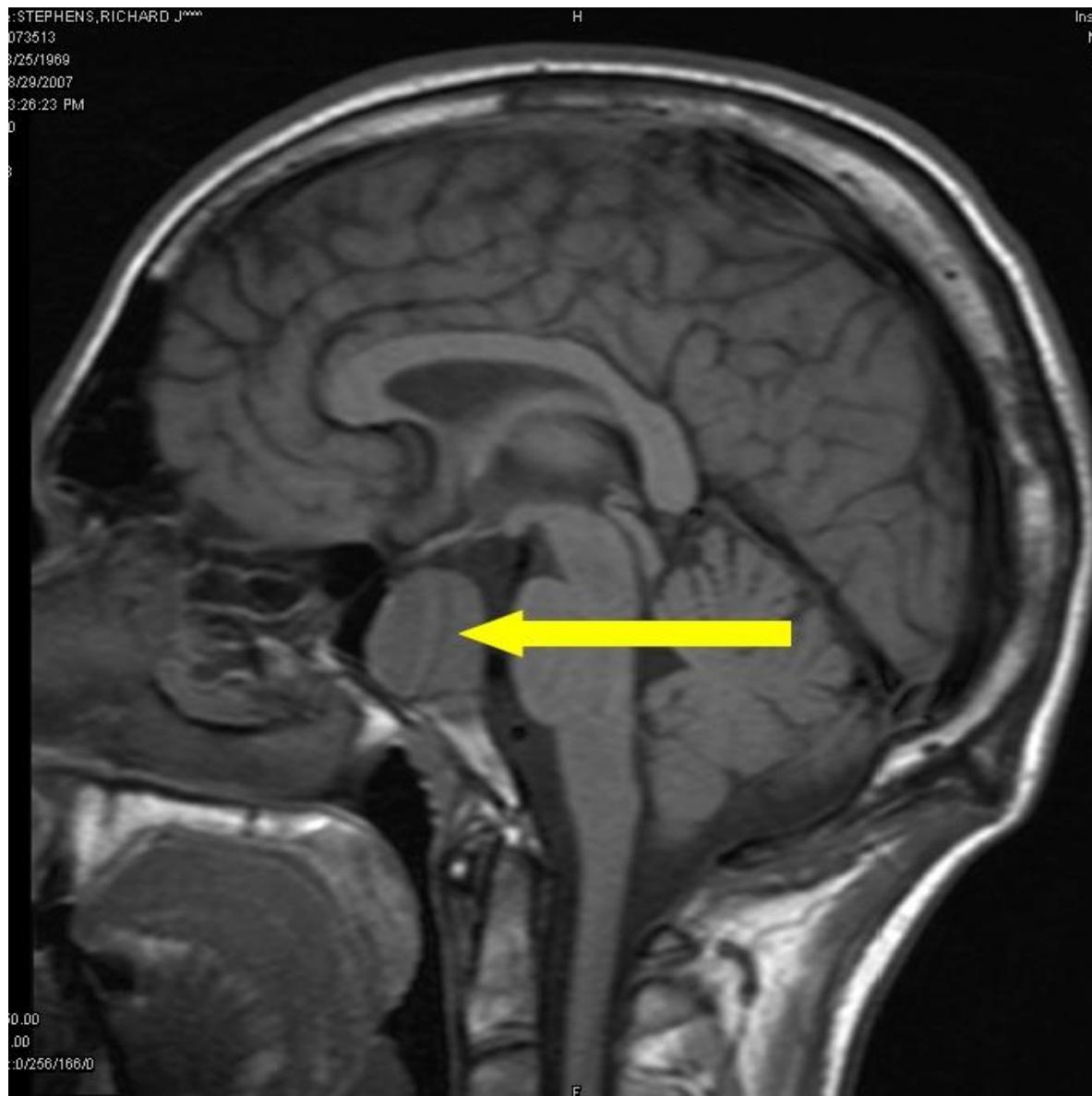


Chapter 49 + 50


Disorders of Endocrine Function

- **Introduction:** Glands of the endocrine system secrete various hormones that play a key role in maintaining normal homeostasis as well as allowing the body to deal with periods of physiologic stress.
- Abnormalities of endocrine glands generally fall into one of the following categories:
 1. **Hypersecretion**
 2. **Hyposecretion**
- They can occur as:
 1. **Primary disorders:** affect the hormone production by a **target gland**
 2. **Secondary disorders:** where the target gland is essentially normal, but abnormalities in the **levels of stimulating hormones or releasing factors from the pituitary system** alter its function
 3. **Tertiary disorder:** results from **hypothalamic dysfunction**. Thus, both the pituitary and target organ are under stimulated.

- **ADH:** antidiuretic hormone (vasopressin).
- **LH:** leuteinizing hormone.
- **FSH:** follicle-stimulating hormone.
- **TSH:** thyroid-stimulating hormone.
- **MSH:** melanocyte-stimulating hormone.
- **GH:** growth hormone.
- **ACTH:** adrenocorticotropic hormone.

