
BitBall DEX API
BitBall DEX's API gives you access to ticker information, orders, trades, deposits,

withdrawals, and anything else available through our website. You can also interact

directly with the smart contract to get trades, deposits, and withdrawals. For an

example of directly working with the contract, take a look at our

[contract_observer.py]. BitBall DEX's orderbook is primarily stored offchain, but can

be accessed with our public interface or through this API. To learn more about our

order system, take a look at our [backend repository].

Websocket Server

BitBall DEX's API is socket.io based. The API utilizes SSL on all connections to keep

your data private. You can connect to BitBall DEX's API through this endpoint:

https://api.bitball-dex.com

Rate Limiting

Please try to limit your calls to the API to a reasonable frequency.

The API currently limits clients to 6 concurrent connections and 12 reconnects per

minute per IP address. We reserve the right to adjust these without advanced notice.

The API does not limit the number of getMarket and order messages the client can

send at this time. Protip: subscribe to [this issue](https://github.com/BitBall

DEX/proposals/issues/11) to get updates on when that changes.

Clients that violate rate limits repeatedly may be blocked.

Best Practices

Identify your client

Make sure to set a custom User Agent for your BitBall DEX API client whenever

possible. The User Agent string should include the name and version of the client, as

well as the client's homepage URL and author's contact (email), like so:

A custom User Agent string will allow us to reach out to you in case of any issues and

will help us debug issues if you reach out for support.

Backoff on errors

If you receive a one-off disconnect from the server, you may reconnect right away.

However, if you receive multiple disconnects or receive errors when attempting to

connect (HTTP statuses >=400), you must delay your next connection attempt. We

recommend randomized exponential backoff strategy: retry_delay =

min(((2^n)+random_number_milliseconds), 128) , where n is the retry attempt count,

starting at 0.

Requests

There are two messages you can send to the BitBall DEX websocket API:

https://api.bitball-dex.com/
https://github.com/BitBall
https://en.wikipedia.org/wiki/Exponential_backoff

1. getMarket

2. message

1) getMarket (token, user)

getMarket accepts two optional parameters: token & user.

token is the Ethereum address for the token you wish to receive data on.

user is the Ethereum wallet address for the user you wish to receive data on.

When getMarket is emitted, a market response will be returned.

The market response can consist of 6 different parts:

returnTicker

This is standard returnTicker information including volume and price data.

Example returnTicker :

{

 "ETH_0x1183f92":{

 "tokenAddr":"0x1183f92a5624d68e85ffb9170f16bf0443b4c242",

 "quoteVolume":"0",

 "baseVolume":"0",

 "last":"0.0006200000002",

 "bid":"0.00062",

 "ask":"0.001428",

 "updated":"2018-02-21T17:26:11.686344"

 },

 "ETH_0x11f8dd7":{

 "tokenAddr":"0x11f8dd7699147566cf193596083d45c8f592c4ba",

[...]

If you would like to get data on each ticker including names, please take a look at

our [tokenbase repository](https://github.com/BitBall DEX/tokenbase). If you would

just like a simple way to access ticker symbols, take a look at our [configuration

JSON](https://BitBall DEX.github.io/config/main.json).

We also supply a REST version of this data, but highly recommend using the websocket

server for the most up to date information. The REST version can be found here:

https://api.bitball-dex.com/returnTicker

trades | myTrades

If user is passed in, myTrades will contain all trades available for the passed in

user's address. If user is not passed in, myTrades will be absent.

Example trades | myTrades :

[

 { txHash: '0x75f083bf7a47861dcbb86b30b359de761e57d648c48b5084af7ef3f5db887557',

 date: '2017-10-23T01:16:53.000Z',

 price: '0.219011',

 side: 'sell',

 amount: '70.2',

 amountBase: '15.3745722',

https://github.com/BitBall
https://bitball/
https://api.bitball-dex.com/returnTicker

 buyer: '0xfe988cd30fa97f5422f5a4ae50eafa6271cd2417',

 seller: '0x2056c8184da1fd5a7a1cf43b567c82a999962ef4',

 tokenAddr: '0x8f3470a7388c05ee4e7af3d01d8c722b0ff52374' },

 ...

]

orders | myOrders

If user is passed in, myOrders will contain all orders available for the passed in

user's address. If user is not passed in, myOrders will be absent.

