Australian/New Zealand Standard[™]

Electrical installations—Selection of cables

Part 1.1: Cables for alternating voltages up to and including 0.6/1 kV—Typical Australian installation conditions

AS/NZS 3008.1.1:2017

This Joint Australian/New Zealand Standard was prepared by Joint Technical Committee EL-001, Wiring Rules. It was approved on behalf of the Council of Standards Australia on 11 January 2017 and by the New Zealand Standards Approval Board on 17 November 2016.

This Standard was published on 2 February 2017.

The following are represented on Committee EL-001:

Australian Building Codes Board Australian Industry Group Communications, Electrical and Plumbing Union-Electrical Division Consumers Federation of Australia Electrical Contractors Association of New Zealand Electrical Regulatory Authorities Council Electrical Safety Organisation, New Zealand ElectroComms and Energy Utilities Industries Skills Council Energy Networks Association Engineers Australia Institute of Electrical Inspectors Master Electricians Australia Ministry of Business, Innovation and Employment, New Zealand National Electrical and Communications Association National Electrical Switchboard Manufacturers Association New Zealand Council of Elders New Zealand Electrical Institute New Zealand Manufacturers and Exporters Association Trade and Investment, NSW

Keeping Standards up-to-date

Standards are living documents which reflect progress in science, technology and systems. To maintain their currency, all Standards are periodically reviewed, and new editions are published. Between editions, amendments may be issued. Standards may also be withdrawn. It is important that readers assure themselves they are using a current Standard, which should include any amendments which may have been published since the Standard was purchased.

Detailed information about joint Australian/New Zealand Standards can be found by visiting the Standards Web Shop at www.saiglobal.com or Standards New Zealand web site at www.standards.govt.nz and looking up the relevant Standard in the on-line catalogue.

For more frequent listings or notification of revisions, amendments and withdrawals, Standards Australia and Standards New Zealand offer a number of update options. For information about these services, users should contact their respective national Standards organization.

We also welcome suggestions for improvement in our Standards, and especially encourage readers to notify us immediately of any apparent inaccuracies or ambiguities. Please address your comments to the Chief Executive of Standards Australia or the New Zealand Standards Executive at the address shown on the back cover.

This Standard was issued in draft form for comment as DR AS/NZS 3008.1.1:2015.

Australian/New Zealand Standard[™]

Electrical installations—Selection of cables

Part 1.1: Cables for alternating voltages up to and including 0.6/1 kV—Typical Australian installation conditions

Originated in Australia as AS 3008.1—1984. Originated in New Zealand as AS/NZS 3008.1.1:1998. Previous edition 2009. This edition 2017.

COPYRIGHT

© Standards Australia Limited/Standards New Zealand

All rights are reserved. No part of this work may be reproduced or copied in any form or by any means, electronic or mechanical, including photocopying, without the written permission of the publisher, unless otherwise permitted under the Copyright Act 1968 (Australia) or the Copyright Act 1994 (New Zealand).

Jointly published by SAI Global Limited under licence from Standards Australia Limited, GPO Box 476, Sydney, NSW 2001 and by Standards New Zealand, PO Box 1473, Wellington 6011.

This Standard was prepared by the Joint Standards Australia/ Standards New Zealand Committee EL-001, Wiring Rules, to supersede AS/NZS 3008.1.1:2009, *Electrical installations—Selection of cables*, Part 1.1: *Cables for alternating voltages up to and including 0.6/1 kV—Typical Australian installation conditions*.

This Standard is applicable to Australian installation conditions where the nominal ambient air and soil temperatures are 40°C and 25°C, respectively. AS/NZS 3008.1.2 is applicable to New Zealand installation conditions where the nominal air and soil temperatures are 30° C and 15° C respectively. Each Part is a complete Standard and requires no reference to the other.

AS/NZS 3008.1.2 deals with cables for use with alternating voltages over 1 kV.

The objective of this Standard is to specify current-carrying capacity, voltage drop and short-circuit temperature rise of cables, to provide a method of selection for those types of electric cables and methods of installation that are in common use at working voltages up to and including 0.6/1 kV at 50 Hz a.c.

This Standard differs from the 2009 edition and its subsequent amendment as follows:

- (a) Economic optimization for cable selection recommendations, including a new example in Appendix A.
- (b) A new definition for Circuit.
- (c) Cable core cross sections have been updated for the following:
 - (i) Figure 1.
 - (ii) Table 3(1).
 - (iii) Table 3(2).
 - (iv) Table 3(3).
 - (v) Table 3(4).
 - (vi) Table 10.
 - (vii) Table 11.
 - (viii) Table 12.
 - (ix) Table 13.
 - (x) Table 14.
 - (xi) Table 15.
 - (xii) Table 17.
 - (xiii) Table 26(2).
- (d) New notes to Tables 30, 31, 40, 41, 43, 44, 46, 47, 50 and 51 have been included.
- (e) Changes to derating factors in Table 23.
- (f) Circuit recommendations for low magnetic fields added to Appendix D.

In the preparation of this Standard, reference was made to IEC 60287 and acknowledgement is made of the assistance received from that source.

Statements expressed in mandatory terms in notes to tables and figures are deemed to be requirements of this Standard.

The term 'informative' has been used in this Standard to define the application of the appendix to which it applies. An 'informative' appendix is only for information and guidance.

CONTENTS

SECTIO	ON 1 SCOPE AND APPLICATION	
1.1	SCOPE	6
1.2	APPLICATION	
1.3	ALTERNATIVE SPECIFICATIONS	
1.4	REFERENCED AND RELATED DOCUMENTS	
1.5	DEFINITIONS	
1.5		0
SECTIO	ON 2 CABLE SELECTION PROCEDURE	
2.1	GENERAL	10
2.2	SELECTION PROCESS	
2.3	DETERMINATION OF MINIMUM CABLE SIZE BASED ON	
	CURRENT-CARRYING CAPACITY CONSIDERATIONS	. 10
2.4	DETERMINATION OF MINIMUM CABLE SIZE BASED ON	
2	VOLTAGE DROP CONSIDERATIONS.	11
2.5	DETERMINATION OF MINIMUM CABLE SIZE BASED ON THE	
2.0	SHORT-CIRCUIT TEMPERATURE CONSIDERATIONS	12
2.6	DETERMINATION OF CABLE SIZE BASED ON THE ECONOMIC	. 12
2.0	OPTIMIZATION CONSIDERATIONS (OPTIONAL)	12
	OF HIMIZATION CONSIDERATIONS (OF HONAL)	.12
SECTIO	N 3 CURRENT-CARRYING CAPACITY	
3.1	RATINGS	. 13
3.2	TYPES OF CONDUCTORS	. 13
3.3	TYPES OF CABLE	. 15
3.4	INSTALLATION CONDITIONS	
3.5	EXTERNAL INFLUENCES ON CABLES	
	N 4 VOLTAGE DROP	
4.1	GENERAL	91
4.2	DETERMINATION OF VOLTAGE DROP FROM MILLIVOLTS	
	PER AMPERE METRE	
4.3	DETERMINATION OF VOLTAGE DROP FROM CIRCUIT IMPEDANCE	. 92
4.4	DETERMINATION OF VOLTAGE DROP FROM CABLE OPERATING	
	TEMPERATURE	
4.5	DETERMINATION OF VOLTAGE DROP FROM LOAD POWER FACTOR	. 94
4.6	DETERMINATION OF VOLTAGE DROP IN UNBALANCED	
	MULTIPHASE CIRCUITS	. 97
GEOTIO	N 5 SHORT-CIRCUIT PERFORMANCE	
		100
5.1	GENERAL	120
5.2	FACTORS GOVERNING THE APPLICATION OF	100
	THE TEMPERATURE LIMITS	
5.3	CALCULATION OF PERMISSIBLE SHORT-CIRCUIT CURRENTS	
5.4	INFLUENCE OF METHOD OF INSTALLATION	
5.5	MAXIMUM PERMISSIBLE SHORT-CIRCUIT TEMPERATURES	122

А	EXAMPLES OF THE SELECTION OF CABLES TO SATISFY	
	CURRENT-CARRYING CAPACITY, VOLTAGE DROP	
	AND SHORT-CIRCUIT PERFORMANCE REQUIREMENTS 1	24
В	LIST OF TABLES	138
С	EXAMPLES OF THE APPLICATION OF REDUCTION FACTORS	
	FOR HARMONIC CURRENTS 1	42
D	RECOMMENDED CIRCUIT CONFIGURATIONS FOR THE INSTALLATION	
	OF SINGLE-CORE CABLES IN PARALLEL 1	43

STANDARDS AUSTRALIA/STANDARDS NEW ZEALAND

Australian/New Zealand Standard Electrical installations—Selection of cables

Part 1.1: Cables for alternating voltages up to and including 0.6/1 kV— Typical Australian installation conditions

SECTION 1 SCOPE AND APPLICATION

1.1 SCOPE

This Standard sets out a method for cable selection for those types of electrical cables and methods of installation that are in common use at working voltages up to and including 0.6/1 kV at 50 Hz a.c.

NOTE: Although the Standard specifically applies to a.c. installations, it may also be applied to d.c. installations.

Four criteria are given for cable selection, as follows:

- (a) Current-carrying capacity.
- (b) Voltage drop.
- (c) Short-circuit temperature rise.
- (d) Economic optimization.

This Standard provides sustained current-carrying capacities and voltage drop values for those types of electrical cable and installation practices in common use in Australia. A significant amount of explanatory material is also provided on the application of rating factors that arise from the particular installation conditions of a single circuit or groups of circuits. Also, provided in Section 5 is information on cable selection based on short-circuit temperature limits.

NOTE: A number of worked examples on cable selection are included in Appendix A.

This Standard does not take into account the effects that may occur owing to temperature rise at the terminals of equipment and reference is necessary to AS/NZS 3000 and the individual equipment Standards.

NOTE: For ease of reference, an index of the Tables included in this Standard is provided in Appendix B.

1.2 APPLICATION

This Standard is intended to apply to installations made or carried out after the date of publication, but it is recommended that it not be applied on a mandatory basis until 6 months after the date of publication. However, if work on an installation commenced before publication of this edition, the inspecting authority may grant permission for the installation to be carried out in accordance with the superseded edition.

1.3 ALTERNATIVE SPECIFICATIONS

AS/NZS 3000 gives current-carrying capacities for a limited number of cable installation conditions. These conditions are included in this Standard but, in some cases, where recalculations have been performed, the tabulated values differ slightly between the Standards. Where this occurs the current-carrying capacity given in this Standard is considered to be more accurate, but either value is acceptable for the application of any appropriate requirements of AS/NZS 3000, e.g. maximum current rating of a circuit-protective device.

Where the type of cable or method of installation is not specifically covered in the tables of this Standard, current-carrying capacities obtained from alternative specifications such as ERA Report 69-30 may be employed.

ERA Report 69-30, particularly Part III, gives information on the following areas that are not covered by this Standard:

- (a) The d.c. current-carrying capacities of two single-core cables and one two-core cable.
- (b) The current-carrying capacity of armoured single-core cables.
- (c) Group rating factors for underground cables laid in tier formation.

Current-carrying capacities may also be determined by calculation using IEC 60287 or applying correction factors to the published data from IEC 60364-5-52 for local conditions.