الغدة النخامية **Diseases of the Pituitary Gland**

Diseases of the Pituitary Gland

1. Hyperpituitarism (anterior lobe):

- The most common cause is anterior lobe pituitary adenoma.
- This results in:
 1. Hyperprolactinemia causing amenorrhea (the absence of menstrual period), galactorrhea (a milky nipple discharge unrelated to the normal milk production of breast-feeding.), and loss of libido in male (desire for sexual activity).
 2. Excess of GH secretion causing gigantism (العملقة) before puberty (childhood) which is characterised by generalised increase in body size or acromegaly after puberty (adult) (if elevated levels of GH persist or present. It is characterised by increased growth in soft tissue, skin, and in the bone of face, hand and feet with no further growth to the long bone)
 3. Excess of ACTH causing hypercortisolism or Cushing's syndrome

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

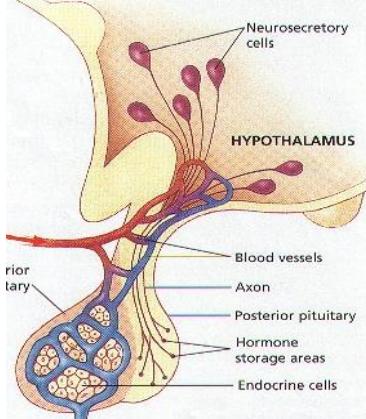
Age 9

Age 16

Age 33

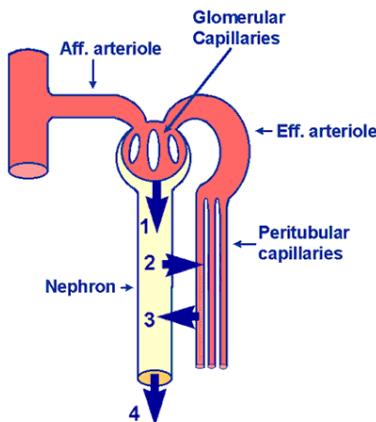
Age 52

Diseases of the Pituitary Gland


2. Hypopituitarism (anterior lobe):

- It is due to:
 1. Hypothalamic lesions e.g. glioma
 2. Primary pituitary disorder e.g., Sheehan's syndrome, radiation or vascular accident

Diseases of the Pituitary Gland


- **Sheehan's syndrome:**
 - Infarction of the anterior pituitary caused by ischemic necrosis due to blood loss and hypovolemic shock during and after childbirth (obstetric shock). The syndrome may also occur in male or non-pregnant female due to vascular accident, sickle cell anemia, disseminated intravascular coagulation associated with excessive bleeding (DIC), or radiation.
 - Common initial manifestations include:
 1. Gonads failure
 2. Inability to lactate.

Diseases of Pituitary gland (posterior lobe)

1. Diabetes Insipidus

- Is a defective secretion in ADH resulting in inability of kidneys to concentrate urine.
- **Clinical Picture:**
 1. **Polyuria:** (abnormally large production and/or passage of urine (at least 2.5 or 3 Liter over 24 hours in adults)).
 2. **Polydipsia :** is a medical symptom in which the patient displays excessive thirst.
 3. **Hypernatremia:** is defined by an elevated sodium level in the blood. Hypernatremia is generally not caused by an excess of sodium, but rather by a relative deficit of free water in the body.
- **Etiology:**
 - A. **Neurogenic (Hypothalamic Disorders resulting in (ADH) Deficiency)**
 - B. **Nephrogenic (Tubular Insensitivity to ADH)**


Diseases of Pitutary gland (posterior lobe)

2. Syndrome inappropriate ADH secretion (SIADH)

- It is characterized by persistently high level of ADH with abnormal resorption of water, expansion of extracellular fluid compartment and hyponatremia.
- The specific gravity of urine is high (more than 1.035) as the normal specific gravity of urine is between 1.000 to 1.030.
- Causes:
 - a. Secretion of large amount of ectopic ADH (from oat cell carcinoma of the lung)
 - b. Non-neoplastic pulmonary diseases (e.g., bronchial asthma, pneumonia and tuberculosis)
 - c. Primary CNS disorder e.g. intracranial hemorrhage, meningitis, cerebral infection

Diseases of the thyroid gland

- Goiter is an abnormal enlargement of the thyroid gland. An anatomical structural abnormality.
- A goiter can occur as:
 - **Hyperthyroidism associated with Graves' disease.** (Graves' disease: is an autoimmune disorder in which the patients produce autoantibodies that bind TSH receptors on the thyroid gland and mimic the actions of TSH leading to excess production of thyroid hormones)
 - **Hypothyroidism associated with Hashimoto's thyroiditis.** In this case, Binding of the auto-antibodies to a number of thyroid proteins, these proteins interferes with iodine uptake and leads to decreased production of thyroid hormones (hypothyroidism), which leads to a compensatory increase in the serum TSH which in turn causes hypertrophy and hyperplasia of thyroid follicular cells and ultimately gross enlargement of thyroid gland.
 - **Euthyroidism associated with iodine deficiency.** In this case, compensatory small elevations in TSH occur to obtain more iodine and to prevent hypothyroidism, but the TSH stimulation causes hypertrophy and hyperplasia of thyroid cells and ultimately goiter formation.

