

Introduction

AH451 is an omnipolar Hall-effect switch designed and produced based on a bipolar semiconductor (Bipolar) process and is sensitive to the south and north poles. The device integrates a voltage generator that can work stably under a power supply voltage of 3.8 to 40V, reverse voltage protection circuit, temperature compensation circuit, small signal amplifier, Schmitt trigger and open collector output.

The sensor can work in the South and North Pole. When the magnetic flux density (B) is greater than the operating point Bop, the output will be turned on at a low output level. Then keep the output until the magnetic flux (B) is lower than the release point Brp. The output will be turned off at a high output level.

AH451 provides T0-92S package and SOT-23 package. Both packages meet the RoSH environmental protection standard.

Features

- Micro structure
- Sensitivity +/-80/50Gauss (typical value)
- Operating voltage range from 3.8 Vdc to 40
 Vdc
- Operating temperature range -40 °C -125°C
- Highest ESD performance up to ±4 kV
- open collector output

Package

3-pin TO92S

Application

- Docking detection
- Door lock opening and closing detection
- Proximity sensing
- Valve positioning Pulse countin

High sensitivity omnipolar Hall sensor

Ordering information

Part number	Package	Packing	Ambient, T _A
AH451UA	TO92S	Bulk, 1000 pieces/bag	-40℃ to 125℃
AH451SU	SOT23	Tape&Reel, 3000 pieces/reel	-40℃ to 125℃

Pin assignment

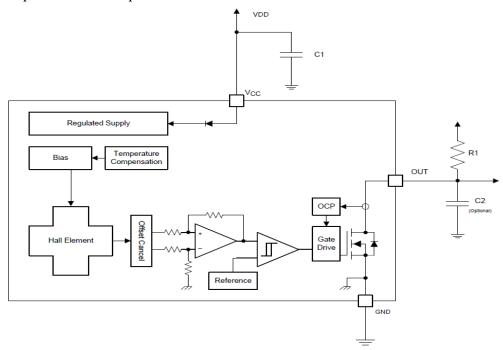
Pin number	Name	Function
1	VDD	Power supply
2	GND	Ground
3	Vout	output

Absolute Maximum Ratings

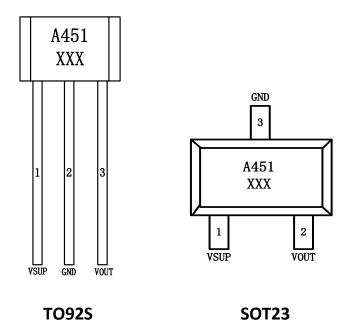
The absolute maximum value is the limiting value when the chip is applied, above which the chip can be damaged. Although the function of the chip is not necessarily damaged when the absolute maximum value is exceeded, the reliability of the chip may be affected if the absolute maximum value is exceeded for a certain time.

Parameter	Symbol	Value	Units
Supply voltage	VDD	60	V
Reverse voltage	VDD	-60	V
Output Sink Current	İsink	40	mA
Output voltage	Vout	60	V
Operating temperature range	Ta	-40~125	$^{\circ}$ C
Storage temperature range	Ts	-40~165	$^{\circ}$ C

Electrical and magnetic characteristics(Ta=25°C, VDD =5.0V)

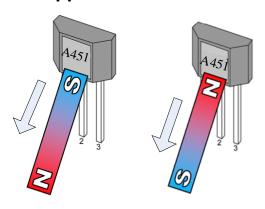

Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
Electrical characteristics						
VDD	Operating voltage		3.8		40	V
IDD	Supply current			3. 5	7	mA
lie	Leakage current	Off condition			10	uA
Vsat	Saturation voltage output	lout=20mA			0.4	V
Tr	Output rising time	Pullup resistor =1kohms, Load cap=20pF			1	us
Tf	Output falling time	Pullup resistor =1kohms, Load cap=20pF			1.5	us
Magnetic cha	racteristics					l
Operate point	Вор	Pullup resistor =1kohms, Load cap=20pF		+/-80		Gauss
Release point	Brp	Pullup resistor =1kohms, Load cap=20pF		+/-50		Gauss
Hysteresis	Bhys	Pullup resistor =1kohms, Load cap=20pF		30		Gauss

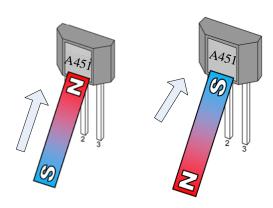
High sensitivity omnipolar Hall sensor



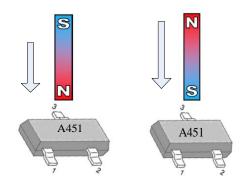
Function diagram

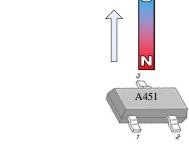
AH451 is an omnipolar Hall effect switch designed with bipolar technology. It includes an on-chip Hall element voltage generator, a voltage stabilizer that can work at a power supply voltage of 4.5 to 60V, reverse voltage protection, temperature compensation circuits, and small signal Amplifier, Schmitt trigger and open collector output.