The subject of assigning a current-carrying capacity to a cyclically or intermittently loaded cable is not covered in this Standard as it normally relates to HV cable installation. However, reference may be made to ERA Report F/T 186 for information on the determination of such cable ratings by calculation.

1.4 REFERENCED AND RELATED DOCUMENTS

1.4.1 Referenced documents

The following documents are referred to in this Standard:

AS/NZS			
1125	Conductors in insulated electric cables and flexible cords		
3000	Electrical installations (known as the Australian/New Zealand Wiring Rules)		
3008 3008.1.2	Electrical installations—Selection of cables Part 1.2: Cables for alternating voltages up to and including 0.6/1 kV— Typical New Zealand conditions		
IEC 60287	Electric cables—Calculation of the current rating (series)		
60364 60364-4-43	Electrical installations of buildings Part 4-43: Protection for safety—Protection against overcurrent Part 5-52: Selection and erection of electrical equipment—Wiring systems		
ERA REPO	RTS		
69-30 Current rating standards for distribution cables Part III: Sustained current ratings for PVC insulated cables to BS 6346:1969 (AC 50 Hz and DC)			
69-30	Current rating standards for distribution cables Part V: Sustained current ratings for cables with thermo-setting insulation to BS 5467:1989 and BS 6724:1986 (AC 50 Hz and DC)		
F/T 186	Methods for the calculation of cyclic rating factors and emergency loading for cables laid direct in the ground or in ducts		

1.4.2 Related documents

Attention is drawn to the following related documents.

	AS 1531	Conductors—Bare overhead—Aluminium and aluminium alloy		
1746 Conductors—Bare overhead—Hard-drawn copper		Conductors—Bare overhead—Hard-drawn copper		
	3158	Electric cables—Glass fibre insulated—For working voltages up to and including 0.6/1 (1.2) kV		
	AS/NZS			
	3191	Electric flexible cords		
3560 Part 1: Past 2:		Electric cables—Cross-linked polyethylene insulated—Aerial bundled—For up to and including 0.6/1 (1.2) kV Aluminium conductors Copper conductors		
	4026	Electric cables—For underground residential distribution systems		
	4961	Electric cables—Polymeric insulated—For distribution and service applications		
5000 Part 1: Part 2:		Electric cables—Polymeric insulated For working voltages up to and including 0.6/1 (1.2) kV For working voltages up to and including 450/750 V Part 3: Multicore control cables		
	60702	Mineral insulated cables and their terminations with a rated voltage not exceeding 750 V		
	60702.1	Part 1: Cables		
	IEC			
	60724	Short-circuit temperature limits of electric cables with rated voltages of 1.0 kV $(U_m = 1, 2 \text{ kV})$ and 3 kV $(U_m = 3, 6 \text{ kV})$		
INDUSTRY REPORTS		Y REPORTS		
ICAA Principles of Economic and Energy Efficient		Principles of Economic and Energy Efficient Cable Sizing		

1.5 DEFINITIONS

For the purpose of this Standard, the definitions in AS/NZS 3000 and those below apply.

Energy-Efficient-Cable Sizing.pdf

http://www.copper.com.au/copper/wcms/en/home/Principles-of-Economic-and-

1.5.1 Ambient temperature

The temperature of the medium in the immediate neighbourhood of the installed cable—

- (a) including any increase in temperature due to materials or equipment to which the cables are connected, or are to be connected; but
- (b) excluding any increase in temperature that may be due to the heat arising from the cables at that point.

1.5.2 Circuit

For the purposes of determining the derating factor due to mutual heating effects, any multicore cable with 2 or 3 current-carrying cores or a group of single core cables with 2 or 3 current-carrying cables.

Any cable that is installed or stored in a manner that causes self-heating, such as cables wound onto a drum, is considered as a separate circuit for each instance where self-heating cannot be ignored.

1.5.3 Continuous loading

A continuous constant current (100% load factor) just sufficient to produce asymptotically the maximum conductor temperature, the surrounding ambient conditions being assumed constant.

1.5.4 Installation wiring

A system of wiring in which the cables are fixed or supported in position in accordance with the appropriate requirements of this Standard.

NOTE: Replaces the term 'fixed wiring'.

1.5.5 Ladder support

A support in which the impedance to the air flow around the cable is not greater than 10%, i.e. supporting metalwork under the cable occupies less than 10% of the plan area.

1.5.6 Perforated tray

A tray having not less than 30% of its surface area removed by the perforation.

1.5.7 Route length

The distance measured along a run of wiring from the origin of the circuit to the point of consideration, e.g. the distance measured between a switchboard and a motor.

SECTION 2 CABLE SELECTION PROCEDURE

2.1 GENERAL

The cable selection procedures set out in this Section detail the guidelines to be followed to determine the minimum size of cable required to satisfy a particular installation condition.

2.2 SELECTION PROCESS

The following three main factors influence the selection of a particular cable to satisfy the circuit requirements:

- (a) *Current-carrying capacity* Dependent upon the method of installation and the presence of external influences, such as thermal insulation, which restrict the operating temperature of the cable.
- (b) *Voltage drop* Dependent upon the impedance of the cable, the magnitude of the load current and the load power factor.
- (c) *Short-circuit temperature limit* Dependent upon energy produced during the short-circuit condition.

The minimum cable size will be the smallest cable that satisfies the three requirements. However, with experience it will become apparent that the different nature of installations will determine which of the requirements predominate. The current-carrying capacity requirement will be the most demanding in the relatively shorter route lengths of domestic premises and the like where factors such as cable grouping, and thermal insulation occur. On the other hand, the voltage drop limitation is usually the deciding factor for longer route lengths that are not subject to the factors mentioned above. The need to increase cable size to meet the short-circuit temperature rise requirements will only occur in special situations for the voltage ratings of the cables covered by this Standard.

NOTE: Optional economic cable sizing considerations are detailed in Clause 2.6 of this Standard.

2.3 DETERMINATION OF MINIMUM CABLE SIZE BASED ON CURRENT-CARRYING CAPACITY CONSIDERATIONS

To satisfy the current-carrying capacity requirements of a circuit it is necessary to take into account a number of factors, as follows:

NOTE: See Appendix A for examples, in particular Example 3, which shows the method used in this Clause.

(a) Determine the current requirements of the circuit.

NOTE: Refer to the Clause in AS/NZS 3000 covering protection against overload current.

 $I_{\rm B} \leq I_{\rm Z}$

 $I_{\rm B}$ = the current for which the circuit is designed, e.g. maximum demand

 I_Z = the continuous current-carrying capacity of the cable determined by Clause 2.3(d).

(b) From Tables 3(1), 3(2), 3(3) and 3(4) determine the cable installation method to be used applicable to the common cross-linked elastomeric or thermoplastic-insulated cables.

NOTE: Determine the current-carrying Table and appropriate column of the Table for use in Clause 2.3(d).

(i) For a single circuit, determine if the method of installation requires the application of a derating factor selected from Table 22, Table 23 or Table 24. Where applicable, divide the value of current determined in Step (a) by the derating factor so determined.

Accessed by North Metropolitan TAFE on 10 Mar 2017 (Document currency not guaranteed when printed)

- (ii) For a group of circuits, determine if the method of installation requires the application of a derating factor selected from Tables 22 to 26. Where applicable, divide the value of current $I_{\rm B}$ by the derating factor so determined.
- (c) Determine the environmental conditions in the vicinity of the cable installation. Where applicable, divide the value of current determined in Step (b) by—
 - (i) the ambient air or soil temperature rating factor selected from Tables 27(1) and 27(2);
 - (ii) the depth of laying rating factor selected from Tables 28(1) and 28(2); and
 - (iii) the soil thermal resistivity rating factor selected from Table 29.
- (d) The resulting value of current, determined from the calculations in Clauses 2.3(b) and 2.3(c), is used to select a cable from the current-carrying capacity Tables. This ensures that the cable will carry the design current $I_{\rm B}$ in accordance with Clause 2.3(a) after derating.

See the Tables of current-carrying capacity for the different cable types, i.e. Tables 4 to 21. Taking into account the method of installation employed, the smallest conductor size that has a tabulated current-carrying capacity equal to or in excess of this pre-determined minimum value will be considered to be the minimum cable size satisfying the current-carrying capacity requirement.

NOTE: I_Z is the tabulated rating multiplied by the derating factors.

2.4 DETERMINATION OF MINIMUM CABLE SIZE BASED ON VOLTAGE DROP CONSIDERATIONS

To satisfy the voltage drop limitations of a circuit, it is necessary to take into account the current required by the load and the route length of the circuit, as follows:

- (a) Determine the current (I) requirements of the circuit.
- (b) Determine the route length (*L*) of the circuit.
- (c) Determine the maximum voltage drop (V_d) permitted on the circuit run.

NOTE: Unless otherwise permitted by AS/NZS 3000, the maximum voltage drop between the point of supply for the low voltage electrical installation and any point in that electrical installation should not exceed 5% of the nominal voltage at the point of supply.

- (d) Determine the voltage drop (V_c) in millivolts per ampere metre (mV/A.m) using Equation 4.2(1) and the values of *I*, *L* and V_d determined in Steps (a), (b) and (c).
- (e) See the tables of voltage drop (mV/A.m) for the different cable types, Tables 40 to 51. Taking into account the method of installation, maximum conductor operating temperature and load power factor, the smallest conductor size that has a tabulated voltage drop (mV/A.m) value nearest to, but not exceeding, the value determined in Step (d) will be considered to be the minimum cable size satisfying the voltage drop limitation.

This simplified method gives an approximate but conservative solution assuming maximum cable operating temperatures and the most onerous relationship between load and cable power factors. A more accurate assessment can be made of the actual voltage drop (V_d) using the appropriate equation of Clause 4.5, the cable reactance determined from Tables 30 to 33, the cable a.c. resistance determined from Tables 34 to 39 using the approximate conductor operating temperature assessed from Equation 4.4(1), and the load power factor.

NOTES:

- 1 If the value of voltage drop assessed using the appropriate equation of Clause 4.5 is significantly lower than the equivalent value determined using the simplified method suggested in Steps (a) to (e), consideration should be given to the calculation of voltage drop for the next smaller cable size.
- 2 Because of the need to make an initial set of assumptions relating to cable size, the calculation method of Clause 4.5 will normally only be of use to check the accuracy of the simplified method or to check the voltage drop on an existing or known cable installation.

2.5 DETERMINATION OF MINIMUM CABLE SIZE BASED ON THE SHORT-CIRCUIT TEMPERATURE CONSIDERATIONS

To satisfy the short-circuit temperature limit it is necessary to take into account the energy producing the temperature rise (I^2t) and the initial and final temperatures, as follows:

- (a) Determine the maximum duration and value of the prospective short-circuit current.
- (b) Determine the initial and final conductor temperatures and select an appropriate value of the constant (K) from Table 52.
- (c) Calculate the minimum cross-sectional area of the cable using Equation 5.3(1). This cable size represents the minimum size required to satisfy the short-circuit temperature rise requirements.

2.6 DETERMINATION OF CABLE SIZE BASED ON THE ECONOMIIC OPTIMIZATION CONSIDERATIONS (OPTIONAL)

The increasing cost of energy, together with the high energy losses which follow from the use of modern cables operating at high temperatures, now raises the value that cable size selection be considered on wider economic grounds.

