

Resveratrol

Resveratrol Ameliorates Aging-Related Me tabolic Phenotypes by Inhibiting cAMP Phosphodiesterases.

Sung-Jun Park et al., Cell, 2012

Why did people start to have much interest in 'Resveratrol'?

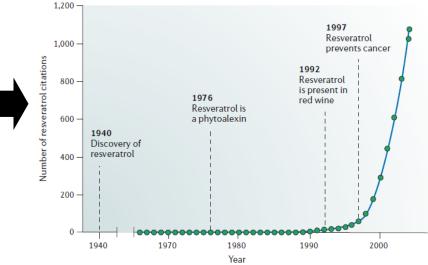
French Paradox

- the observation that French people show low coronary hea rt disease (CHD) death rates despite high intake of dietary cholesterol and saturated fa

	French	US
Fat	171g/d	157g/d
Fat from animal	108g/d	72g/d
Incidence of Coronary heart disease	83/100,000	115/100,000

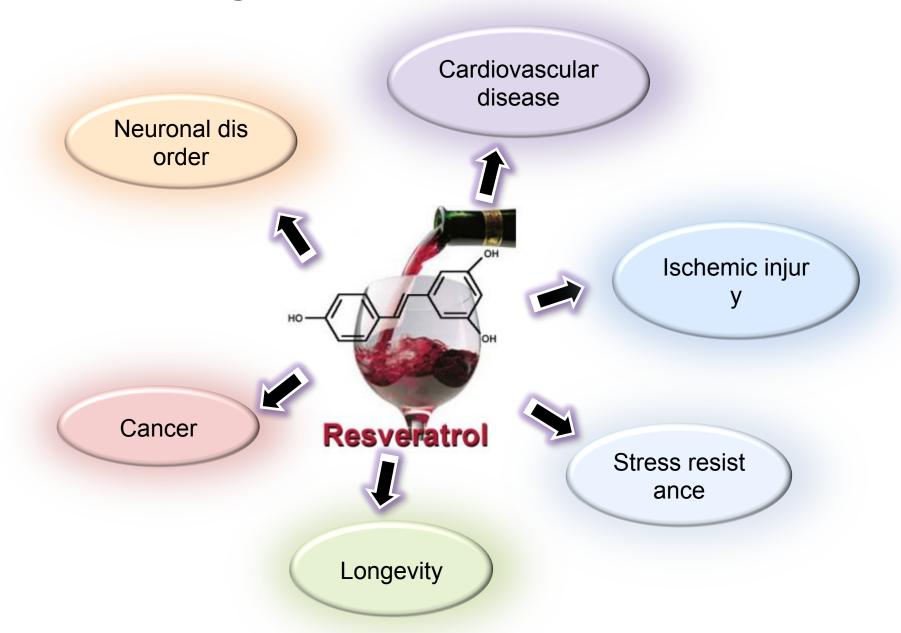
Reported by FAO(Food and Agriculture Organization of the United Nations) at 2002

AMERICAN, JOURNAL ENOLOGY AND VITICULTURE

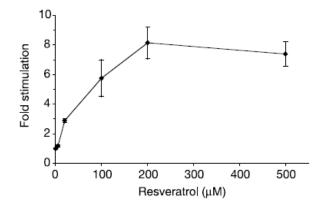

Article

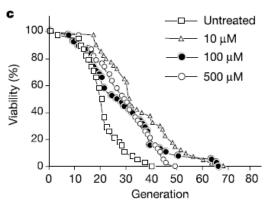
Concentration of the Phytoalexin Resveratrol in Wine