- Goiter can be classified based on the growth pattern into:
 1. **Uninodular goiter:** one thyroid (or called solitary) nodule.
 2. **Multinodular goiter:** multiple nodules.
 3. **Diffuse goiter:** the whole thyroid appearing to be enlarged symmetrically.

Diseases of the thyroid gland

1. Hyperthyroidism = thyrotoxicosis

- **Definition:** is a hypermetabolic state caused by elevating circulating levels of free T3 and T4 hormones.
- **Causes of hyperthyroidism:**
 1. Graves' disease characterized by toxic diffuse hyperplasia.
 2. Toxic multi-nodular goiter.
 3. Toxic adenoma (where there is one nodule= hot nodule resulting from abnormal growth of epithelial tissue originated from thyroid gland).
- **Manifestation**

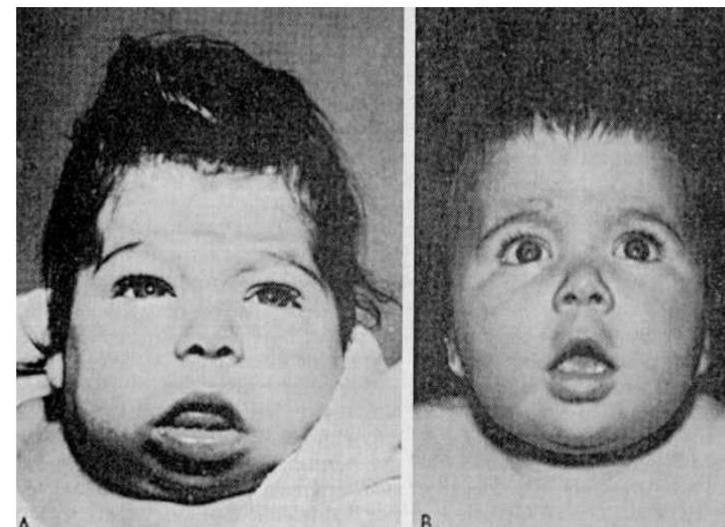
Nervousness, heat intolerance, excessive perspiration, fatigue, palpitation, tachycardia and weight loss despite good appetite, increased sympathetic activity leading to staring gaze and lid lag

Diseases of the thyroid gland

2. Hypothyroidism:

- **Definition:** is a hypometabolic state caused by deficiency of thyroid hormones (Thyroxine).

- **Causes (might be congenital or acquired):**


1. Congenital biosynthetic defects.
2. Surgery or external radiation.
3. *Hashimoto's thyroiditis* in which antibodies are produced against the tissue of the thyroid.
4. Iodine deficiency.
5. Hypothalamic (tertiary, TRH) or pituitary (secondary, TSH) failure.

- **Manifestations:**

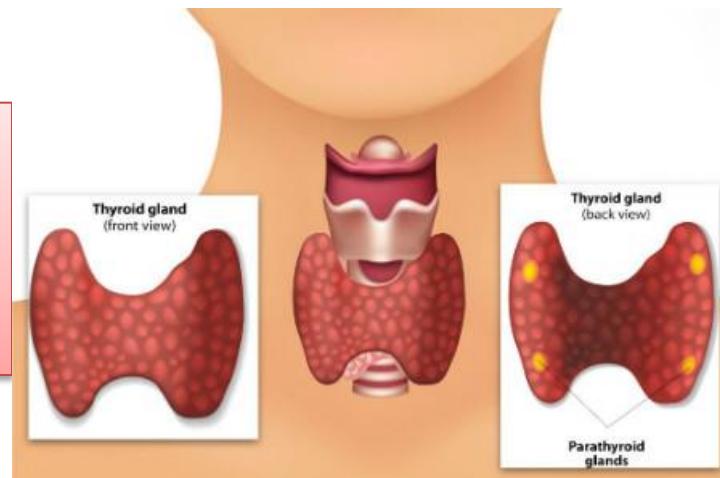
1. **Congenital hypothyroidism manifest as (cretinism):** which refers to hypothyroidism developing in infancy or early childhood.
 - Clinical features include impaired development of the skeletal system and CNS with severe mental retardation, short stature, coarse facial features and a protruding tongue.

6 MONTHS OLD BOY with CRETINISM & 4 MONTHS
AFTER TREATMENT STARTED

Manifestations: Continue.....