The background for economic cable sizing is provided in IEC 60287-3-2.

The key points of selecting a cable size by economic optimization in accordance with IEC 60287-3-2 are as follows:

The minimum allowable cable size is given by applying safety based rules in accordance with Clauses 2.2 to 2.5 of this Standard. This minimum allowable cable size also has least initial cost—a larger cable would cost more. The optimal economic cable size is found by minimizing the lifetime costs of the cable which includes both its initial cost and the operating cost (i.e. cost of losses).

The initial cost may simply be the present cost of the selected cable, but often includes additional costs, such as labour for installation, termination and additional cable supports etc. The cost of future losses is determined by the sum of the discounted future cost of the losses. Because inflation affects the cost of borrowing money and the cost of energy they cancel each other and therefore do not need to be accounted for. Therefore, the future costs are based on the sum of the future load, future energy costs and the discount rate.

When a cable is selected using economic principles it should always be equal or larger in cross section that one selected on the basis of safety. For the 132 kV example given in IEC 60287-3-2, the saving in the combined cost of purchase and operation is of the order of 50%.

NOTE: An example of the application of economic optimization of cable sizing is provided in Appendix A, Paragraph A9.

SECTION 3 CURRENT-CARRYING CAPACITY

3.1 RATINGS

3.1.1 General

The provisions of this Section apply to the selection of conductor sizes with regard to current-carrying capacity.

Clauses 3.2 to 3.5 stipulate conductor and cable requirements and installation conditions in order that the subsequent tables of current-carrying capacity may be applied.

Tables 3(1), 3(2), 3(3) and 3(4) give guidance on the appropriate table of current-carrying capacity for different installation methods for the common types of cable insulation covered by Tables 4 to 15. A specific installation condition is defined and illustrated and alternative installation conditions deemed to have the same current-carrying capacity are also given. Attention is drawn to tables of rated current-carrying capacity where the standard installation conditions of Clause 3.4 are varied.

Tables 4 to 21 give the current-carrying capacities for the variety of different cable types described in Clause 3.3.

3.1.2 Basis

The values for current ratings given in Tables 4 to 15 have been calculated using the method described in IEC 60287 except for cables partially or completely surrounded by thermal insulation and flat cables that have been assigned the same ratings as circular cables.

NOTES:

1 Unless otherwise stated, PVC wiring enclosures have been used for installation in air and underground.

Furthermore it should be noted that the current ratings for 110°C rated cables enclosed in conduit in air assume the use of metallic conduit. The use of non-metallic conduits is not recommended.

- 2 The current ratings in this Standard may also be used for d.c. installations as calculations will yield negligible difference or conservative results.
- 3 AS/NZS 3000 has requirements for protection against overload current and coordination between conductors and protective means. For example, the overload characteristics of circuit breakers and fuses are different.

3.2 TYPES OF CONDUCTORS

3.2.1 Conductor material

The current-carrying capacities are based on conductors of high-conductivity copper and aluminium in sizes, strandings and resistances in accordance with AS/NZS 1125.

3.2.2 Insulation material operating temperatures

The sustained current-carrying capacities are based on the 'normal use' temperatures specified in Column 2 of Table 1. Where the 'maximum permissible' temperature in Column 3 of Table 1 is greater than the 'normal use' temperature, the 'maximum permissible' temperature may only be used under the conditions described in Note 3 to Table 1 for thermoplastic cables and in Note 7 to Table 1 for MIMS cables.

NOTE: Where cables are consistently operating substantially below the limiting temperature of Table 1, the heat losses (I^2R) and voltage drop (IZ) will also be reduced. These features could be relevant in determining the optimum economic design of a circuit.

1	2	3	4
	Operating temperatures of conductors, °C (see Note 1)		
Type of cable insulation	Normal use	Maximum permissible (see Note 2)	Minimum ambient
Thermoplastic (see Note 3)			
V-75 HFI-75-TP, TPE-75 V-90 HFI-90-TP, TP-90 V-90HT	75 75 75 75 75	75 75 90 90 105	$0 \\ -20 \\ 0 \\ -20 \\ 0$
Cross-linked elastomeric (see Note 4)			Ť
R-EP-90 R-CPE-90, R-HF-90, R-CSP-90 R-HF-110, R-E-110 (see Note 5) R-S-150 (see Note 6)	90 90 110 150	90 90 110 150	-40 -20 * -50
Cross-linked polyolefin (XLPE) (see Note 4)			
X-90, X-90UV, X-HF-90 X-HF-110 (see Note 5)	90 110	90 110	*
Mineral-insulated metal-sheathed (MIMS)			
(see Note 7)	100 (sheath)	250 (sheath)	—
Other types			
PE, LLDPE Type 150 fibrous or polymeric (see Note 6)	70 150	70 150	*

TABLE 1LIMITING TEMPERATURES FOR INSULATED CABLES

* Refer to manufacturer's information.

NOTES TO TABLE 1:

- 1 The temperature limits specified in Table 1 relate to the sustained current-carrying capacity and do not represent the maximum permissible temperatures permitted under short-circuit conditions. A guide to the acceptable short-circuit temperature limits is given in Section 5.
- 2 The maximum permissible temperatures given in Column 3 are applicable when there is no chance of thermal deformation or a reasonable chance of human contact in normal use.

For safety reasons, where flexible cords may be exposed and are likely to be touched, the maximum permissible temperature should be limited (see Table 16, Note 3).

3 The normal operating temperature of thermoplastic cables, including flexible cords installed as installation wiring, are based on a conductor temperature of 75°C. This is due to the risk of thermal deformation of insulation if the cables are clipped, fixed or otherwise installed in a manner that exposes the cable to severe mechanical pressure at higher temperatures.

V-90 and V-90HT insulated cables may be operated up to the maximum permissible temperatures 90° C and 105° C provided that the cable is installed in a manner that is not subject to, or is protected against, severe mechanical pressure at temperatures higher than 75° C. Such applications also allow for cables to be used in—

- (a) locations where the ambient temperatures exceeds the normal 40°C, e.g. equipment wiring in luminaires and heating appliances, or in roof spaces affected by high summer temperatures; and
- (b) locations affected by bulk thermal insulation that restricts the dissipation of heat from the cable.
- 4 Cross-linked elastometric and cross-linked polyolefin materials have the property of maintaining their shape at higher temperatures and do not flow under mechanical pressure.
- 5 Cables with an operating temperature of 110°C should only be connected to equipment suitable for this temperature. Consideration should also be given to the voltage drop at this operating temperature.
- 6 The current-carrying capacities given in Table 17 for cables insulated with high temperature cross-linked elastomeric, polymeric or fibrous materials are based on cables operating at temperatures of 150°C in an ambient temperature of 40°C and where the hot cable surfaces are acceptable. However, the cables are generally installed in areas of high ambient temperature, such as equipment wiring, and it will be necessary to apply an appropriate temperature correction factor from Tables 27(1) and 27(2).

The current-carrying capacities for fibrous and polymeric (fluoropolymer) type cables and cords suitable for operation at 200°C are not given in this Standard. As an alternative to the use of the relatively conservative values given in Table 17, advice may be sought from cable manufacturers.

- 7 The current-carrying capacities for MIMS cables are based on an operating temperature of 100°C for the external surface of either bare metal-sheathed cables or served cables. Higher continuous operating temperatures are permissible for bare metal-sheathed cables, particularly stainless steel sheathed cables, dependent upon factors such as the following:
 - (a) The suitability of the cable terminations and mountings.
 - (b) The location of the cable away from combustible materials.
 - (c) The location of the cable away from areas where there is a reasonable chance of persons touching the exposed surface.
 - (d) Other environmental and external influences.

3.3 TYPES OF CABLE

3.3.1 Sheathed or unsheathed thermoplastic, cross-linked elastomeric and XLPE insulated cables

3.3.1.1 General

The current-carrying capacity of sheathed or unsheathed thermoplastic, cross-linked elastomeric or XLPE insulated cables shall be determined from Tables 4 to 15.

3.3.1.2 Method of installation

The current-carrying capacity of a given cable depends on the method of installation. Tables 3(1), 3(2), 3(3) and 3(4) provide a schedule of the installation methods applicable to sheathed or unsheathed cross-linked elastomeric or thermoplastic insulated cables whose current-carrying capacities are given in Tables 4 to 15. Tables 3(1), 3(2), 3(3) and 3(4) also draw attention to the different methods of installation that may be assigned the same current-carrying capacity and refers to tables of derating factors applicable where one circuit is run in close proximity to another circuit or circuits.

3.3.2.1 Used for installation wiring

The determination of current-carrying capacity of flexible cords and cables used for installation wiring shall be as given in Tables 4 to 15 and 17.

3.3.2.2 Other than installation wiring

The determination of current-carrying capacity of flexible cords and cables used for other than installation wiring shall be as follows:

- (a) *General* Except as provided in Item (b), the current-carrying capacity of flexible cords and cables not used as installation wiring shall be determined from Tables 16 and 17. The current-carrying capacity of flexible cables shall be determined from Tables 4 to 15.
- (b) *Connection of equipment* Where a flexible cord is—
 - (i) used for the connection of equipment to the installation wiring by means of a plug and socket; and
 - (ii) the equipment comes within the scope of associated Standards (for example, AS/NZS 60335 series),

the current-carrying capacity shall be determined from the appropriate Standard.

3.3.3 Mineral-insulated metal-sheathed (MIMS) cables

The current-carrying capacity of bare or served copper MIMS cables shall be determined from Tables 18 and 19.

NOTE: Current-carrying capacities are not given in this Standard for polyethylene served or other forms of MIMS cable used for heating purposes, such as trace heating, tank heating or floor warming.

3.3.4 Aerial cables

The current-carrying capacity of aerial cables shall be determined from Tables 20 and 21. See Clause 3.3.5 for the determination of the current-carrying capacity of neutral-screened aerial cables.

3.3.5 Neutral-screened cables

The current-carrying capacity of neutral-screened cables shall be determined from the number of cable cores and method of installation as follows:

(a)	For single-core neutral-screened cables (i.e. 2-conductor)	Tables 10, 11 and 12
(b)	For 2-core, 3-core or 4-core neutral-screened cables (i.e. 3-conductor, 4-conductor and 5-conductor)	Tables 13, 14 and 15

However, the current-carrying capacity of neutral-screened aerial cables shall be determined as follows:

(i)	For single-core (i.e. 2-conductor) neutral-screened cable	Columns 8 to 10 and 15 to 17 of Table 20 or Table 21, as appropriate
(ii)	For 2-core, 3-core or 4-core (i.e. 3-, 4- or 5-conductor) neutral screened cable	Columns 12 to 14 and 18 to 20 of Table 20 or Table 21, as appropriate

3.3.6 High temperature cross-linked elastomeric, polymeric or fibrous insulated cables and flexible cords

The current-carrying capacity of R-S-150 cross-linked elastomeric insulated cables, Type 150 heat-resisting fibrous insulated cables and 150°C rated fluoropolymer insulated flexible cords shall be determined from Table 17.

3.3.7 Other cable types

This Standard provides current-carrying capacities for types of cables that are considered to be in common use. For cables not included in this Standard, cable manufacturers should be consulted for recommendations on the current-carrying capacity and acceptable methods of installation.