E. H. Siemann and L. L. Creasy


Global Market Information Database

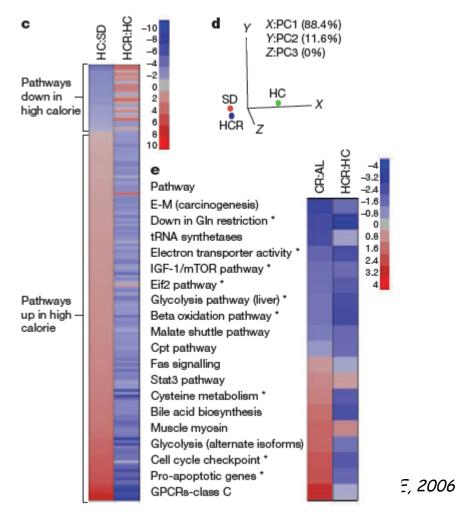
Am. J. Enol. Vitic 1992 vol. 43 no. 1 49-52 \

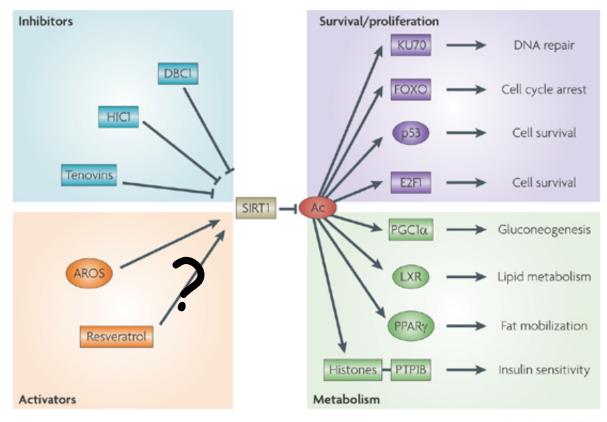

Nature review of drug discovery, 2006


Biological activities of Resveratrol

lifespan

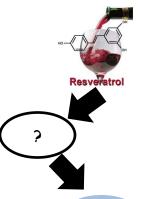
Konrad T. Howitz¹, Kevin J. Bitterman², Haim Y. Cohen², Dudley W. Lamming², Siva Lavu², Jason G. Wood², Robert E. Zipkin¹, Phuong Chung¹, Anne Kisielewski¹, Li-Li Zhang¹, Brandy Scherer¹ & David A. Sinclair²




NATURE, 2003

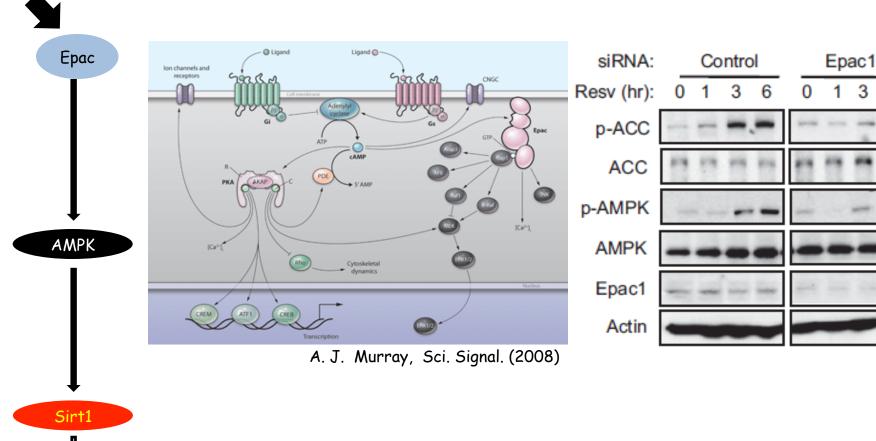
ARTICLES

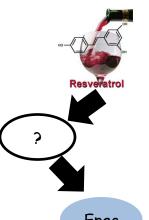
Resveratrol improves health and survival of mice on a high-calorie diet


