
Chapter 5

Thermochemistry

Dr. Morad Mustafa

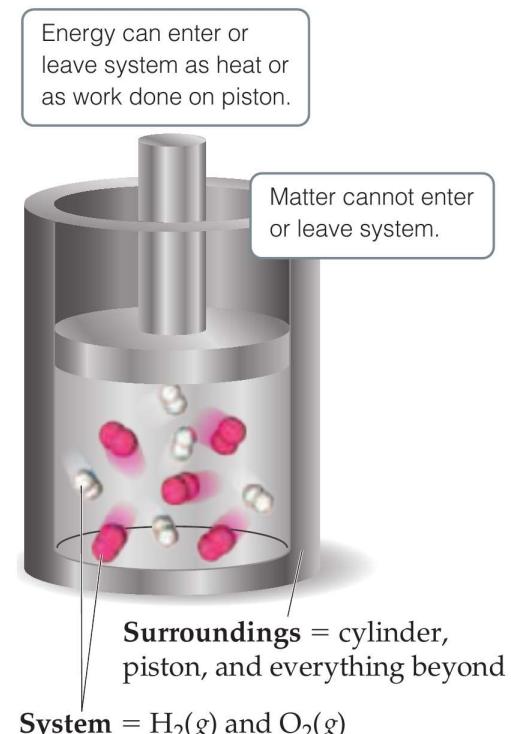
Department of Pharmacy

Al-Zaytoonah University of Jordan

5.1 The Nature of Chemical Energy

- ❖ The study of energy and its transformations is known as **thermodynamics**.
- ❖ A portion of thermodynamics, which examines the relationships between chemical reactions and energy changes that involve heat, is called **thermochemistry**.
- ❖ Energy is released when chemical bonds are formed, whereas energy is consumed when chemical bonds are broken.

5.2 The First Law of Thermodynamics


- ❖ The **first law of thermodynamics**: energy can be converted from one form to another, but it is neither created nor destroyed.

System and Surroundings

- ❖ The portion we single out for study is called the **system**; everything else is called the **surroundings**.
- ❖ **Example:** When we study the energy change that accompanies a chemical reaction in a laboratory, the reactants and products constitute the system. The container and everything beyond it are considered the surroundings.

5.2 The First Law of Thermodynamics

- ❖ Systems may be open, closed, or isolated.
- ❖ An **open system** is one in which matter and energy can be exchanged with the surroundings.
- ❖ **Example:** An uncovered pot of boiling water on a stove is an open system: Heat comes into the system from the stove, and water is released to the surroundings as steam.
- ❖ The systems we can most readily study in thermochemistry are called **closed systems**; systems that can exchange energy but not matter with their surroundings.

▲ Figure 5.4 A closed system.

5.2 The First Law of Thermodynamics

- ❖ An **isolated system** is one in which neither energy nor matter can be exchanged with the surroundings.
- ❖ An insulated thermos containing hot coffee approximates an isolated system.

Internal Energy

- ❖ The **internal energy**, E , of a system is the sum of all the kinetic and potential energies of the components of the system.
- ❖ We define the change in internal energy, denoted ΔE as:

$$\Delta E = E_{\text{final}} - E_{\text{initial}}$$

5.2 The First Law of Thermodynamics

- ❖ When $\Delta E > 0$, it indicates that the system has gained energy from its surroundings, whereas when $\Delta E < 0$, it indicates that the system has lost energy to its surroundings.
- ❖ In a chemical reaction, the initial state of the system refers to the reactants and the final state refers to the products.
- ❖ **Example:**

E_{initial} greater than E_{final} ;
therefore, energy is released
from system to surroundings
during reaction and $\Delta E < 0$.

5.2 The First Law of Thermodynamics

Relating ΔE to Heat and Work

- ❖ A system may exchange energy with its surroundings in two general ways: as heat (q) or as work (w).
- ❖ When a system undergoes any chemical or physical change, the accompanying change in internal energy, ΔE , is given by

$$\Delta E = q + w$$

- ❖ When heat is transferred to the system from the surroundings, q has a positive value.
- ❖ When work is done on the system by the surroundings, w has a positive value.

5.2 The First Law of Thermodynamics

TABLE 5.1 Sign Conventions for q , w , and ΔE

For q	+ means system <i>gains</i> heat	– means system <i>loses</i> heat
For w	+ means work done <i>on</i> system	– means work done <i>by</i> system
For ΔE	+ means <i>net gain</i> of energy by system	– means <i>net loss</i> of energy by system

Sample Exercise 5.1

Gases A(g) and B(g) are confined in a cylinder-and-piston arrangement and react to form a solid product C(s): $A(g) + B(g) \rightarrow C(s)$. As the reaction occurs, the system loses 1150 J of heat to the surroundings. The piston moves downward as the gases react to form a solid. As the volume of the gas decreases under the constant pressure of the atmosphere, the surroundings do 480 J of work on the system. What is the change in the internal energy of the system?

$$\begin{aligned}\Delta E &= q + w \\ &= (-1150) + (480) = -670 \text{ J}\end{aligned}$$

5.2 The First Law of Thermodynamics

Endothermic and Exothermic Processes

- ❖ When a process occurs in which the system absorbs heat, the process is called **endothermic**.
- ❖ A process in which the system loses heat is called **exothermic**.

State Functions

- ❖ Internal energy is an example of a **state function**, a property of a system that is determined by specifying the system's condition, or state (in terms of temperature, pressure, and so forth).
- ❖ The value of a state function depends only on the present state of the system, not on the path the system took to reach that state.