2. Acquired hypothyroidism manifestations

- It develops in older children and adults.
- Clinical features include:
 1. Slowing of physical and mental activity
 2. Cold intolerance.
 3. Obesity.
 4. Myxedema. Mucopolysaccharide-rich edema accumulates in skin, subcutaneous tissue and visceral sites with resulting broadening and coarsening of facial features, enlargement of the tongue, deepening of the voice and cardiomegaly.
 5. Constipation.



©DermNet.com

- Generalized myxedema in adult hypothyroidism. Face is puffy with a dull expression and the hair is dry.

Parathyroid glands

are four tiny glands located behind the thyroid gland, which produce parathyroid hormone (PTH).

- Parathyroid hormone is a regulator of **calcium & phosphate levels** in the blood.
- Generally, **homeostasis** of plasma calcium is regulated as follows:
 - A. PTH (also called parathormone) which **RAISES** plasma calcium to Normal level.
 - B. Calcitonin hormone (released from thyroid gland) which **LOWERS** plasma calcium to Normal level.

Diseases of Parathyroid Glands

1. Hypoparathyroidism:

- **Definition:** is a state of deficient secretion of PTH predisposing to HYPOCALCEMIA.
- **Causes:**
 1. Congenital absence.
 2. Acquired causative agents (such as surgery, autoimmunity and neoplasia).
- **Clinical Picture:**
 1. Increased Neuromuscular excitability due to hypocalcaemia resulting in **Tetany**, or Convulsions.

- **Tetany** is a medical sign consisting of the involuntary contraction of muscles due to the increased excitability of nerves that fire the muscle spontaneously and without rest; this condition may be due to hypoparathyroidism.
- If PTH is not produced in response to low blood Ca^{2+} , **tetany** results because the Ca^{2+} plays an important role in both nerve conduction and muscle contraction.
- The terms "tetany" and "tetanus" are distinct. Muscle cramps that are caused by the disease **TETANUS** are not classified as tetany.
- **TETANUS** called lockjaw, is a serious infection caused by *Clostridium tetani*. This bacterium produces a toxin that affects the brain and nervous system, leading to stiffness in the muscles.

2. Hyperparathyroidism:

- **Definition:** Is an excess of PTH in the bloodstream due to over activity of one or more of the body's four parathyroid glands.
- **Etiology:**
 1. Parathyroid Hyperplasia
 2. Functioning Adenoma of Parathyroid gland
- **Clinical Picture:** Hypercalcemia is a predisposing factor to:
 1. Renal Stones.
 2. Gall Stones
 3. **Bone Resorption predisposing to bone fracture** (resorption or reabsorption of bone tissue is a process by which the osteoclasts break down the bone tissue resulting in a transfer of calcium from bone tissue to blood)
- In other words, in hyperparathyroidism, the abnormally high blood calcium levels can cause the bones to be soft and fragile, and the individual to be prone to form kidney stones.

Adrenal gland

- They are paired endocrine organs consisting of both cortex and medulla.
- The cortex synthesises three different types of steroids: 1. glucocorticoids (cortisol). 2. mineralocorticoids (being aldosterone). 3. sex steroids (estrogens and androgens).
- The medulla synthesises catecholamine.

Diseases of the adrenal gland

1. **Adrenocortical Insufficiency (hypoadrenalinism)** can be acute or chronic.

a. **Chronic adrenocortical insufficiency (Addison's disease)**

- Results from progressive destruction of the adrenal cortex.
- Major contributors of the disease are: 1. Autoimmune adrenalitis. 2. Tuberculosis. 3. AIDS. 4. Metastatic neoplasms.
- Manifestations: 1. Weight loss. 2. Hypotension. 3. Hyperpigmentation.

b. **Acute adrenocortical insufficiency (Addison's crisis):**

It is life threatening condition that results in decrease blood pressure, low level of sugar in blood, and high level of potassium.