3.4 INSTALLATION CONDITIONS

3.4.1 General

The current-carrying capacity of a cable is dependent on the method of installation to maintain the temperature of the cable within its operating limits. Different methods of installation vary the rate at which the heat generated by the current flow is dissipated to the surrounding medium.

Specific conditions of installation are laid down in Clauses 3.4.2 to 3.4.5 for cables installed with or without wiring enclosures in air, in the ground or embedded in building materials. These conditions have been used to derive the current-carrying capacities tabulated in Section 3. Where a number of installation conditions exist along a cable run or variations to the specific conditions occur, reference shall be made to Clauses 3.4.6 and 3.5 respectively.

3.4.2 Cables installed in air

For cables installed in free air, the current-carrying capacities shall be based on the following conditions of installation and operation:

- (a) Ambient temperature An ambient air temperature of 40° C.
- (b) Unenclosed cables Cables installed as follows:
 - (i) Directly in air and, except for flexible cables as mentioned in Note 2 to Table 1 and aerial cables, not exposed to direct sunlight and where they are—
 - (A) lying on a horizontal surface;
 - (B) lying across ceiling joists;
 - (C) supported on perforated or unperforated cable trays, ladders, hangers or racks;
 - (D) clipped at intervals to a vertical or horizontal surface, such as a wall or beneath a ceiling;
 - (E) suspended from a catenary wire;
 - (F) lying in the bottom of open trunking;
 - (G) in an enclosure such as a switchboard; or
 - (H) in a ventilated trench.
 - (ii) Directly embedded beneath the surface of plaster, cement render or masonry.

NOTE: Table 3(1) contains a reference to the appropriate current-carrying capacity table for cables installed unenclosed in air.

- (c) *Enclosed cables* Cables installed as follows:
 - (i) In metallic or non-metallic wiring enclosure in-
 - (A) free air;
 - (B) a ventilated or enclosed trench;
 - (C) a concrete slab on or above the surface of the ground; or
 - (D) a concrete, plaster, cement rendered or masonry wall.
 - (ii) In closed trunking.
 - (iii) In an enclosed trench with removable covers.
 - (iv) Directly buried in concrete.

NOTES:

- 1 Table 3(2) contains a reference to the appropriate current-carrying capacity table for enclosed cables installed in air.
- 2 Where an otherwise unenclosed cable run includes short lengths of wiring enclosure that do not restrict the free circulation of air, the current-carrying capacity for unenclosed conditions may be assigned to the cable run provided that the following are conformed with:
 - (a) The total enclosed sections do not exceed half the length of the cable run or 6 m, whichever is the shorter dimension.
 - (b) The wiring enclosure is not surrounded by thermal insulation.
 - (c) The wiring enclosure is of adequate size to permit free air circulation to dissipate any heat arising from the enclosed cables. This would be satisfied if the wiring enclosure—
 - (i) has a bore area not less than twice the total cross-sectional area of the enclosed live cables;
 - (ii) is arranged in a substantially vertical direction; and
 - (iii) has an open upper end or other means that will not restrict the escape of hot air to the surroundings.
- 3 Selection of wiring enclosure material needs to take into account the highest sheath temperature of the cable.

3.4.3 Cables installed in thermal insulation

For cables installed in thermal insulation the current-carrying capacities shall be based on the following conditions of installation and operation:

- (a) Ambient temperature An ambient temperature of the air surrounding the thermal insulation of 40°C.
- (b) Unenclosed cables Cables installed without further enclosure—
 - (i) lying on a horizontal surface;
 - (ii) lying across ceiling joists;
 - (iii) supported on perforated or unperforated cable trays, ladders, hangers or racks;
 - (iv) clipped at intervals to a vertical or horizontal surface such as a wall or ceiling joist;
 - (v) lying in the bottom of open trunking; or
 - (vi) cables surrounded by bulk thermal insulation by a distance of less than or equal to 150 mm.

- (c) Enclosed cables Cables installed in-
 - (i) metallic or non-metallic wiring enclosure;
 - (ii) closed trunking or ducts; or
 - (iii) enclosures surrounded by bulk thermal insulation by a distance of less than or equal to 150 mm.
- (d) Bulk thermal insulation Bulk thermal insulation installed as follows:
 - (i) *Materials* Building materials installed to provide a thermal insulation including—
 - (A) fibreglass or rockwool batts;
 - (B) cellulose fibre, paper, cork, seagrass or similar organic materials that are normally installed in a loose-fill form; or
 - (C) expanded synthetic foams such as polystyrene, ureaformaldehyde or polyurethane, which may be installed by pumping or injection as a wet foam.

NOTE: Reflective foil laminates are not considered to be bulk thermal insulation.

- (ii) *Completely surrounded installation* An installation method where bulk thermal insulation totally surrounds, unenclosed or enclosed cables over a length of more than 400 mm.
- (iii) Partially surrounded installation An installation method where-
 - (A) bulk thermal insulation is prevented from completely surrounding unenclosed or enclosed cable over a length of more than 150 mm, such as where an unenclosed or enclosed cable is clipped to a structural member or is lying on a ceiling; or
 - (B) cables totally surrounded by bulk thermal insulation for a distance more than 150 mm but not more than 400 mm shall be considered as a partially surrounded installation.

NOTE: Table 3(2) contains a reference to the appropriate current-carrying capacity table for cables installed in thermal insulation.

3.4.4 Cables buried direct in the ground

For cables buried direct in the ground, the current-carrying capacities shall be based on the following conditions of installation and operation:

- (a) Ambient temperature An ambient soil temperature of 25°C.
- (b) *Depth of laying* A depth of laying of 0.5 m measured from the ground surface to the centre of a cable, or to the centre of a trefoil group of cables.
- (c) *Thermal resistivity of soil* A soil thermal resistivity of 1.2°C.m/W.
- (d) Spacing of cables Cables are spaced as follows:
 - (i) Single-core cables Either—
 - (A) three single-core cables laid touching throughout in trefoil formation; or
 - (B) two or three single-core cables laid touching in flat formation.
 - (ii) *Multicore cables* Multicore cables laid singly.

NOTE: Table 3(3) contains a reference to the appropriate current-carrying capacity table for cables buried direct in the ground. See Clause 3.5.2.5 for spacing distances.

3.4.5 Cables installed in underground wiring enclosures

For cables installed in underground wiring enclosures, the current-carrying capacities shall be based on the following conditions of installation and operation:

- (a) Ambient temperature An ambient soil temperature of 25°C.
- (b) *Depth of laying* A depth of laying of 0.5 m measured from the ground surface to the centre of a wiring enclosure, or to the centre of a trefoil group of wiring enclosures.
- (c) Thermal resistivity of soil A soil thermal resistivity of 1.2°C.m/W.
- (d) Spacing of wiring enclosures Wiring enclosures shall be spaced as follows:
 - (i) Single-core cables in separate wiring enclosures with—
 - (A) two ducts side by side touching; or
 - (B) three ducts in trefoil, or in flat formation touching.
 - (ii) Single-core cables as a circuit in a single wiring enclosure.
 - (iii) Multicore cable in a single wiring enclosure.

NOTES:

- 1 Table 3(4) contains a reference to the appropriate current-carrying capacity table for cables installed in underground wiring enclosures.
- 2 See Clause 3.5.2.6 for spacing distances.

3.4.6 Variation of installation conditions along cable run

In situations where one method of installation is used for part of a cable run and other methods for the remainder, the current-carrying capacity of the cable run shall be limited to the lowest value of current determined for each method of installation employed, unless precautions to avoid cable overheating are taken.

NOTES:

- 1 An example of appropriate precautions is where long runs of cable buried direct in the ground are enclosed in wiring enclosures when passing beneath roadways and the like. The use of selected backfill materials over the enclosed cables can improve the conduction of heat away from the cables and as a consequence higher current-carrying capacities, in the order of that for buried direct cables, can be sustained by the short lengths of enclosed cables.
- 2 Note 2 to Clause 3.4.2(c) describes a situation where a short length of suitably arranged enclosure may be disregarded for the assignment of a current-carrying capacity to an otherwise unenclosed cable run in air.
- 3 Attention is drawn to the connection of equipment to an underground cable run by means of short lengths of enclosed or unenclosed cables in air. The current-carrying capacity assigned to the underground portion of the cable run may be assigned to the above-ground portion where the prevailing installation conditions maintain the final operating temperature of the cable within the limits given in Table 1.
- 4 A short length is defined as a length not greater than 1 m.

3.5 EXTERNAL INFLUENCES ON CABLES

3.5.1 Application of rating factors

The current-carrying capacity of a cable will be affected by the presence of certain external influences as detailed in Clauses 3.5.2 to 3.5.8. Under such conditions the current-carrying capacity given in Tables 4 to 21 shall be corrected by the application of an appropriate rating factor or factors obtained from Tables 22 to 29.

3.5.2 Effect of grouping of cables

3.5.2.1 General

The current-carrying capacities given in Tables 4 to 21 relate to single circuits.

Where a number of circuits are installed in the same group in free air, on a surface, buried direct in the ground or within the same sheath or wiring enclosure, in such a way that they are not independently cooled by the ambient air or the ground, the appropriate derating factor shall be as given in Tables 26 to 30.

Specific guidance on the use of Tables 22 to 26 is given in Clauses 3.5.2.3 to 3.5.2.7 and Tables 3(1), 3(2), 3(3) and 3(4).

NOTES:

- 1 The derating factors have been calculated on the basis of sustained operation of all cables within the group. In most instances the loading on all cables in the group will not occur simultaneously and as a result actual factors may vary from those in Tables 22 to 26. Actual values would need to be calculated according to loading.
- 2 Where cables of different temperature rating are grouped, they should be rated at the rating appropriate to the lowest temperature cable, unless adequate spacing is provided in accordance with Figure 1.

3.5.2.2 Installation conditions that avoid derating

The derating factors of Tables 22 to 26 are not applicable to the following conditions of grouped cables:

(a) *MIMS cables* MIMS cables without serving unless other types of cables are installed in close proximity or within the same wiring enclosure. The higher operating temperature achieved by grouping will not affect the mineral insulation of the unserved cable. However, care should be taken that the cable environment and means of support can withstand the higher temperatures.

NOTE: See Table 1, Note 5.

- (b) *Limited length of grouping* Groups of cables such as at a switchboard entry, provided that the length of wiring enclosure does not exceed—
 - (i) for conductor sizes smaller than 300 mm² for aluminium or smaller than 150 mm² for copper: 1 m;
 - (ii) for conductor sizes of 300 mm² or larger for aluminium and 150 mm² or larger for copper: 3 m; or
 - (iii) half the length of the cable,

whichever is the shorter dimension.

- (c) *Groups of circuits in free air* Groups of circuits installed unenclosed under the conditions and circuit arrangements depicted in Figure 1.
- (d) *Cables operating below current-carrying capacity* Cables that, as a result of the conditions of operation of the installation or cable selection practices, are operating at less than 35% of their current-carrying capacity (see Figure 1, Note 3).

NOTE: Circuits comprising two-phase conductors and neutral conductor derived from athreephase system are to be treated in the same way as three-phase conductors for the purpose of assigning the current carrying capacity.

