

Arctic Monitoring Permafrost and Land Surface Hydrology

Annett Bartsch Institute of Photogrammetry and Remote Sensing Vienna University of Technology

Annett.Bartsch@tuwien.ac.at

Elise Richter Program Austrian Science Fund

alanis methane

support to science element

Why Permafrost in DUE?

- Permafrost is an environmental indicator on climate change
- Thawing permafrost is a carbon source
- Transport in boreal areas (roads, railways, pipelines) is affected by permafrost degradation
- Thawing of permafrost in alpine areas raises the risks of landslides

DUE Permafrost

- Aim is to establish a circumpolar monitoring system based on mostly existing satellite data products
- Users:
 - · Permafrost scientists and
 - Climate Modellers

DUE Permafrost

- Permafrost ground thermal regime changes due to
 - Changes in air temperature and/or precipitation
 - Surface disturbances
 - Clearing of vegetation
 - Removal of insulating organic layer
 - Forest fires
 - River channel migration
 - Shoreline erosion

- Response of Permafrost to climate change depends on variations in local seasonal factors
 - Snow cover
 - Vegetation
 - Surficial material
 - Moisture content
 - Drainage

Permafrost & Remote Sensing

- Cannot directly see below the soil surface, but
 - Monitoring of indicators
 - Lake dynamics
 - Terrain changes
 - vegetation
 - Monitoring of parameters used in models
 - Land Surface Temperature
 - Landcover
 - Disturbances
 - Snow properties
 - Soil moisture
 - Terrain

User organizations

- International Permafrost Associations IPA
- Supported by IPA Remote Sensing Task Force
- Alfred-Wegener Institute of Polar and Marine Research
- University of Alaska Fairbanks
 - Permafrost Laboratory
 - International Arctic Research Centre
- Lomonossov Moscow State University, Russia
- Permafrost Institute Yakutsk
- State Hydrological Institute St Petersburg, Russia
- Geological Survey of Canada
- University of Hokkaido, Japan
- MPI Jena, Germany
- + currently > 10 associated users

AWI

User requirements survey summary

- Easy access to end-products which provide information on the current status of permafrost and add value to existing networks
- Synergy with other current international activities such as the Global Cryosphere Watch and the Sustained Arctic Observing Network (SAON)
- The joint activities shall support regular updates of permafrost extent (e.g. monthly). This can be supported by the permafrost modelling community and through the IPA (International Permafrost Association) based on a long-term sustained management strategy
- The currently feasible update intervals range between annual and weekly on regional to pan-arctic scale. The spatial scale of pan-arctic services is limited to 25km. <u>Precise monitoring does</u>, however, require daily time <u>steps at minimum 1km</u>.
- This agrees with the GCOS observation requirements for permafrost itself but not the ECVs which are model input parameters

Possibilities of circumpolar monitoring - examples

Land Surface Temperature

- Snow properties
 - Globsnow: extent, snow water equivalent

But also structure and grain size

Ice crust formation frequency 2000-2009 Bartsch (2010; QuikScat)

Possibilities of circumpolar monitoring - examples

- Snow properties
 - Globsnow: extent, snow water equivalent

But also structure and grain size

Ice crust formation frequency 2000-2009 Bartsch et. al (2010; QuikScat)

Importance of soil moisture monitoring

- Important component of the water cycle and land energy balance
- Influences land-atmosphere carbon exchange
- Associated with hazards

Land energy balance

Ground heat flux

Europe's Arctic Course

Polar view of soil moisture anomalies from METOP ASCAT data of July 2007. 1-day composite (July 30th)

Large, all summer lasting tundra fire event on the Alaskan North Slope

Land water balance

Possibilities of soil moisture monitoring

- Significant advances over the last few years
 - Sensor technology
 - Soil Moisture and Ocean Salinity (SMOS): launch in November 2011
 - Soil Moisture Active/Passive (SMAP): launch in 2014/15
 - Improvements in physical understanding and retrieval
- Several global soil moisture data sets derived from different sensors and algorithms have been released over the past few years
 - Multi-frequency radiometers, scatterometers, SAR
- Validation
 - Independent assessments and intercomparisons
 - International in-situ soil moisture network
 - New methods (triple collocation, data assimilation, ...)

Wolfgang.Wagner@tuwien.ac.at

Challenges for soil moisture monitoring in the Arctic

- Landscape heterogeneity
 - current operational schemes provide 25 km resolution
 - Seasonal inundation dynamics + thermokarst
 - Regular higher spatial and temporal resolution (SAR) required
 - Future improved monitoring with Sentinel-1?
- Surface freeze/thaw
 - Current operational services have been developed with focus on regions without frozen ground conditions
 - Improved service development in progress

ENVISAT ASAR WS

25.07.2007

5km

Thank you!

www.ipf.tuwien.ac.at/permafrost www.ipf.tuwien.ac.at/radar www.alanis-methane.info

Soil moisture data viewer http://www.ipf.tuwien.ac.at/radar/dv/ascat/ http://www.ipf.tuwien.ac.at/radar/dv/smos

Photograph: Sina Muster, AWI; Lena Delta

Elise Richter Program Austrian Science Fund

E PERMAFROST

alanis methane

support to science element