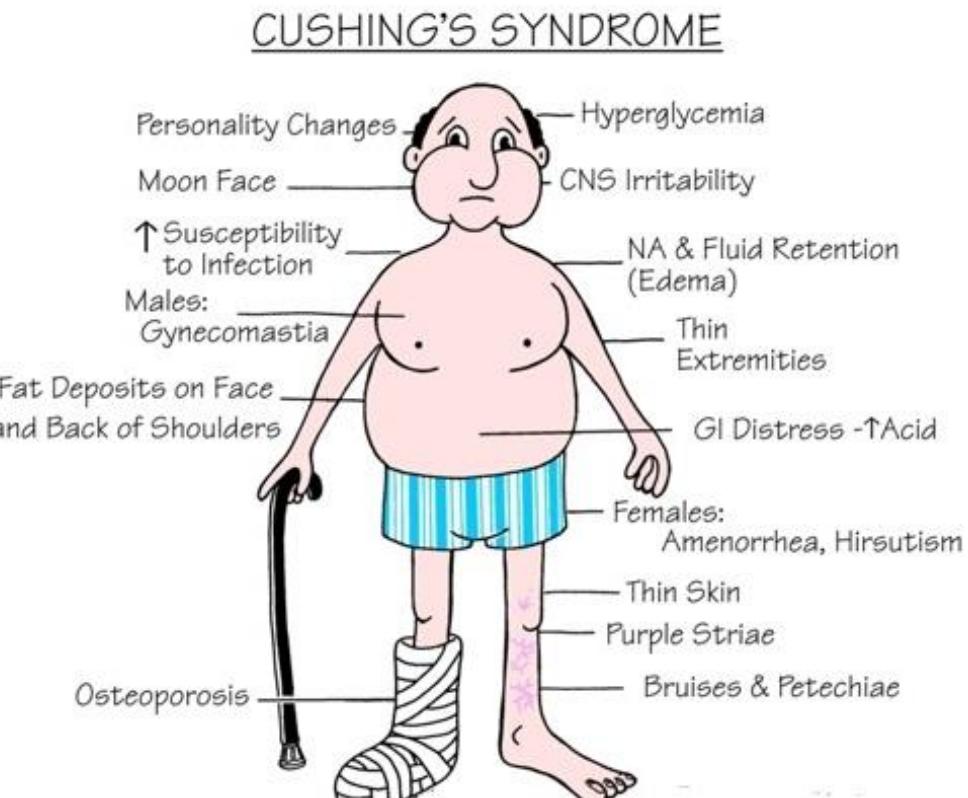
Causes:

Rapid withdrawal of corticosteroids in patients.

1. physical stress including injury leading to physical shock or infection .
2. Massive adrenal hemorrhage resulting from trauma or using anticoagulants may destroy the adrenal cortex sufficiently to cause crisis.

Diseases of the adrenal gland

2. Adrenocortical hyperfunction (hyperadrenalinism)


Hypercortisolism (Cushing's syndrome)

- Is caused by the following conditions that produces an elevation in glucocorticoid levels. Of these conditions:
 1. Primary adrenal neoplasms (e.g. adrenal adenoma or carcinoma)
 2. Primary multinodular adrenal disease (primary cortical hyperplasia)
(1 & 2 are designated as ACTH-independent Cushing syndrome)
- 3. Secondary pituitary based hypercortisolism (hypersecretion of ACTH which stimulates the production and secretion of cortisol from adrenal cortex)
- 4. Ectopic production of ACTH from nonendocrine neoplasm.
- 5. Iatrogenic causes (**Exogenous administration of steroids is the most common cause of hypercortisolism**).

Diseases of the adrenal gland

- **Manifestation of Cushing syndrome:**

- 1- Truncal obesity (abdominal obesity, apple-shaped obesity)
- 2- Moon face
- 3- Abdominal striae (stretch marks)
- 4- Easy bruising
- 5- Thin extremities and muscle weakness
- 6- Glucose intolerance
- 7- Hirsutism
- 8- Menstrual abnormalities or impotence loss of libido
- 9- Hypertension

Endocrine pancreas

Diabetes Mellitus (DM)

- DM is not a single disease entity but rather a group of metabolic disorders sharing the common underlying feature of hyperglycemia.
- Hyperglycemia in diabetes results from defects in insulin secretion, insulin action, or, most commonly, both.
- **Diabetes mellitus causes**
 - a- Disturbance of carbohydrate metabolism.
 - b- Disturbance of lipid metabolism.
 - c- Disturbance of protein metabolism.
- A person with uncontrolled diabetes is unable to transport glucose into fat and muscle cells. As a result, body cells are starved and the breakdown of fat and protein is increased to generate alternative fuels.

Diagnosis of DM

- Blood glucose levels **are normally maintained in a very narrow range, usually 70 to 120 mg/dL, following eight hours of fasting, or less than 140mg/dL two hours after eating, or less than 42mmol/mol for the glycylated haemoglobin (HbA1c) test.**
- The **diagnosis of diabetes** is established by elevation of blood glucose by any one of three criteria:
 1. A **random blood glucose** concentration of **200mg/dL** or higher, with classical signs and symptoms.
 2. A **fasting glucose** concentration of **126mg/dL** or higher on more than one occasion.
 3. An abnormal oral glucose tolerance test (**OGTT**), in which the glucose concentration is **200mg/dL or higher 2 hours** after a standard carbohydrates load (75 gm of glucose).
 4. **HbA1c** value is **48mmol/mol** or over.
- **Pre-diabetes is diagnosed by any one of the following:**
 1. Serum fasting glucose values are greater than 110 but less than 126mg/dL.
 2. OGTT values of greater than 140 but less than 200mg/dL.
 3. HbA1c value is between 42-47 mmol/mol.
- **Those individuals have a significant risk of progressing to develop type II diabetes over time.**

Classifications of diabetes mellitus

- 1- **Insulin dependent DM** (IDDM, types I DM, Juvenile (young) DM)
- 2- **Non-insulin dependent DM** (NIDDM, types II DM, Maturity onset DM)
- 3- **Malnutrition – related DM** e.g. protein malnutrition (pancreatic injury >>> a functional impairment of the pancreatic B cell >>> insulin deficiency, insulin resistance >>> glucose intolerance).