Method of installation	Horizontal spacings	Vertical spacings
Cables suspended from a catenary wire where air circulation is unrestricted or spaced from surfaces and supported on ladders, racks, hangers or cleats where the impedance of the air flow around the cable is not greater than 10%	$ \begin{array}{c} $	$\begin{array}{c c} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 4 & 0 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$
Cables spaced from surfaces and supported on perforated or unperforated cable trays where air circulation is partially restricted	$\frac{1}{2}$	
Cables fixed directly to a wall, floor, ceiling or similar surface where air circulation is restricted		

(a) Single-core cables

Method of installation	Horizontal spacings	Vertical spacings
Cables suspended from a catenary wire where air circulation is unrestricted or spaced from surfaces and supported on ladders, racks, hangers or cleats where the impedance of the air flow around the cable is not greater than 10%	$ \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & $	
Cables spaced from surfaces and supported on perforated or unperforated cable trays where air circulation is partially restricted		
Cables fixed directly to a wall, floor, ceiling or similar surface where air circulation is restricted		

(b) Multicore cables

FIGURE 1 MINIMUM CABLE SPACINGS IN AIR TO AVOID DERATING

NOTES TO FIGURE 1:

- 1 D equals the cable outside diameter or in the case of a flat multicore cable the maximum dimension of the cable.
- 2 For simplicity, the illustrations depict balanced multiphase circuits. Where a neutral conductor is required to be substantially loaded, it shall be placed adjacent to the associated active conductors and the clearance measured as appropriate (see Note 3 for lightly loaded or unloaded conductors).
- 3 The illustrations are intended to depict clearances required between cables operating at or near their sustained current-carrying capacity. Where the loading of any cable is less than 35% of such sustained capacity it may be disregarded from the cable arrangements as its contribution to the mutual heating of the group will be small. Such cables, which would include earthing conductors, lightly loaded neutrals and unloaded control wiring, may be placed adjacent to, or between, groups of associated loaded conductors.
- 4 Where the cables concerned are not of the same size, the spacing will be based on the largest cable diameter in the adjacent groups.
- 5 The spacings are essentially minimum requirements to avoid derating and care should be taken, particularly with smaller spacings, to avoid installation methods that would reduce these clearances. No restriction is placed on the number of circuits that may be arranged horizontally with the spacings given. However, care should be taken if more than three circuits are arranged vertically and full cable utilization is required.
- 6 Where the spacings are not achieved, smaller spacings and derating factors are laid down in the following tables:

 - (b) For circuits installed on trays, ladder supports, racks, hangers or cleats...... Tables 23 and 24.
- 7 Proportionally smaller spacings would be acceptable where the cables in the group are not loaded to the full current-carrying capacity. In such cases appropriate rating factors may be obtained from ERA Report 69-30.

3.5.2.3 Cables run horizontally

For cables installed horizontally the following shall apply:

- (a) Unenclosed on cable tray, ladder support, rack hanger or cleat Where a single-core or multicore cable is installed horizontally in close proximity to a cable or cables of another circuit and—
 - (i) it is on perforated or unperforated trays, ladder supports, racks, hangers or cleats; and
 - (ii) it is either—
 - (A) touching the other cable or cables; or
 - (B) in terms of its spacing from the other cable or cables, less than that specified in Clause 3.5.2.2(c) and Figure 1,

the appropriate derating factor shall be as given in Table 23 or Table 24.

NOTE: An example of the application of these derating factors is provided in Appendix A, Paragraph A4.

- (b) *Enclosed, fixed to a surface, or bunched in free air* Where a single-core or multicore cable is installed horizontally in close proximity to a cable or cables of another circuit—
 - (i) within a wiring enclosure;

NOTE: An example of the application of the derating factors for cables installed in a wiring enclosure is provided in Appendix A, Paragraphs A1 (Method A) and A2.

(ii) on a surface, wall, floor or ceiling, spaced or touching;

NOTE: An example of the application of the derating factors for cables installed in a wiring enclosure is provided in Appendix A, Paragraphs A3 and A5 (Conditions B and C).

(iii) bunched in free air; or

NOTE: An example of the application of the derating factors for cables installed in a wiring enclosure is provided in Appendix A, Paragraph A5 (Condition D).

(iv) suspended from a catenary;

the appropriate derating factor shall be as given in Table 22.

3.5.2.4 Cables run vertically

Where a cable is installed vertically, the appropriate current-carrying capacities and derating factors shall be—

- (a) obtained from Tables 22 to 24 as for cables run horizontally; and
- (b) determined in accordance with Clause 3.5.3 using the highest ambient air temperature up the cable run, if a barrier is not provided at intervals of 3.5 m or less that prevents the vertical flow of air along the cable.

3.5.2.5 Cables buried direct in the ground

Where a single-core or multicore cable is buried directly in the ground and is separated by not less than 2 m from a cable or cables of another circuit carrying substantial currents, no derating factor need be applied. Where the circuits are separated by less than 2 m, the appropriate derating factor shall be obtained from Tables 25(1) and 25(2) or, for installation methods not covered in this Standard, alternative specifications as recommended in Clause 1.3.

NOTES:

- 1 The derating factors have been determined from the hottest cable in the group and assume that all cables are of the same thermal grade of insulation.
- 2 An example of the application of these derating factors is provided in Appendix A, Paragraph A1 (Method D).

3.5.2.6 Cables in wiring enclosures

For cables in enclosures the following shall apply:

(a) Underground wiring enclosures Where a single-core or multicore cable is installed in an underground wiring enclosure and is separated by not less than 2 m from a cable or cables of another enclosed circuit carrying substantial currents, no derating factor need be applied. Where the enclosed circuits are separated by less than 2 m, the appropriate derating factor shall be as given in Tables 26(1) and 26(2) or, for installation methods not covered in this Standard, alternative specifications as recommended in Clause 1.3.

NOTE: An example of the application of these derating factors is provided in Appendix A, Paragraph A1 (Methods B and C).

(b) *Other enclosures* where cables are installed in an enclosure such as a switchboard, the current-carrying capacity shall be determined from the unenclosed in air conditions in Tables 4 to 10 with due regard being given to the dating factors when circuits are bunched.

NOTE: The selection of the dating factor should be based on the number of circuits that would be loaded; for example, where nine circuits are bunched but only six are loaded at any one time, a dating factor of 0.57 from Table 22 would be applicable.

3.5.2.7 Conductors connected in parallel or passing more than once within a group or enclosure

In applying the dating factors of Tables 22 to 26 where-

(a) a group of conductors forming a circuit passes more than once through the same wiring enclosure, group of cables or group of enclosures; or

(b) groups of conductors are connected in parallel;

Each separate group of conductors shall be regarded as a separate circuit.

3.5.2.8 Cables on drums or reels

Where layers of flexible cables are wound on a cylindrical-type drum or reel, the currentcarrying capacity of the cable shall be derated by the appropriate factor, as follows:

Number of layers	1	2	3	4
Derating factor	0.85	0.65	0.45	0.35

Where a single spiral layer of flexible cable is accommodated on a radial-type drum, the current-carrying capacity of the cable shall be derated by a factor of 0.85 for ventilated drums and 0.75 for unventilated drums.

3.5.3 Effect of ambient temperature

The current-carrying capacities given in the tables of this Standard are based on a consistent ambient air temperature of 40°C and an ambient soil temperature of 25°C. Where other ambient temperatures apply, the appropriate rating factors shall be as given in Tables 27(1) and 27(2).

NOTES:

- 1 In New Zealand the conditions of installation specify an ambient temperature of 30°C and a soil temperature of 15°C. A complete set of current rating tables, calculated for New Zealand conditions, is given in AS/NZS 3008.1.2.
- 2 Particular consideration should be given to the existence of higher ambient air temperatures in confined roof spaces, boiler rooms, cable tunnels, vertical shafts and the like. Similarly, lower ambient temperatures may apply for cables installed in concrete slabs on or above the surface of the ground.
- 3 In practice the ambient air temperature may be measured by one of the following simple methods:
 - (a) *Before installation of cables* Measurement may be made by temperature sensors placed in free air as close as practicable to the position at which the cables are to be installed.
 - (b) *After installation of cables* Measurement may be made by temperature sensors placed in free air in the vicinity of the cables in such a position that readings are not influenced by heat arising from the cables. Where the measurements are made while the cables are loaded, e.g. as may be required by Clause 3.5.2.4 for vertical cable runs, the sensors should be placed approximately 500 mm, or 10 times the overall diameter of the cable, from the cables in a horizontal plane, or 150 mm below the cables.
- 4 An example of the application of these derating factors is provided in Appendix A, Paragraph A3.

If at the cable position, the ambient temperature, including any increase of temperature due to heat arising from equipment to which the cables are connected, does not exceed $40^{\circ}C$ except for infrequent combinations of weather and load currents, then the current-carrying capacities given in the tables apply without correction.

3.5.4 Effect of depth of laying

The current-carrying capacities given in the tables of this Standard are based on a depth of lying of 0.5 m as specified in Clauses 3.4.4 and 3.4.5. Where other depths of lying apply, the appropriate rating factors shall be as given in Tables 28(1) and 28(2).

NOTE: The rating factors are based on the assumption that the effective thermal resistivity of the ground is constant from a depth of 0.5 m to 3 m. above and below these respective limits it is considered that a reduction in effective thermal resistivity occurs due to the composition and moisture content of the soil.

3.5.5 Effect of thermal resistivity of soil

The current-carrying capacities given in the tables of this Standard are based on a soil thermal resistivity of 1.2° C.m/W.

Soil thermal resistivity varies greatly with soil composition, moisture retention qualities and seasonal weather patterns as well as the variation in load carried by the cable. Higher current-carrying capacities are obtained in clay or peat soils, which may have resistivities as low as 0.8°C.m/W. Similarly, values as high as 2.5°C.m/W may be associated with well drained sands for constantly loaded cables. The value of 1.2°C.m/W has been selected as an average figure on the basis of soil types and assumes maximum thermal resistivity at times of maximum load.

If possible the actual value should be measured along the cable route as it can greatly affect the current-carrying capacity of the cable. Where values for soil resistivities other than 1.2° C.m/W apply, the appropriate rating factors may be obtained from Table 29.

NOTE: Where the soil is known to be of poor quality and has a thermal resistivity greater than 1.2° C.m/W throughout much of the year, consideration should be given to the use of a selected or stabilized backfill material around the cables or wiring enclosures.

Such backfill should completely surround the cable with a minimum thickness of 200 mm and could be used in lieu of the bedding required in AS/NZS 3000.

The following two types of material have a worst-case or dried-out thermal resistivity in the order of $1.2^{\circ}C.m/W$:

- (a) *Cement-bound sand* A mixture of sand bound with cement in the ratio of 14:1 by volume, with water added to enable adequate compaction to be achieved.
- (b) *Gravel/sand* A mixture of a selected sand having a dried-out thermal resistivity of not greater than 2.7°C.m/W, with an equal quantity of 10 mm coarse aggregate.

3.5.6 Effect of varying loads

The current-carrying capacities given in the tables of this Standard and the derating factors given in Clauses 3.5.2 to 3.5.5 are based on continuous loading on all conductors. Where it can be shown that intermittent load variations will occur or that all conductors cannot be loaded simultaneously, appropriate uprating factors may be applied.