Major question of this study

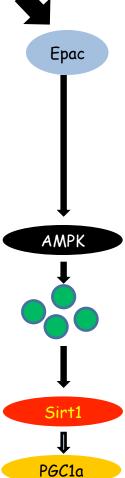
Nature Reviews | Cancer

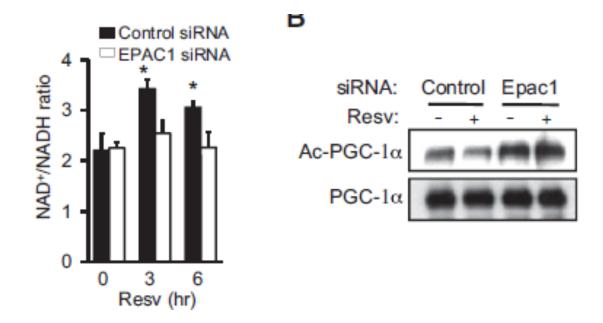
- -Resveratrol can't activate Sirt1 to deaetylate native substrate in vitro. (J. Biol. Chem, 2010)
- -AMPK deficient mice are resistant to the metabolic effects of resveratrol. (Diabetes, 2010)
- → What's the direct target of resveratrol for sirt1-PGC1a mediated m etabolic effects?


- Resveratrol Activates AMPK in an Epac1-Dependent Manner


PGC1a

Treatment of Resveratrol,

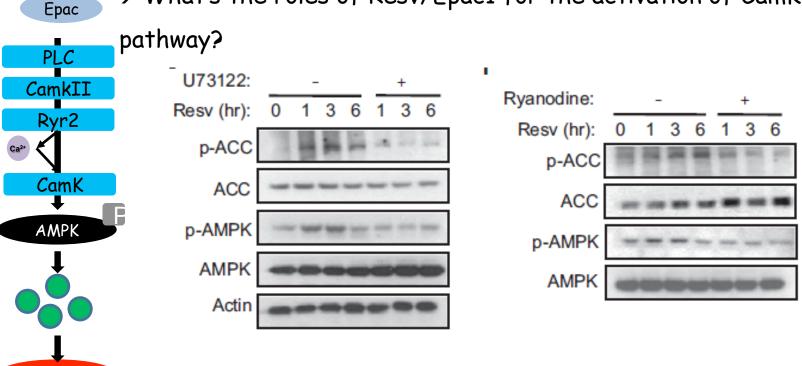

- -Increased cAMP level in vitro & in vivo
- -Inhibitor for Adenyl cylase blocked phosphorylation of AMPK

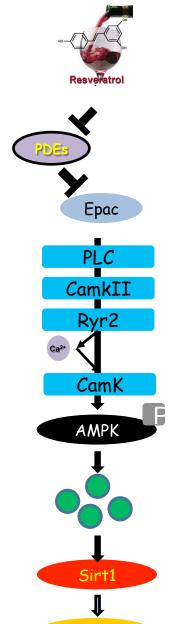


- Resveratrol Increases NAD+ Levels and Sirt1 Activity via Epac1

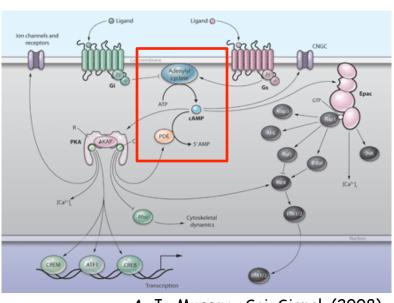
Previously, AMPK have shown to increases NAD+ and Sirt1 activity >> What's the roles of Epac1/Resv for increase of NAD+?

-Other Sirt1 dependent metabolic effects were also shown by tre atment of 007 (Mitochondrial biogenesis, Fat oxidation, ROS production)


- Resv activates the CamKKb-AMPK via PLC-Ryr2 pathway


Sirt1

PGC1a


- AMPK activation require phosphorylation by LKB1 or CamKKB
- Resveratrol increased cytosolic Ca²⁺
- Epac1 increased cytosolic Ca2+ in PLC dependent manner via CamKII
- → What's the roles of Resv/Epac1 for the activation of CamKKb/AMPK