4- **Other types associated with**

- a- Hormonal disease e.g Cushing's disease
- b- Drugs e.g. thiazides and loop diuretics. (Therapy with thiazides can lead to glucose intolerance, possibly due to impaired release of insulin and tissue uptake of glucose>>> should monitor glucose to assess the need for an adjustment in diabetes therapy.)
- c- Chemical e.g. alloxan and streptozotocin which are the most prominent diabetogenic chemicals. (they are toxic glucose analogues that accumulate in pancreatic beta cells causing destruction/death of beta cells and subsequent reduction in insulin production and release. Thus, alloxan results in insulin-dependent alloxan diabetes while streptozotocin leads to streptozotocin diabetes.)

Type I DM

- Is an **autoimmune disease** characterised by **progressive destruction of the pancreatic beta cells leading to absolute insulin deficiency, an elevation in blood glucose, and a breakdown of body fats and proteins.**
- Several immune mechanisms probably contribute to β – pancreatic cells damage, including T cells, cytokines and autoantibodies.
- a- **type IA** environmental factors + genetic factors leads to cell mediated destruction of β – cells.
- b- **types IB** primary autoimmune condition occurs in individual with other autoimmune conditions e.g Grave's disease, mysthenia gravis. It is associated with genetic factors. It occurs typically at 30-50 year of age

Manifestations of type I DM

1. Weight loss despite normal or increased appetite is a common occurrence in people with uncontrolled type 1 diabetes. First, **loss of body fluids** results from **osmotic diuresis**. Second, body tissue is lost because the lack of insulin forces the body to **use its fat stores and cellular proteins as sources of energy**.
2. The three “**polys**” —***polydypsia*** (increased thirst), ***polyphagia*** (increased appetite, poor utilization of carbohydrates (due to the lack of insulin) results in depletion of stored fats, proteins and carbohydrates.), ***polyuria*** (increased urine output). (If the glucose level is above 180g/dl (renal threshold) glucose will be excreted in the urine (glucosuria) glucose has osmotic activity so it causes polyuria—→ polydipsia)
3. Weakness and fatigue due to poor energy utilization and skeletal muscle catabolism.
4. Diabetic ketoacidosis — Accumulation of acidic ketone bodies in the blood due to a lack of insulin-stimulated fatty acid utilization.
5. *Hyperglycemic hyperosmolar syndrome*

Type II DM

- In contrast to type I diabetes, where *absolute insulin deficiency* is present, people with type II diabetes can have high, normal, or low insulin levels.
- Instead, there are two metabolic defects that characterise type II DM and consequently results in relative insulin deficiency:
 1. A decreased ability of peripheral tissues to respond to insulin action (**insulin resistance**). This means that the cells do not respond to the effects of insulin on glucose uptake, metabolism or storage.
 2. **β -cell dysfunction** that is manifested as inadequate insulin secretion in the face of insulin resistance and hyperglycemia. Insulin resistance initially stimulates an increase in insulin secretion, often to a level of modest hyperinsulinemia, as the beta cells attempt to maintain a normal blood glucose level. In time, the increased demand for insulin secretion leads to beta cell exhaustion and failure. This results in elevated postprandial blood glucose levels and an eventual increase in glucose production by the liver.
 - This occurs due to genetic and environmental factors.
 - a. Genetic defects occur for insulin receptors and insulin signalling pathway. People with one parent with type II diabetes have an increased risk for developing the disease.
 - b. Obesity results in increasing in the levels of free fatty acids which are themselves are lipotoxic due to their ability to decrease the activity of insulin-signalling proteins, decrease insulin release and increase glucose release.

Manifestations of type II DM

1. Hyperinsulinemia
2. Polyuria and polydypsia. Polyphagia is usually not present in people with type 2 diabetes.
3. Many people with uncomplicated type II diabetes often have problems with obesity.
4. Blurred vision develops as the lens and retina are exposed to hyperosmolar fluids.
5. Recurrent infections. Hyperglycemia and glycosuria favour the growth of yeast organisms. *Candida infections are common* initial complaints in women with diabetes.
6. Ketoacidosis is rare with type II diabetes (because people with type II diabetes do not have an absolute insulin deficiency, they are less prone to ketoacidosis compared to people with type I diabetes)

TABLE 50.3 COMPARISON OF TYPE 1 AND TYPE 2 DM

	TYPE 1 DIABETES	TYPE 2 DIABETES
Age of onset	Usually before 20	Usually after 30
Type of onset	Abrupt; symptomatic (polyuria, polydipsia, dehydration) often with severe ketoacidosis	Gradual; usually subtle; often asymptomatic
Usual body weight	Normal; recent weight loss is common	Overweight
Family history	<20%	>60%
HLA associations	+	No
Islet lesions	Early—inflammation Late—atrophy and fibrosis	Late—fibrosis, amyloid
Beta cell mass	Markedly reduced	Normal or slightly reduced
Circulating insulin level	Markedly reduced	Elevated or normal
Clinical management	Insulin absolutely required	Insulin usually not needed initially; insulin supplementation may be needed at later stages; weight loss typically improves the condition