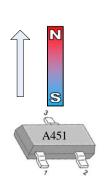



Pin orientation

Applications: VDD =5V


Vout= High


Vout= Low

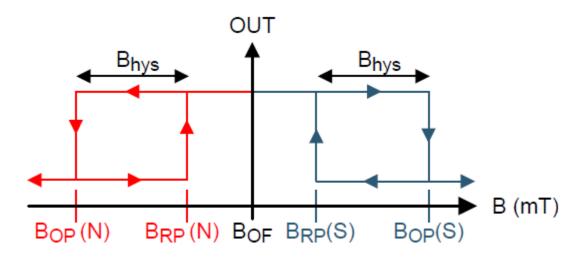

TO92S (AH451UA)

TO92S Pin description

Name	Pin number	Description
VDD	1	Power supply
Vout	2	Ground
GND	3	output

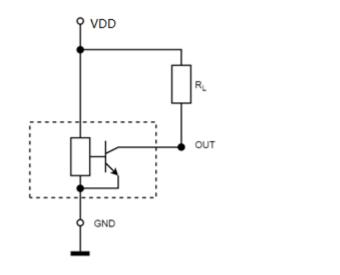
Vout= Low

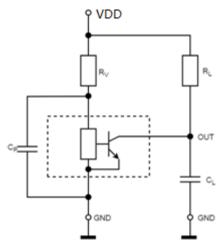
Vout= High


SOT23 (AH451SU)

SOT23 Pin description

Name	Pin number	Description
VDD	1	Power supply
Vout	2	output
GND	3	Ground

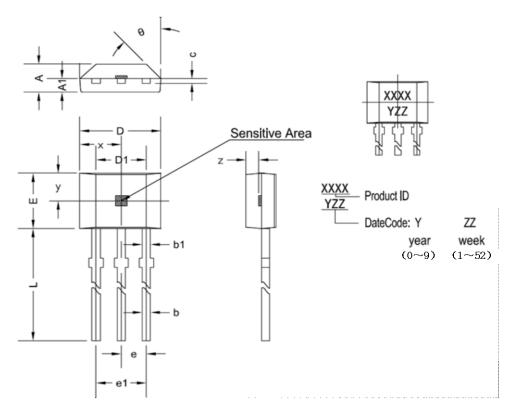



Output Behavior

Application Circuits

Typical application circuit, RL= 4700ohms

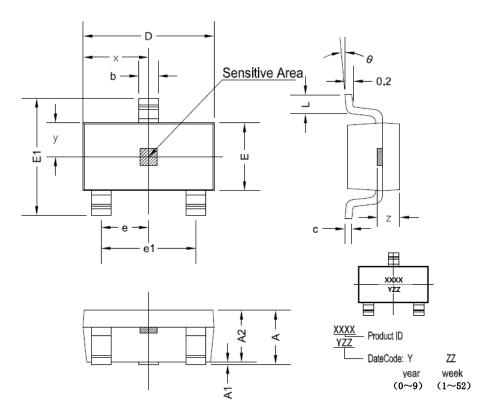
Case 1 of typical application circuit


Case 2 of typical application circuit

For applications with interference or radiation interference on the power supply line, it is recommended to place the series resistor RV and the two capacitors CP and CL as close to the sensor as possible (see the figure below). For example: RV=100 ohms, CP=4.7nF, and CL=1 nF

Package dimensions

TO92S



TO92S dimensions

symbol	Size (mm)		Size (in inches)	
	minimum	maximum	minimum	maximum
Α	1.42	1.67	0.056	0.066
A1	0.66	0.86	0.026	0.034
b	0.35	0.56	0.014	0.022
b1	0.4	0.55	0.016	0.022
С	0.36	0.51	0.014	0.02
D	3.9	4.2	0.154	0.165
D1	2.97	3.27	0.117	0.129
Е	2.9	3.28	0.114	0.129
е	1.270 TYP		0.050 TYP	
e1	2.44	2.64	0.096	0.104
L	13.5	15.5	0.531	0.61
Х	2.025TYP		0.080TYP	
У	1.545TYP		0.061TYP	
Z	0.500TYP		0.020TYP	
θ	45°	ГҮР	45°TYP	

SOT23

SOT23 dimensions

symbol	Size (mm)		Size (in inches)	
	minimum	maximum	minimum	maximum
Α	1.05	1.25	0.041	0.049
A1	0	0.1	0	0.004
A2	1.05	1.15	0.041	0.045
b	0.3	0.5	0.012	0.02
С	0. 100	0.2	0.004	0.008
D	2.82	3.02	0.111	0.119
Е	1.5	1.7	0.059	0.067
E1	2.65	2.95	0.104	0.116
е	0.950 TYP		0.037 TYP	
e1	1.8	2	0.071	0.079
L	0.3	0.6	0.012	0.024
Х	1.460TYP		0.057TYP	
У	0.800TYP		0.032TYP	
Z	0.600TYP		0.024TYP	
θ	0°	8°	0°	8°

High sensitivity omnipolar Hall sensor

Copyright ©2018, Vinbelltech Limited

Vinbelltech Limited reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the information being relied upon is current.

Vinbelltech Limited products are not to be used in any devices or systems, including but not limited to life support devices or systems, in which a failure of Vinbelltech Limited product can reasonably be expected to cause bodily harm.

The information included herein is believed to be accurate and reliable. However, Vinbelltech Limited assumes no responsibility for its use; nor for any infringement of patents or other rights of third parties which may result from its use.