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The Optimization Problem

Assume that we want to maximize (minimize) a function f(z1,z2) (e.g. a
utility function that we want to maximize, or a cost function that we want to
minimize), subject to the constraint g(xq,x2) = ¢ (e.g. a budget constraint,
or a utility level constraint):

max f(z1,xs) s.t. g(x1,29) = c.
Z1,T2

The Lagrangian function is then defined as
L(x1, 29, \) = f(21,22) — A[g(21, 22) — C].

The Lagrangian equals the objective function f(xi,zs) minus the La-
grange mulitiplicator A multiplied by the constraint (rewritten such that the
right-hand side equals zero). It is a function of three variables, 1, xo and .
By calculating the partial derivatives with respect to these three variables,
we obtain the first-order conditions of the optimization problem:
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We thus have three equations with three unknowns. By solving this sys-
tem of three equations we obtain the optimal solutions xf, x5, A*. (Actually
one should check the second-order conditions as well to see if the obtained so-
lutions are optimal. Here, we will take for granted that the obtained solutions
are optimal.)

Note that the Langrangian is constructed such that L(x3, x5, \*) = f(aF, 23),
because \*[g(x},235) — | =A"-0=0.



Why Is this Method Applied?

The Lagrange method is frequently used in economics, mainly because
the Lagrange multiplicator(s) has an interesting interpretation. The La-
grange multiplicator represents the shadow price of the constraint that it
is multiplied with; it measures how much the optimal value of the objective
function f(z73, x5) would change if the constraint would be relaxed marginally
(i.e. if the constant ¢ would increase marginally).

Example: Utility Maximization

We want to maximize u(x1,xs) = x129 subject to the budget constraint
P1T1 + P2xo = M

max T1%s s.t. P11 + Paty = M.
x1,22

The Lagrangian is thus given by

L(x1,29, ) = 2120 — A[p121 + poxa — ml.

The optimal solutions are given by
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In this case A\* measures the marginal utility of income, i.e. A* mea-
sures how much utility would increase at the optimal values x] and x3 if the
individual’s income were increased marginally:
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Example: Cost Minimization

The utility function is given by u(x1,z2) = x122. We want to minimize
the expenditures, given by F(x1,x2) = p121 + paa, for attaining utility level

u:

min pi1r1 + PaTo S.t. T1Ty = U.
XT1,T2

The Lagrangian is thus given by

M(x1, 22, 1) = p121 + P22 — plz122 — Tl.

The optimal solutions are given by
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In this case ;" measures the marginal cost of %, i.e. p" measures how
much expenditures would increase at the optimal values x} and z# if the
individual’s utility level 7 were increased marginally:
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