � D1pxq�, the following equation is
obtained.

g00px1q � 1� 2e

p1� eq2 (P.3)

Furthermore, the geodesic equation of P1 is as follows [8].

B2r
Bτ2 � �c2

2

Bg00
Br (P.4)

Here, τ is the proper time of P1. Substituting g00 with its value given by equation (P.3),
equation (P.4) becomes the following.

B2r
Bτ2 � c2

e

p1� eq3
Be
Br (P.5)

Then, once again, assumption (i) is used, and Newton’s law is assumed valid. The
asymptotic formulation of equation (P.5) is derived, relying on Newton’s law with the
asymptotic value of the right-hand side of equation (P.5).

�M0G

r2
� c2e

Be
Br (P.6)

Here, M0 is the mass of P . Assumption (iii) has been used: the contribution of P in
equation (7) is far weaker than the sum of the other contributions. Therefore, asymptotically
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D1pxq    D0pxq, and asymptotically e is equal to 0 compared to 1. The solution of this
differential equation (P.6) gives the following asymptotic value for e.

e �
c

R

r
(P.7)

From this, it follows that D1pxq{D0pxq � e{p1 � eq � a
R{r. This results in the

following equation.

1wpx, y0qfpx, y0qC0py0q
Σ8n�01wpx, ynqfpx, ynqC0pynq �

c
R

r
(P.8)

It is assumed that the y0 virtual particle is the only one associated with P . It was
used C0py0q � C1py0q, which reflects the fact that Cµpy0q is a null four-momentum.
Under assumption (iii), the denominator of equation (P.8) is constant, that is, indepen-
dent of the x location. Therefore, this equation shows that the 1wpx, y0q fpx, y0q C0py0q
contribution is proportional to 1{?r. Under assumption (ii), it can be deduced that the
1wpx, ynqfpx, ynqC0pynq contributions are proportional to 1{a}x� yn}3. }x � yn}3 is
the spatial length calculated covariantly along the geodesic from yn to x and observed in
R0.

Also, assuming r constant, and varying C0py0q, from equation (P.8), the 1wpx, y0q
fpx, y0q C0py0q contribution is not proportional to C0py0q but proportional to

?
R, and

therefore to
?
M0 and

a
C0py0q. This contradicts the hypothesis made during the construc-

tion of equation (7). Here, a proportionality to the square root of an energy is observed. The
answer to this apparent contradiction is that the final picture is coherent. Therefore, one
can replace each 1wpx, ynq fpx, ynqC0pynq contribution in equation (P.8) by 1wpx, ynqa
C0pynq{}x� yn}3. Now, from fpx, y0q C0py0q being proportional to

a
C0py0q{r and

assumption (ii), the result is the following.

1wpx, ynq
b

C0py0q
r

Σ8n�01wpx, ynq
b

C0pynq
}x�yn}3

�
c

R

r
(P.9)

We can use R � 2M0G{c2 and C0py0q � M0c, in order to transform equation (P.9)
into the following one.

G � c4

2
�
Σ8n�01wpx, ynq

b
Epynq
}x�yn}3

	2 (P.10)

Here, Epynq � C0pynqc is the total energy of the particle located at yn. Now, it is
possible to use this result with VGWs. This means that the energy distributions of the Pi

are replaced by the limits of the Si
n distributions, as shown by equation (6). The result is

equation (14), which is equation (P.10), without the 1wpx, ynq terms. Indeed, in any given
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x and yn space-time events, it is possible to find a m and a Sn
m distribution centered on yn,

such that the gravitational wave (GW) generated by the virtual particle of Sn
m propagates

in x. Moreover, this Sn
m distribution can be chosen with a circle’s radius as small as de-

sired (remember that those Sn
m distributions are circular-like trajectories of virtual particles

moving at the speed of light). In other words, after the limits of equation (6) are taken, each
x space-time event is reached by the VGW of each Pn particle.

Appendix Q. Nuclear saturation

Let N be the number of baryons in the nucleus, and let β be a given baryon inside the
studied nucleus. β is assumed to have the number 0 in the numbering of the baryons. The
interaction force is proportional to the energy of the attractor. This is particularly true under
assumption (A) from paragraph 8.1. Let us write the proportionality of the F pynq force
exerted by the baryon numbered n, located at yn, on β.

F pynq � K G C0pynq c (Q.1)

K is the proportionality constant. Its dependence on the interaction distance is ne-
glected. From equations (Q.1) and (14), the Π pressure exerted on β by the other baryons
is given by the following equation.

Π � Kc4X

2S
(Q.2)

X � N � 1�
ΣN�1

n�1
1?

}x�yn}3

	2 (Q.3)

In equation (Q.2), S is a given external surface of the baryon. For example, it can be
the surface of the minimum possible sphere surrounding the baryon. The F pynq force from
equation (Q.1) is exerted on S. It has been assumed that all the baryons in the nucleus
share the same Cpy0qc energy. Equation (Q.2) shows that Π varies in the same manner as
X when N changes. However, X does not vary much, as shown by equation (Q.3). If the
dependence of K on the interaction distance were taken into account, the result would be
the same. The result is that Π does not vary much with N , the number of baryons. More
precisely, this variation is negligible compared to what it would be if G were a constant in
equation (Q.1).

Appendix R. Surrounding: next developments

The surrounding gravitational model appears to solve many of the gravitational mysteries
of today in a straightforward way. But it remains several mysteries to address. And this
model will have to be tuned. The fixed radius value used for calculating the surrounding
value might be replaced by a value varying slowly with the galaxy size. This modification
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would allow the model to explain Tully-Ficher law and the speed profiles of the small
galaxies. Also, the brutal rectangle window used for calculating the surrounding value must
be replaced by a smooth window, soon or later. A need for that appears for conforming
surrounding to the wide binaries problem [23–25]. Also a shielding mechanism has been
proven to appear in the study of the NGC 3310 galaxy, which might allow to replace the
α constant of the model, by a more relevant term in the equation of motion. Also, possible
regressions might arise, in which this G variation might induce wrong predictions in front
of some given experimental data. This work remains to be done also.
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