In many installations, groups of cables comprise a mixture of loaded and unloaded cables at any one time and the designer may justify the use of alternative derating factors to those specified in Tables 22 to 26, if the connected loads have a known diversity. If the diversity is unknown or unobtainable by experiment, the design may have to be based on worst-case analysis of the possible load combinations at any one time. Some information on the diversity of certain loads may be obtained from the determination of maximum demand in AS/NZS 3000.

3.5.7 Effect of thermal insulation

Current-carrying capacities are given in Tables 4 to 15 of this Standard for unenclosed or enclosed cables surrounded by bulk thermal insulating materials that affect the rate of heat dissipation from the cables.

The rate of heat dissipation varies with the type and thickness of material used. A comparative measure of the performance of different materials is known as the R-factor.

The current-carrying capacity values in the tables are based upon typical installation conditions and a range of different materials as described in Clause 3.4.3. Where different materials or installation conditions are used such that the rate of heat dissipation is adversely or favourably affected, lower or higher current-carrying capacities may be obtained respectively.

NOTES:

- 1 Where a length of cable not exceeding 150 mm passes through bulk thermal insulation, e.g. for the connection of a lighting point, the cable need not be considered as being surrounded by thermal insulation.
- 2 A cable is considered to be affected by thermal insulation if it is embedded in, or surrounded by, insulating material. Cables lying on top of suitably rigid material do not in general come into this consideration.

3.5.8 Effect of direct sunlight

Current-carrying capacities are given in Tables 4 to 15, 20 and 21 for cables exposed to direct sunlight. For other types of cable installed in locations exposed to direct solar radiation it will be necessary to make some provision for the effects of the increased heating. This may be achieved by one of the following means:

- (a) Provision of a shield, screen or enclosure that allows for the natural ventilation of the cable.
- (b) Reduction of the current-carrying capacity of the cable by an appropriate amount in accordance with the higher air temperature. As a rule-of-thumb alternative to any recommendation from a cable manufacturer, a correction factor obtained from Table 27(1) for a temperature 20° higher than the ambient air temperature may be applied.

NOTE: For further information on the effects of ultraviolet radiation, it is recommended that the cable manufacturer be consulted.

3.5.9 Effect of harmonic currents on balanced three-phase systems

Where the neutral conductor carries current without a corresponding reduction in load of the phase conductors, the current flowing in the neutral conductor shall be taken into account in ascertaining the current-carrying capacity of the circuit.

This Clause is intended to cover the situation where there is current flowing in the neutral of a balanced three-phase system. Such neutral currents are due to the line currents having a harmonic content that does not cancel in the neutral. The most significant harmonic that does not cancel in the neutral is usually the third harmonic. The magnitude of the neutral current due to the third harmonic may exceed the magnitude of the power frequency phase current. The neutral current will then have a significant effect on the current-carrying capacity of the cables in the circuit.

The reduction factors given in this Clause apply to balanced three-phase circuits; it is recognized that the situation is more onerous if only two of the three phases are loaded. In this situation the neutral conductor will carry the harmonic currents in addition to the unbalanced current. Such a situation can lead to overloading of the neutral conductor.

Equipment likely to cause significant harmonic currents are, for example, fluorescent lighting banks and d.c. power supplies such as those found in computers.

The reduction factors given in Table 2 only apply to cables where the neutral conductor is within a four- or five-core cable and is of the same material and cross-sectional area as the phase conductors. These reduction factors have been calculated based on third harmonic currents. If significant, more than 10%, higher harmonics, 9th, 12th, etc. are expected then lower reduction factors are applicable. Where there is an unbalance between phases of more than 50% then lower reduction factors may be applicable.

The tabulated reduction factors, when applied to the current-carrying capacity of a cable with three loaded conductors, will give the current-carrying capacity of a cable with four loaded conductors where the current in the fourth conductor is due to harmonics. The reduction factors also take the heating effect of the harmonic current in the phase conductors into account.

Where the neutral current is expected to be higher than the phase current then the cable size should be selected on the basis of the neutral current.

Where the cable size selection is based on a neutral current that is not significantly higher than the phase current, it is necessary to reduce the tabulated current-carrying capacity for three loaded conductors.

If the neutral current is more than 135% of the phase current and the cable size is selected on the basis of the neutral current then the three-phase conductors will not be fully loaded. The reduction in heat generated by the phase conductors offsets the heat generated by the neutral conductor to the extent that it is not necessary to apply any reduction factor to the current-carrying capacity for three loaded conductors.

TABLE2

REDUCTION FACTORS FOR HARMONIC CURRENTS IN 4- AND 5-CORE CABLES

Third harmonic content	Reduction factor		
of phase current %	Size selection is based on phase current	Size selection is based on neutral current	
0–15	1.0	—	
15–33	0.86		
33–45		0.86	
>45		1.0	

NOTE: Examples of the application of reduction factors for harmonic currents are provided in Appendix C.

3.5.10 Effect of parallel cables

Current-carrying capacities for circuits comprising parallel multicore cables or groups of single-core cables can be determined from the sum of the current-carrying capacity of the various cables provided that consideration is given to—

- (a) grouping cables and the effect of cooling by the ambient air or the ground on each parallel cable or group; and
- (b) load current sharing between each parallel cable or group so as to prevent overheating of any cable or group.

Equal load current sharing is generally achieved by the selection and installation of cables to give the same impedance, i.e. by using cables of the same conductor material and construction installed over the same route. Mutual impedance is also affected by the configuration of cables within and between each group.

NOTES:

- 1 Table D1 of Appendix D provides recommended circuit configurations for parallel single-core cables for load current sharing considerations. The preferred circuit configuration is to use trefoil groups containing each of the three-phase conductors and neutral in each group.
- 2 Unequal load current sharing between cables or groups may be permitted provided that the design current and overcurrent protection requirements for each cable or group are considered individually. IEC 60364-4-43 provides further information on the conditions under which this is permitted.

3.5.11 Effect of electromagnetic interference

Certain types of electrical installations, e.g. those containing sensitive electronic equipment or systems, may require minimization of electromagnetic interference arising from magnetic fields developed from current flowing in cables. This may be addressed by—

(a) selection of cables designed for low magnetic field emissions; or

- (b) installation of cables in enclosures that contain or shield magnetic fields; or
- (c) installation of cables in configurations that produce low magnetic fields.

NOTE: Table D2 of Appendix D provides recommended circuit configurations for the installation of parallel single-core cables in groups that produce reduced levels of magnetic field.

TABLE 3(1)

SCHEDULE OF INSTALLATION METHODS FOR CABLES DEEMED TO HAVE THE SAME CURRENT-CARRYING CAPACITY AND CROSS-REFERENCES TO APPLICABLE DERATING TABLES—UNENCLOSED IN AIR

1	2	3	4	5	6
Item No.	Cable details (see Note 2)	Reference drawing (see Note 3)	Current-carrying capacity table reference	Methods of installation for cables deemed to have the same current-carrying capacity (see Notes 4, 5 and 6)	Derating table
1	Two single-core cables	0.3D $0.3D$ $0.3D$ $0.5D$ $0.5D$ $0.5D$	Tables 4 and 5 Columns 2 to 4 Table 6 Columns 2 and 3	Cables with minimum cable separation in air as shown for horizontal and vertical mounting and installed—	
2	Three single-core cables	-10.3D $-0.3D0 D0.5D$ D	Tables 7 and 8 Columns 2 to 4 Table 9 Columns 2 and 3	 (a) spaced from a wall or vertical surface; (b) supported on ladders, racks, perforated trays, cleats or hanger; or 	23
3				(c) suspended from a catenary wire.	22
4	Two single-core cables		Tables 4 and 5 (see Note 5) Columns 5 to 7 Table 6 Columns 2 and 3	Cables with minimum cable spacings in air as shown and installed— (a) spaced from a wall or vertical surface;	
5	Three single-core		Tables 7 and 8 (see Note 5) Columns 5 to 7 Table 9	 (b) supported on ladders, racks, perforated or unperforated trays, cleats or hangers; (c) in a switchboard or similar 	23
	cables		Columns 4 and 5	enclosure; or	
6	1			(d) supported from a catenary wire.	22
7	Two single-core cables	¹ 8 - <u>- 99 -</u>	Tables 4 and 5 (see Note 4) Columns 8 to 10 Table 6 Columns 6 and 7	Cables of the one circuit touching and installed— (a) clipped direct to a wall, floor, ceiling or similar surface;	
8	Three single-core cables	80 . 600	Tables 7 and 8 (see Note 4) Columns 8 to 10 Table 9 Columns 6 and 7.	 (b) in a ventilated trench or open trunking; (c) buried directly in a plaster or render on a wall; or (d) in a switchboard or similar enclosure. 	22

(continued)

1	2	3	4	5	6
Item No.	Cable details (see Note 2)	Reference drawing (see Note 3)	Current-carrying capacity table reference	Methods of installation for cables deemed to have the same current-carrying capacity (see Notes 4, 5 and 6)	Derating table
9	Two-core cables		Tables 10 and 11 (see Note 5) Columns 2 to 4 Table 12 Columns 2 and 3	 Cables with minimum spacings in air as shown and installed— (a) spaced from a wall or vertical surface; (b) supported on ladders, racks, 	24
10	Three-core cables		Tables 13 and 14 (see Note 5) Columns 2 to 4 Table 15 Columns 2 and 3	 (b) supported on fadders, facts, perforated or unperforated trays, cleats or hangers; (c) in a switchboard or similar enclosure; or (d) suspended from a catenary or as a self-supported overhead cable. 	22
12	Two-core cables	8	Tables 10 and 11 (see Note 4) Columns 5 to 7 Table 12 Columns 4 and 5	 Cables installed— (a) clipped direct to a wall, floor, ceiling or similar surface; (b) buried directly in concrete or masonry above the ground or in 	
13	Three-core cables	8	Tables 13 and 14 (see Note 4) Columns 5 to 7 Table 15 Columns 4 and 5	 plaster or render on a wall; (c) in a ventilated trench or open trunking; or (d) in a switchboard or similar enclosure. 	22

TABLE 3(1) (continued)

NOTES:

- 1 D equals the cable outside diameter or in the case of a flat multicore cable the maximum dimension of the cable.
- 2 Earthing conductors, lightly loaded neutral conductors of three-phase circuits and conductors subject only to momentary loading, such as control wiring, shall not be counted in the number of cable cores.
- 3 See column headings of Tables 4 to 15.
- 4 See Table 22 for the derating factor applicable to a single circuit fixed to the underside of a ceiling or similar horizontal surface.
- 5 See Tables 23 and 24 for the derating factors applicable to a single circuit fixed to perforated or unperforated trays.
- 6 See AS/NZS 3000 for the restricted installation conditions of certain types of cable, e.g. unarmoured cables in plaster or cement render on walls.