Example orders | myOrders :

{

 sells: [

 { id: '1337b7fe3f96996904d1299fcf030501661158cb964ae6400cbda2ae107978fb_sell',

 user: '0xfb83cB20DFcf7643AbE43Ea23b77F04573eC9616',

 state: '',

 amount: '-2000000000000000000',

 price: '0.9',

 tokenGet: '0x00',

 amountGet: '1800000000000000000',

 tokenGive: '0x8f3470a7388c05ee4e7af3d01d8c722b0ff52374',

 amountGive: '2000000000000000000',

 expires: '5143967',

 nonce: '893205913',

 v: 28,

 r: '0x4eb35ba40288a169e5f5dfe85a8582db762fde5d57b212afd0be6438ca186f40',

 s: '0x6fc37f071c75c562074b536a354bc79ba3a066f918243fc29813e9a4426b5fa9',

 date: '2017-09-16T11:56:47.006Z',

 updated: '2017-09-16T11:56:47.006Z',

 availableVolume: '1999403702773222212.22222222222222222222',

 ethAvailableVolume: '1.999403702773222',

 availableVolumeBase: '1799463332495900000',

 ethAvailableVolumeBase: '1.7994633324959',

 amountFilled: '0' },

 ...

],

 buys: [

 { id: '2c002b763a9aba6d51dbf7274676f7ce957a060bd340b6230aa707fd5ca358a8_buy',

 user: '0xd270fDc1b2a369f890E9858F09E3D0769B63b526',

 state: '',

 amount: '10000000000000000000',

 price: '0.06',

 tokenGet: '0x8f3470a7388c05ee4e7af3d01d8c722b0ff52374',

 amountGet: '10000000000000000000',

 tokenGive: '0x00',

 amountGive: '600000000000000000',

 expires: '1003884633',

 nonce: '1928222541',

 v: 28,

 r: '0x236d8b8f87163b6dc6712cb90ac85be8eb9fd80d6d671013d8414206d33da1d9',

 s: '0x6813055d05f5300cd45a43ef5e592f78bdc9698e548f3bfb49fc355f327fc92b',

 date: '2017-09-16T11:56:47.006Z',

 updated: '2017-09-13T14:56:28.838Z',

 availableVolume: '10000000000000000000',

 ethAvailableVolume: '10',

 availableVolumeBase: '600000000000000000',

 ethAvailableVolumeBase: '0.6',

 amountFilled: '0' },

 ...

]

}

myFunds

If user is passed in, myFunds will contain deposits and withdrawals for the passed

in user's address. If user is not passed in, myFunds will be absent.

Example myFunds :

[

 { txHash: '0x295f173773f31c852a9c3eef252f8600620147c6aabb312276f8b0d9800cbc7a',

 date: '2017-10-17T17:36:41.000Z',

 tokenAddr: '0x00',

 kind: 'Deposit',

 user: '0xcdb1978195f0f6694d0fc4c5770660f12aad65c3',

 amount: '0.001',

 balance: '0.005688612160935313' },

 ...

]

2) message (order)

message allows you to post an order directly to BitBall DEX and accepts one required

parameter.

order must be a properly formatted JSON object containing the following properties:

amountGive : the amount you want to give (in wei or the base unit of the token)

tokenGive : the token you want to give (use the zero address,

0x00 for ETH)

amountGet : the amount you want to get (in wei or the base unit of the token)

tokenGet : the token you want to get (use the zero address,

0x00 for ETH)

contractAddr : the smart contract address

expires : the block number when the order should expire

nonce : a random number

user : the address of the user placing the order

v , r , s : the signature of sha256(contractAddr, tokenGet, amountGet,

tokenGive, amountGive, expires, nonce) after being signed by the user

On error, emits a messageResult event to the originating sid with an array

payload, containing:

1. Error code:

400 if the event payload could not be interpreted due to client error

(cf. https://httpstatuses.com/400)

422 if the event payload contained semantic errors (cf.

https://httpstatuses.com/422)

2. A string error message with a brief description of the problem.

3. An object containing some useful details for debugging.

Example error result:

[

 422,

 "Cannot post order because it has already expired",

 { "blockNumber": 5131620, "expires": 5131666, "date": 2017-10-17T17:36:41.000Z }

]

On success, emits a messageResult event to the originating sid with an array payload,

containing:

1. Success code 202 : the order has been accepted.

2. A brief message confirming success

Example success result: [202, "Good job!"]

Events

orders

New orders will be emitted as they are placed. The data structure of this orders

event mirrors that of market.orders outlined above. However, some orders will have a

deleted flag. Orders with the deleted flag have been cancelled or traded and are no

longer valid.

trades

New trades will be emitted as they occur. The data structure of this trades event

mirrors that of market.trades outlined above.

funds

New deposits and withdrawals will be emitted as they occur. The data structure of this

funds event mirrors that of market.myFunds outlined above.

https://httpstatuses.com/400
https://httpstatuses.com/422