- Resveratrol is nonselective phosphodiesterase inhibitor

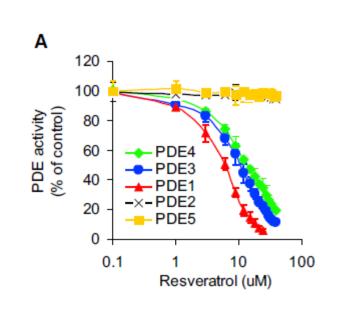
PGC1a

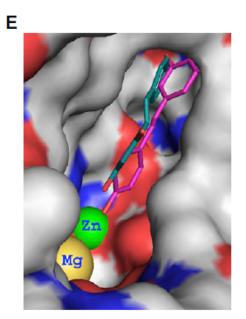
A. J. Murray, Sci. Signal. (2008)

cAMP level

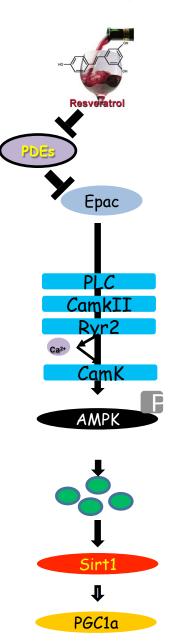
-Adenyl Cylase: ATP → cAMP

-PDE: cAMP → AMP

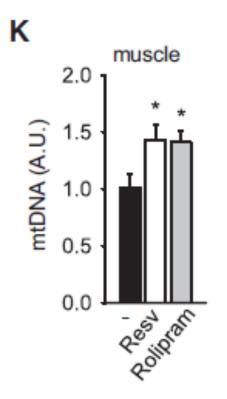

-No effect of Resv on AC activity

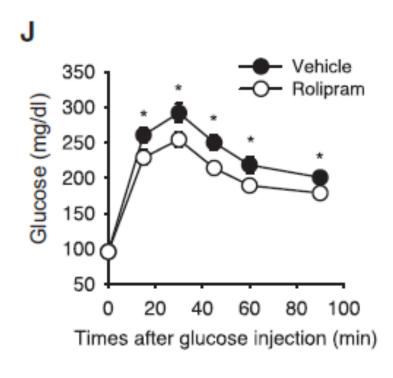

-11 types of PDEs

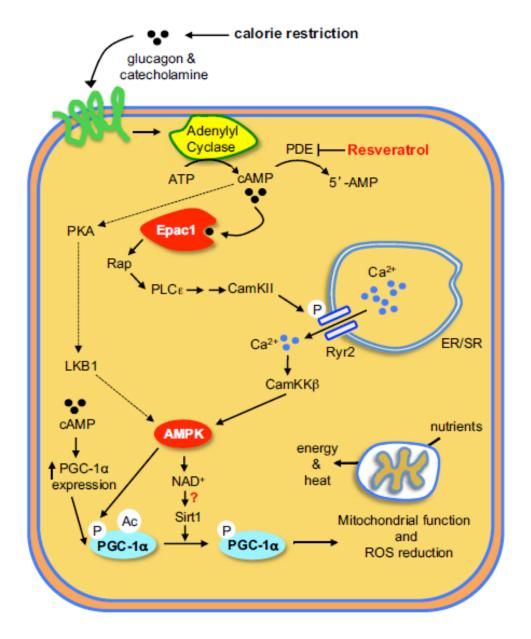
① PDE4/7/8: cAMP


② PDE5/6/9: c*GM*P

③ PDE1/2/3/10/11: cAMP&cGMP




- Resv increase mitochondrial biogenesis and protect diet-induce d obesity & glucose tolerance in a PDE dependent manner


If Resv effects is mediated by inhibition of PDEs, can the inhibition of PDEs mimic metabolic effects of Resv?

Mitochondrial Biogenesis and glucose tolerance

Proposed Model of How Resveratrol Mimics CR

Further questions?