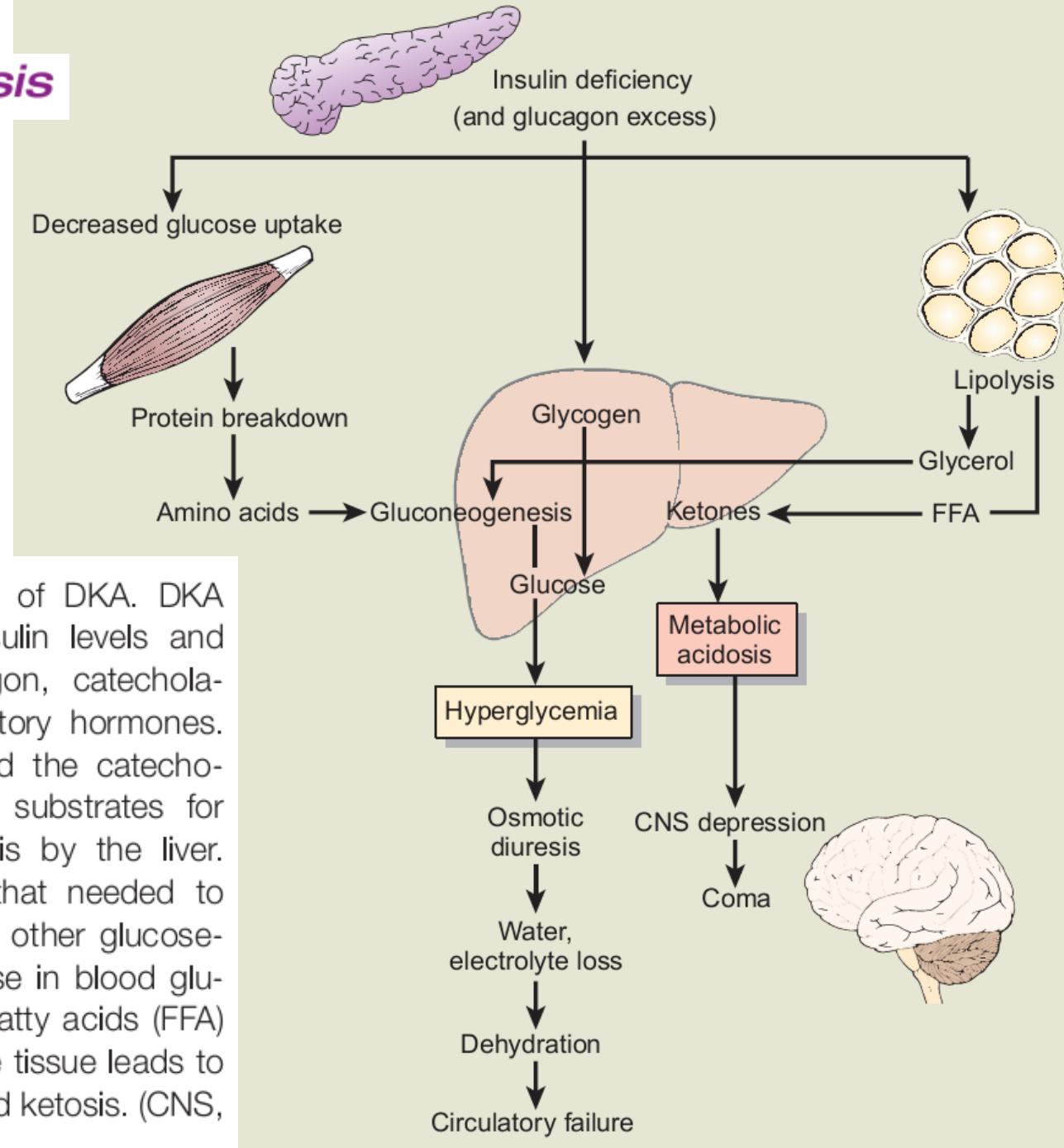
HLA, human leukocyte antigen.