5.2 The First Law of Thermodynamics

- ❖ This means that, although $\Delta E = q + w$ does not depend on how the change occurs, the specific amounts of heat and work depend on the way in which the change occurs.

5.3 Enthalpy

- ❖ Under the conditions of constant pressure there is a thermodynamic quantity called **enthalpy (H)**, a state function, that is defined as the internal energy plus the product of the pressure, P , and volume, V , of the system: $H = E + PV$.

Pressure-Volume Work

- ❖ The work involved in the expansion or compression of gases is called **pressure-volume work (P - V work)**.
- ❖ When pressure is constant in a process, the sign and magnitude of the pressure-volume work are given by

$$w = -P\Delta V$$

5.3 Enthalpy

- ❖ To express the work in the more familiar unit of joules, we use the conversion factor **1 atm·L = 101.325 J**.
- ❖ When a gas expands, ΔV is positive (the volume increases) and w is negative, meaning the system does work on the surroundings.
- ❖ On the other hand, if the gas is compressed, ΔV is negative (the volume decreases) w is positive, meaning work is done on the system by the surroundings.

Sample Exercise 5.2

A fuel is burned in a cylinder equipped with a piston. The initial volume of the cylinder is 0.250 L, and the final volume is 0.980 L. If the piston expands against a constant pressure of 1.35 atm, how much work (in J) is done? (1 L·atm = 101.325 J)

$$w = -P\Delta V$$

$$= -(1.35)(0.980 - 0.250) \left(\frac{101.325 \text{ J}}{1 \text{ L} \cdot \text{atm}} \right) = -99.9 \text{ J}$$

5.3 Enthalpy

Enthalpy Change

- ❖ When a change occurs at constant pressure, the change in enthalpy, ΔH , is given by the relationship

$$\Delta H = \Delta E + P\Delta V$$

- ❖ At constant pressure,

$$\Delta H = q_P$$

Sample Exercise 5.3

Indicate the sign of the enthalpy change, ΔH , in the following processes carried out under atmospheric pressure and indicate whether each process is endothermic or exothermic:

a. An ice cube melts

➤ The ice cube absorbs heat from the surroundings as it melts, so ΔH is positive and the process is endothermic.

b. 1 g of butane (C_4H_{10}) is combusted in sufficient oxygen to give complete combustion to CO_2 and H_2O .

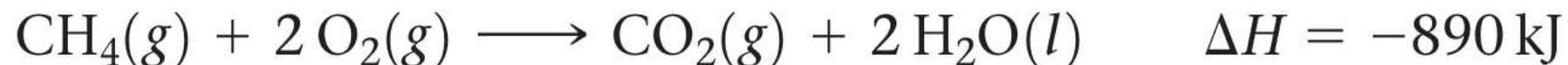
➤ The combustion of butane in oxygen gives off heat, so ΔH is negative and the process is exothermic.

5.4 Enthalpies of Reaction

- ❖ The enthalpy change that accompanies a reaction is called either the **enthalpy of reaction** or the **heat of reaction** and is sometimes written ΔH_{rxn} .

$$\Delta H_{\text{rxn}} = H_{\text{products}} - H_{\text{reactants}}$$

- ❖ Balanced chemical equations that show the associated enthalpy change in this way are called **thermochemical equations**.



5.4 Enthalpies of Reaction

- ❖ The following guidelines are helpful when using thermochemical equations and enthalpy diagrams:
 1. Enthalpy is an extensive property: The magnitude of ΔH is proportional to the amount of reactant consumed in the process.
 2. The enthalpy change for a reaction is equal in magnitude, but opposite in sign, to ΔH for the reverse reaction.
 3. The enthalpy change for a reaction depends on the states of the reactants and products.

Sample Exercise 5.4

How much heat is released when 4.50 g of methane gas is burned in a constant-pressure system?

$$\begin{aligned} n &= \frac{m}{MM} \\ &= \frac{4.50}{16.05} = 0.2804 \text{ mol} \end{aligned}$$

$$q_P = 0.2804 \text{ mol CH}_4 \left(\frac{-890 \text{ kJ}}{1 \text{ mol CH}_4} \right) = -250 \text{ kJ}$$

5.5 Calorimetry

- ❖ The measurement of heat flow is **calorimetry**; a device used to measure heat flow is a **calorimeter**.

Heat Capacity and specific Heat

- ❖ The **heat capacity (C)** of an object is the amount of heat required to raise its temperature by 1 K (or 1 °C).
- ❖ The greater the heat capacity, the greater the heat required to produce a given increase in temperature.
- ❖ The heat capacity of one mole of a substance is called its **molar heat capacity, C_m** .

5.5 Calorimetry

- ❖ The heat capacity of one gram of a substance is called its **specific heat capacity**, or merely its **specific heat**, C_s .

$$q = C_s \times m \times \Delta T$$

Sample Exercise 5.5

- a. How much heat is needed to warm 250 g of water (about 1 cup) from 22 °C (about room temperature) to 98 °C (near its boiling point)?

$$\begin{aligned}q &= C_s \times m \times \Delta T \\&= (4.184)(250)(98 - 22) = 7.9 \times 10^4 \text{ J}\end{aligned}$$

- b. What is the molar heat capacity of water?

$$C_m = 4.184 \frac{\text{J}}{\text{g} \cdot \text{K}} \left(\frac{18.02 \text{ g H}_2\text{O}}{1 \text{ mol H}_2\text{O}} \right) = 75.40 \frac{\text{J}}{\text{mol} \cdot \text{K}}$$