COPYRIGHT

TABLE3(2)

SCHEDULE OF INSTALLATION METHODS FOR CABLES DEEMED TO HAVE THE SAME CURRENT-CARRYING CAPACITY AND CROSS-REFERENCES TO APPLICABLE DERATING TABLES—ENCLOSED

1	2	3	4	5	6
Item No.	Cable details (see Note 1)	Reference drawing (see Note 2)	Current-carrying capacity table reference	Methods of installation for cables deemed to have the same current-carrying capacity (see Note 3)	Derating table
1	Two single-core cables		Tables 4 and 5 Columns 15 to 17 Table 6 Columns 11 and 12	 Cables in wiring enclosures installed in— (a) Air (b) plaster, cement render, masonry or concrete in a wall or floor; (c) a concrete slab on or above the surface of the ground; or (d) a ventilated trench. 	
2	Three single-core cables		Tables 7 and 8 Columns 15 to 17 Table 9 Columns 11 and 12	 Cables installed in— (a) a wiring enclosure on a wall; or (b) an enclosed trench with a removable cover. 	
3	Two single-core cables		Tables 4 and 5 Columns 18 and 19 Table 6 Column 13	 Cables enclosed or unenclosed— (a) partially surrounded by thermal insulation material; or (b) in an enclosed trench. 	22
4	Three single-core cables		Tables 7 and 8 Columns 18 and 19 Table 9 Column 13		22
5	Two single-core cables		Tables 4 and 5 Columns 20 and 21 Table 6 Column 14	Unenclosed cables completely surrounded by thermal insulation.	
6	Three single-core cables		Tables 7 and 8 Columns 20 and 21 Table 9 Column 14		22

(continued)

1	2	3	4	5	6
Item No.	Cable details (see Note 1)	Reference drawing (see Note 2)	Current-carrying capacity table reference	Methods of installation for cables deemed to have the same current-carrying capacity (see Note 3)	Derating table
7	Two-core cables		Tables 10 and 11 Columns 11 to 13 Table 12 Columns 9 and 10	 Cables in wiring enclosures installed in— (a) air; (b) plaster, cement render, masonry or concrete in a wall or floor; (c) a concrete slab on or above the surface of the ground; or (d) a ventilated trench. Cables installed in— (a) closed trunking, or wiring enclosures on a wall; or (b) an enclosed trench with a removable cover. 	22
8	Three-core cables		Tables 13 and 14 Columns 11 to 13 Table 15 Columns 9 and 10		
9	Two-core cables		Tables 10 and 11 Columns 15 to 18 Table 12 Column 11	Enclosed or unenclosed cables partially surrounded by thermal insulation.	
10	Three-core cables		Tables 13 and 14 Columns 15 to 18 Table 15 Column 11		22
11	Two-core cables		Tables 10 and 11 Columns 19 to 22 Table 12 Column 12	Enclosed or unenclosed cables completely surrounded by thermal insulation.	
12	Three-core cables		Tables 13 and 14 Columns 19 to 22 Table 15 Column 12		22

TABLE 3(2) (continued)

NOTES:

1 Earthing conductors, lightly loaded neutral conductors of three-phase circuits and conductors subject only to momentary loading, such as control wiring, shall not be counted in the number of cable cores.

2 See column headings of Tables 4 to 15.

3 See AS/NZS 3000 for the restricted installation conditions of certain types of cables, e.g. insulated or insulated and sheathed cables in metallic and non-metallic conduits.

TABLE 3(3)

33

SCHEDULE OF INSTALLATION METHODS FOR CABLES DEEMED TO HAVE THE SAME CURRENT-CARRYING CAPACITY AND CROSS-REFERENCES TO APPLICABLE DERATING TABLES—BURIED DIRECT IN THE GROUND

1	2	3	4	5	6
Item No.	Cable details (see Note 1)	Reference drawing (see Note 2)	Current-carrying capacity table reference	Methods of installation for cables deemed to have the same current-carrying capacity (see Note 3)	Derating table
1	Two single-core cables	0.5 m	Tables 4 and 5 Columns 22 and 23 Table 6 Column 15		05/1)
2	Three single-core cables	0. 5 m	Tables 7 and 8 Columns 22 and 23 Table 9 Column 15	Cables with a minimum depth of laying of—	25(1)
3	Two-core cables	©© 0.5 m	Tables 10 and 11 Columns 23 and 24 Table 12 Column 13	 (a) 0.3 m under continuous concrete paved areas; or (b) 0.5 m in other locations. 	25/2)
4	Three-core cables	0. 5 m	Tables 13 and 14 Columns 23 and 24 Table 15 Column 13		25(2)

NOTES:

1 Earthing conductors, lightly loaded neutral conductors of three-phase circuits and conductors subject only to momentary loading, such as control wiring, shall not be counted in the number of cable cores.

2 See column headings of Tables 4 to 15.

3 See Tables 27(1), 27(2), 28(1) and 28(2) for rating factors applicable to different ambient soil temperatures and depths of laying.

TABLE 3(4)

SCHEDULE OF INSTALLATION METHODS FOR CABLES DEEMED TO HAVE THE SAME CURRENT-CARRYING CAPACITY AND CROSS-REFERENCES TO APPLICABLE DERATING TABLES—UNDERGROUND WIRING ENCLOSURES

1	2	3	4	5	6		
				Methods of installation	Derati	Derating table	
Item No.	Cable details (see Note 1)	Reference drawing (see Note 2)	Current-carrying capacity table reference	for cables deemed to have the same current-carrying capacity (see Note 3)	More than one circuit in same enclosure	More than one circuit in separate enclosures	
1	Two single-core cables	0.5 m	Tables 4 and 5 Columns 24 to 26 Table 6 Columns 16 and 17				
2	Three single-core cables	0. 5 m	Tables 7 and 8 Columns 24 to 26 Table 9 Columns 16 and 17	Cables in a single enclosure laid—			
3	One two-core cable		Tables 10 and 11 Columns 25 to 27 Table 12 Columns 14 and 15	 (a) a minimum of 0.3 m below continuous concrete paved areas; or 		26(2)	
4	One three-core cable	©0. 5 m	Tables 13 and 14 Columns 25 to 27 Table 15 Column 14 and 15	(b) minimum 0.5 m in other locations.	22		
5	Single-core cables	0.5 m	Tables 4 and 5 Columns 27 and 28 Table 6 Column 18	 Two enclosures laid— (a) directly under continuous concrete paved areas; or (b) minimum 0.5 m in other locations. 			
6		0. 5 m	Tables 7 and 8 Columns 27 and 28 Table 9 Column 18	 Three enclosures laid— (a) directly under continuous concrete paved areas; or (b) minimum 0.5 m in other locations. 		26(1)	

NOTES:

- 1 Earthing conductors, lightly loaded neutral conductors of three-phase circuits and conductors subject only to momentary loading, such as control wiring, shall not be counted in the number of cable cores.
- 2 See column headings of Tables 4 to 15.
- 3 See Tables 27(1), 27(2), 28(1) and 28(2) for rating factors applicable to different ambient soil temperatures and depths of laying.

35

CURRENT-CARRYING CAPACITIES

CABLE TYPE:

INSULATION TYPE:

TWO SINGLE-CORE (See Note 1) THERMOPLASTIC (See Note 2)

MAXIMUM CONDUCTOR TEMPERATURE:

REFERENCE AMBIENT TEMPERATURE: 40°C IN AIR, 25°C IN GROUND

1	2	3	4	5	6	7	8	9	10	11	12	13	
				•	Current-c	arrying	g capacity,	A			1		
					ī	Unenclo	sed						
		Spaced		Spaced	from surf	ace	Т	ouching		Expo	sed to sur	1	
Conductor size		00			∞			100					
	C	u		С	u		С	u		С	u		
mm ²	Solid/ Stranded	Flexible	Al	Solid/ Stranded			Solid/ Stranded	Flexible	Al	Solid/ Stranded	Flexible	Al	
1	16	17		16	17		13	13	_	8	8	—	
1.5 2.5	21 30	21 29	_	21 29	21 28	_	16 23	17 22	_	10 13	10 13	_	
4	40	38	_	39	38		31	30	_	18	17	_	
6 10	51 69	49 69	_	49 67	48 67		40 54	38 54		22 30	21 29	_	
16	92	91	72	89	88	69	72	71	56	39	38	30	
25	124	121	96	119	115	92	97	94	75	50	49	39	
35	153	150	119	145	143	113	119	117	92	61	59	47	
50 70	187 238	189 238	145 184	177 223	179 224	137 173	146 184	147 185	113 143	72 89	73 89	56 69	
95	295	238	229	276	269	214	230	223	178	107	104	83	
120	344	341	267	321	317	249	267	265	208	122	120	95	
150	395	393	307	367	365	285	308	306	239	137	135	106	
185	459	450	357	424	416	331	358	351	279	154	150	120	
240 300	549 636	541 624	427 495	505 582	498 571	394 456	428 495	422 486	334 388	177 198	173 192	138	
400	636 744	752	495 583	582 676	682	436 535	493 577	480 583	388 456	221	218	155 175	
500	867	876	685	780	787	624	668	675	535	245	240	196	
630	1014	1036	808	897	914	730	770	785	627	269	266	219	

(continued)

75°C

3

	IABLE 4 (continued)													
14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
					Cu	rrent-c	arrying	capaci	ty, A					
	I	Enclosed		The	ermal i	nsulatio	n	Buried	direct	Under	ground w	iring e	nclosur	e
	Wiring o	enclosure ir	ı air	Parti surrou by the insula	nded rmal		unded ermal							
Conductor size												Ň	3	
	С	u								Cı	1			
mm ²	Solid/ Stranded	Flexible	Al	Cu	Al	Cu	Al	Cu	Al	Solid/ Stranded	Flexible	Al	Cu	Al
1	13	14	_	11	_	6		18	_	18	19		21	_
1.5 2.5	18 24	18 24		14 20	_	8 12	_	23 32	_	23 32	23 31	_	26 36	_
4	32	31		25		16	_	41		41	40	_	47	_
6 10	41 54	40		33 44		20	—	52		52	50	—	58 77	—
10	70	54 69	54	44 56	43	27		69 122	95	69 89	68 87	— 69	99	— 77
25	70 94	91	54 73	50 75	43 58	36 48	28 37	158	123	116	87 112	69 90	99 129	100
35	112	110	87	90	70	59	46	190	147	139	136	108	155	120
50 70	138	139	107	110	86		—	225	174 215	168	168	130	186	145
70 95	170 212	169 206	132 164	136 169	105 131	_	_	277 332	213	206 252	205 244	160 195	228 278	177 215
120	242	237	188	193	150		_	378	294	287	282	223	316	245
150 185	282 320	278 312	219 249	225 256	175 199	—	_	424 480	329 374	329 373	324 363	255 291	354 408	274 317
240				305					434		429	342	408	368
300	381	373	298 —	305	238	_	_	556 628	434 491	438 496	429 493	342 388	472 546	368 425
400	—			—		_	_	713	564	575	572	454	621	487
500 630			_	_	_	_	_	805 904	644 737	649 750	663 754	520 611	721 816	570 652
050								204	131	750	134	011	010	052

TABLE 4 (continued)

NOTES TO TABLE 4:

- 1 Applies to non-armoured, sheathed or unsheathed cables.
- 2 The normal operating temperature of thermoplastic cables, including flexible cords installed as installation wiring, are based on a conductor temperature of 75°C. This is due to the risk of thermal deformation of insulation if the cables are clipped, fixed or otherwise installed in a manner which exposes the cable to severe mechanical pressure at higher temperatures.