Complications of DM

➤ Acute complications

1. Diabetic ketoacidosis
2. Hyperosmolar nonacidotic diabetes
3. Hypoglycemia (due to treatment)

➤ Chronic complications


1. Microvascular diseases
2. Macrovascular disease
3. Foot ulcer.

1. Diabetic ketoacidosis (DKA)

- DKA most commonly occurs in a person with type I diabetes, in whom the lack of insulin leads to mobilisation of fatty acids from adipose tissue (lipolysis) because of the unsuppressed adipose cells lipase activity that breaks down triglycerides into fatty acids and glycerol. The increase in fatty acid levels leads to keton production by the liver. Because ketones are organic acids, they cause ketoacidosis when they are present in excessive amounts.
- **Examples of keton bodies** are β -hydroxybutyrate, acetoacetic acid.
- **Clinical manifestations:** 1. Polyuria and polydipsia. 2. **Breath** has a characteristic **fruity smell** because of the presence of the volatile ketoacids. 3. Hypotension and tachycardia because of a decrease in blood volume (as a consequence of dehydration). 4. **Kussmaul respiration** (in which the rate and depth of respiration increase as the body attempts to prevent further decrease in pH).

Diabetic Ketoacidosis

The body uses glucose, fatty acids, and other substrates as fuel to satisfy its energy needs.

FIGURE 50.9 • Mechanisms of DKA. DKA is associated with very low insulin levels and extremely high levels of glucagon, catecholamines, and other counter-regulatory hormones. Increased levels of glucagon and the catecholamines lead to mobilization of substrates for gluconeogenesis and ketogenesis by the liver. Gluconeogenesis in excess of that needed to supply glucose for the brain and other glucose-dependent tissues produces a rise in blood glucose levels. Mobilization of free fatty acids (FFA) from triglyceride stores in adipose tissue leads to accelerated ketone production and ketosis. (CNS, central nervous system.)

2. Hyperosmolar hyperglycemic state (HHS)

- HHS is characterised by hyperglycemia, hyperosmolarity and dehydration.
- It is seen most frequently in people with type II diabetes.
- **Etiology and pathogenesis:** insulin deficiency may initiate the syndrome by increasing hepatic glucose output >> massive glycosuria obligatory water loss occurs >> Dehydration >> renal insufficiency >> limitation of renal glucose losses leads to increasingly higher blood glucose levels and severity of the hyperosmolar state.
- **Clinical manifestations:** 1. Weakness. 2. Polyuria and polydipsia . 3. Dehydration. 4. Neurologic signs including seizures and coma can occur.

3. Hypoglycemia

- **Etiology and pathogenesis:** it appears particularly in a person with type I diabetes for these reasons: 1. error in insulin dose; 2. failure to eat; 3. increased exercise; 4. medication changes; and 5. a change in insulin injection site.
- **Clinical manifestations** results from activation of the SNS. Of these include: 1. tachycardia. 2. sweating. 3. constriction of the skin vessels (i.e., the skin is cool and clammy).

Chronic complications

1. Microvascular complications

1. **Neuropathies:** two types of pathologic changes have been observed including:
 - a. **Thickening of the wall of the nutrient vessels that supply the nerve, leading to vessel ischemia** which plays a major role in the development of these neural changes.
 - B. **Segmental demyelinisation** process that affects the neural cells and resulting in slowing of nerve conduction.

Clinical manifestations: 1. numbness; 2. diminish pain and temperature particularly in the lower extremities, 3. vibration;

2. Nephropathies: Includes various glomerular changes which are:

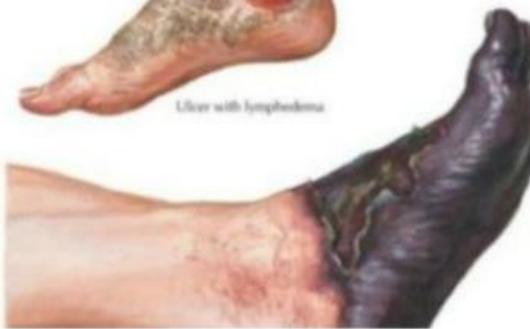
- a. **Thickening in capillary basement membrane** along the length of the glomeruli.
- b. **Diffuse glomerulosclerosis is associated with changes in the permeability of basement membrane that allow plasma proteins to escape into the urine, causing proteinuria** and the development of hypoproteinemia, edema, and others signs of impaired kidney function.

3. Retinopathies: Is characterised by **abnormal retinal vascular permeability and hemorrhage that result in increasing in the intraocular pressure** that scar and detach the retina and impair vision. This phenomenon is usually progressive and can lead to blindness (loss of vision).

Chronic complications

2. Macrovascular complications

- DM is a major risk factor for **coronary artery disease, cerebrovascular disease, and peripheral vascular disease.**
- The hallmark of diabetic macrovascular disease is accelerated atherosclerosis affecting the aorta and large and medium-sized arteries.
- Atherosclerosis of the coronary arteries >> myocardial infarction >> death in diabetes.
- Peripheral vascular disease can lead to gangrene and amputations.


3. Foot ulcer: Foot problems are common among people with diabetes and may become severe enough to cause ulceration, infection, and, eventually, the need for amputation. Degeneration of the small muscles of the foot results in clawing of the toes together with joint changes, alter the biomechanics of the foot, increasing plantar pressure and predisposing to development of foot trauma and ulcers.

Grade IV: partial gangrene

Ulcer with lymphedema