- 1 Does Resveratrol selectively activate CR related pathway or also activate other cAMP dependent pathways?
- 2 What's the effects of Resveratrol or Rolipram for Treg?
- cAMP?
- Treg stability?
- 3 What's the roles of Sirt1 in non-T compartment?
- Sirt1-/-: Abnormal T responses
- CD4cre/Sirt1flox: Normal T responses
- 4 What's the effect of Resveratrol or Rolipram for the development and function of Fat Treg?
- (5) How much do we need to drink wine?
- \rightarrow Daily intake of 375 ml, or about two glasses of wine, \rightarrow ~27 µg per kg (body weight) each day.
- → At higher doses, the detrimental effects of alcohol are likely to mask any healt h benefits.

Table 1 Dietary sources of resveratrol				
Source	trans-Resveratrol concentration	Comments	Refs	
Dietary				
Redwines	0.1–14.3 mg l ⁻¹	cts-Resveratrol, trans-piceid and cts-piceid also present, typically at slightly lower concentrations	181,207-213	
White wines	<0.1-2.1 mg l ⁻¹	Generally resveratrol found at concentrations of <0.1 mg h², exceptions include Swiss, Portuguese and German Riesling wines, cts-resveratrol, trans-piceid and cts-piceid also present	181,201,207, 209,210	
Ports and sherries	Generally < 0.1 mg l ⁻¹		207	
Grapes*	0.16-3.54 µg g ⁻¹	Contents are similar for wine or table grapes, and black or white grapes. trans-Piceid is predominant at concentrations of 1.5–7.3 μ g g $^{-1}$	211,214-216	
Dry grape skins	24.06 µg g ⁻¹ (average)	trans-Piceid and cts-piceid found at concentrations of 42.19 μgg^{-1} and 92.33 μgg^{-1} , respectively	217	
Red grape juices	0.50 mg l ⁻¹ (average)	trans-Piceid, cts-piceid and cts-resveratrol found at concentrations of 3.38 mg l ⁻¹ , 0.79 mg l ⁻¹ and 0.06 mg l ⁻¹ , respectively	218	
White grape juices	0.05 mg l ⁻¹ (average)	trans-Piceid and cts-piceid found at concentrations of 0.18 mg Γ^1 and 0.26 mg Γ^1 , respectively	218	
Cranberry raw juice	-0.2 mg l ⁻¹	cts-Resveratrol also found at a concentration of -0.03 mg l ⁻¹	219	
Blueberries	Up to - 32 ng g-1		220	
Bilberries	Up to - 16 ng g ⁻¹		220	
Other Vaccinium berries	7–5,900 ng g ⁻¹ (dry sample)	Highest concentrations in lingonberries	216	
Peanuts	0.02−1.92 µg g ⁻¹		221,222	
Roasted peanuts	0.055 µg g⁻¹		223	
Boiled peanuts	5.1 µg g ⁻¹		211,223	
Peanut butters	0.3–0.4 μg g ⁻¹ (average)	trans-Piceid also found at a concentration of 0.13 µg g⁻¹	211,223,224	
100% Natural peanut butters	0.65 µg g ⁻¹ (average)	trans-Piceid also found at a concentration of 0.14 $\mu g g^{-1}$	224	
Pistachios	0.09−1.67 µg g ⁻¹		222	
Groundnuts (Arachts hypogaea)	ND		225	
Rhubarb	ND		226	
Hops	0.5−1 µg g⁻¹	trans-Piceid and cts-piceid found at concentrations of 2–9 $\mu g~g^{-1}$ and 0.9–6 $\mu g~g^{-1}$, respectively	227,228	
Itadori (Polygonum cuspidatum) tea	0.68 mg l ⁻¹	trans-Piceid also found at a concentration of 9.1 mg l ⁻¹	211	
Herbal				
Veratrum (Lily)	ND		1	
Cassia quinquangulata	ND		5	
Gneturn Mossil	ND		229	
Polygonum cuspidatum	0.524 mg g ⁻¹	trans-Piceid also found at a concentration of 1.65 mg g ⁻¹	211,230	
Rhubarb (Rheum rhaponticum) dry root	3.9 mg g-1		230	
Yucca schidigera bark	ND		231	
		Nature Review of Drug Discov	ery 2006	