V-90 and V-90HT insulated cables may be operated up to the maximum permissible temperatures 90° C and 105° C provided that the cable is installed in a manner that is not subject to, or is protected against, severe mechanical pressure at temperatures higher than 75° C. Such applications also allow for cables to be used in—

- (a) locations where the ambient temperature exceeds the normal 40°C, e.g. equipment wiring in luminaires and heating appliances, or in roof spaces affected by high summer temperatures; and
- (b) locations affected by bulk thermal insulation that restricts the dissipation of heat from the cable.
- 3 See Tables 3(1), 3(2), 3(3) and 3(4) for cable configurations deemed to have the same current-carrying capacities as those illustrated.
- 4 Derating factors may apply as follows:
 - (a) The current-carrying capacities apply to single circuits. For grouped cable circuits, see Clause 3.5.2 and Tables 22, 23, 25(1), 25(2), 26(1) and 26(2) for appropriate derating factors.
 - (b) For a single circuit fixed to the underside of a ceiling or similar horizontal surface, see Table 22 for the derating factor to be applied to the current-carrying capacities given in Columns 8 to 10.
 - (c) For a single circuit fixed to perforated or unperforated cable tray, see Table 23 for the derating factor to be applied to the current-carrying capacities given in Columns 5 to 7.
 - (d) For ambient temperature and depth of laying factors, see Tables 27(1), 27(2), 28(1) and 28(2).
- 5 To calculate the single-phase voltage drop of these configurations, multiply the appropriate three-phase voltage drop value in Table 40, Table 43 or Table 46 by 1.155.
- 6 These ratings are based on 40°C ambient air temperature and 25°C ambient soil temperature. For other conditions, see Clause 3.5.3.
- 7 For conductor sizes up to 10 mm² in Column 22 the values are based on ratings for wiring in underground wiring enclosures.
- 8 Cables within the scope of AS/NZS 5000.2 (up to 16 mm²) may be rated to the values in the Tables covering 90°C insulated cables, subject to—
 - (a) information provided in Note 2; and
 - (b) any other relevant requirements of AS/NZS 3000.

CURRENT-CARRYING CAPACITIES

TWO SINGLE-CORE (See Note 1)

X-90, X-HF-90, R-EP-90, R-CPE-90, R-HF-90 OR R-CSP-90

MAXIMUM CONDUCTOR 90°C (See Note 2)

TEMPERATURE:

CABLE TYPE:

40°C IN AIR, 25°C IN GROUND

REFERENCE AMBIENT TEMPERATURE:

INSULATION TYPES:

1	2	3	4	5	6	7	8	9	10	11	12	13		
					Curren	t-carry	ing capacity	и, А						
				-		Unen	closed							
	5	Spaced		Spaced	from sur	face	Т	ouching		Expo	osed to sur	n		
Conductor size		10			1			1						
5110					$\int \infty$			8						
		10			1			1						
	Cı	1		Cı	1		Cı	1		Cı	u			
mm ²	Solid/ Stranded	Flexible	Al	Solid/ Stranded	Flexible	Al	Solid/ Stranded	Flexible	Al	Solid/ Stranded	Flexible	Al		
1	20	21		20	21		16	16		12	13			
1.5 2.5	26 36	26 35	_	25 36	26 34	_	20 28	20 27	_	15 21	16 21			
4	48	46	_	47	46		37	36		28	27			
6	61	59	_	60	58	_	47	46	_	36	34	—		
10	84	83	—	82	81		65	64		48	48			
16	112	110	87	108	106	84	86	85	67	64	63	50		
25 35	151 186	147 183	117 144	145 177	141 174	112 137	117 144	114 141	91 111	86 105	83 103	66 81		
50	228	231	177	216	218	167	176	178	136	127	128	99		
70	291	292	226	273	274	212	224	225	174	160	161	124		
95	361	351	280	338	328	262	278	271	216	197	192	153		
120	422	418	328	393	389	305	325	322	253	229	226	178		
150 185	486 565	483 555	377 439	451 522	448 512	350 406	375 436	373 428	291 340	262 303	260 296	204 236		
240	678	668	527	622	613	485	522	515	408	359	353	280		
240 300	787	772	612	622 718	705	485 562	605	515 594	408 473	413	353 404	280 323		
400	923	933	723	836			708	715	559	478	480	377		
500	1078	1090	850	966	975	772	821	830	656	550	552	439		
630	1261	1288	1003	1113	1135	904	950	969	772	629	639	511		

- 1	ч

TABLE	5	(continued)

14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
					C	Current-	carryin	g capac	eity, A	•				
	E	nclosed		Т	hermal i	nsulatio	n	Buried	l direct	Unde	rground w	iring e	nclosur	e
	Wiring e	nclosure i	n air	surrou the	tially Inded by rmal lation	Comp surrou by th insula	unded ermal							
Conductor size													XX	5
	Cu	1								C	u			
mm ²	Solid/ Stranded	Flexible	Flexible Al (Al	Cu	Al	Cu	Al	Solid/ Stranded	Flexible	Al	Cu	Al
1 1.5 2.5	16 21 30	17 21 28		13 16 24		8 10 14		20 26 36		20 26 36	21 26 35		24 30 41	
4 6 10	38 47 65	37 46 64		30 38 52		19 24 32		46 58 78		46 58 78	45 56 77		53 66 87	
16 25 35	84 113 135	82 109 132	65 87 105	67 90 108	52 70 84	43 58 72	33 45 56	139 179 215	107 139 167	100 131 157	98 127 154	78 102 122	112 146 175	87 114 136
50 70 95	166 204 255	167 204 248	129 159 198	133 164 204	103 127 158			255 313 375	198 243 291	189 233 285	190 232 276	147 181 221	211 258 309	164 200 239
120 150 185	292 329 387	286 336 377	226 255 301	233 263 309	181 204 241			427 480 543	332 372 423	325 365 423	319 368 412	252 283 329	358 401 463	278 311 359
240 300 400	461 	452 	360 	369 —	369 288 — — — —			630 711 808	492 556 638	497 562 653	486 548 650	388 440 516	536 620 706	417 482 553
500 630								913 1026	729 833	739 856	733 860	590 695	800 930	632 740

NOTES TO TABLE 5:

- 1 Applies to non-armoured, sheathed or unsheathed cables.
- 2 The normal operating temperature of thermoplastic cables, including flexible cords installed as installation wiring, is based on a conductor temperature of 75°C. This is due to the risk of thermal deformation of insulation if the cables are clipped, fixed or otherwise installed in a manner that exposes the cable to severe mechanical pressure at higher temperatures.

V-90 and V-90HT insulated cables may be operated up to the maximum permissible temperatures 90° C and 105° C provided that the cable is installed in a manner that is not subject to, or is protected against, severe mechanical pressure at temperatures higher than 75° C. Such applications also allow for cables to be used in—

- (a) locations where the ambient temperatures exceed the normal 40°C, e.g. equipment wiring in luminaires and heating appliances, or in roof spaces affected by high summer temperatures; and
- (b) locations affected by bulk thermal insulation that restricts the dissipation of heat from the cable.
- 3 For cables with a maximum conductor temperature of 105°C the applicable current ratings are those provided for copper conductors up to and including 10 mm² size.
- 4 See Tables 3(1), 3(2), 3(3) and 3(4) for cable configurations deemed to have the same current-carrying capacities as those illustrated.
- 5 Derating factors may apply as follows:
 - (a) The current-carrying capacities apply to single circuits. For grouped cable circuits, see Clause 3.5.2 and Tables 22, 23, 25(1), 25(2), 26(1) and 26(2) for appropriate derating factors.
 - (b) For a single circuit fixed to the underside of a ceiling or similar horizontal surface, see Table 22 for the derating factor to be applied to the current-carrying capacities given in Columns 8 to 10.
 - (c) For a single circuit fixed to perforated or unperforated cable tray, see Table 23 for the derating factor to be applied to the current-carrying capacities given in Columns 5 to 7.
 - (d) For ambient temperature and depth of laying factors, see Tables 27(1), 27(2), 28(1) and 28(2).
- 6 To calculate the single-phase voltage drop of these configurations, multiply the appropriate three-phase voltage drop value in Table 40 or Table 43 by 1.155.
- 7 These ratings are based on 40°C ambient air temperature and 25°C ambient soil temperature. For other conditions, see Clause 3.5.3.
- 8 For conductor sizes up to 10 mm² in Column 22, the values are based on ratings for wiring in underground wiring enclosures.

CURRENT-CARRYING CAPACITIES

TWO SINGLE-CORE (See Note 1)

CABLE TYPE: INSULATION TYPES:

R-HF-110, R-E-110 OR X-HF-110

MAXIMUM CONDUCTOR 110°C

TEMPERATURE:

TEMPERATURE:

REFERENCE AMBIENT

40°C IN AIR, 25°C IN GROUND

1	2	3	4	5	6	7	8	9
			Curi	rent-carry	ing capacit	y, A		
				Unen	closed			
	Spa	ced	Spaced surf		Тоис	hing	Exposed	l to sun
Conductor size		0		∞		8		
	С	u	С	u	С	u	С	u
mm ²	Solid/ Stranded	Flexible	Solid/ Stranded	Flexible	Solid/ Stranded	Flexible	Solid/ Stranded	Flexible
1	25	26	24	26	20	21	17	18
1.5	32	32	31	32	25	26	21	22
2.5	45	43	44	42	36	34	30	29
4	59	57	58	56	47	45	39	38
6	75	73	73	70	59	57	50	48
10	103	102	99	98	81	80	68	67
16	137	135	131	129	107	105	89	88
25	183	178	175	170	143	139	119	116
35	225	221	214	210	176	172	146	143
50	276	279	261	263	215	218	178	179
70	349	351	328	329	272	273	224	224
95	434	422	406	395	339	329	277	269
120	505	500	471	466	394	390	321	318
150	581	577	540	536	454	450	369	366
185	673	660	624	611	527	516	427	418
240	806 794		743	732	630	621	508	500
300	934	916	857	841	730	716	586	575
400	1094 1105		998	1006	853	860	682	687
500	1278	1290	1155	1164	990	999	789	794
630	1498	1529	1334	1359	1146	1168	909	925

					-			
10	11	12	13	14	15	16	17	18
			Cı	irrent-carrying	capacity, A	1		
	Enclo	osed	Thermal i	nsulation	Buried direct		ground w nclosure	iring
	Metallic enclosur	-	Partially surrounded by thermal insulation	Completely surrounded by thermal insulation				
Conductor size		\mathbf{i}						
	C	u				C	u	
mm ²	Solid/ Stranded	Flexible	Cu	Cu	Cu	Solid/ Stranded	Flexible	Cu
1	20	21	16	10	23	23	24	26
1.5	25	25	20	13	29	29	30	33
2.5	35	33	28	18	40	40	39	46
4 6	46 58	45 56	37 46	23 30	53 66	53 66	51 64	59 74
10	38 78	30 77	40 62	40	88	88	86	97
16	104	102	83	53	154	115	112	127
25	137	133	109	72	194	148	143	163
35	165	167	132	88	238	177	176	195
50	205	207	164	—	282	214	215	236
70	255	263	204	—	346	262	266	288
95	321	312	257	—	416	321	312	352
120	369	364	296	—	473	366	359	400
150	430	426	344	—	531	420	414	448
185	493	481	394	—	601	477	464	517
240	594	583	476	—	698 780	561	548	600
300 400					789 898	648 738	631 734	694 790
500					1018	837	855	921
500 630					1018	973	855 977	921 1045

TABLE 6 (continued)

NOTES TO TABLE 6:

- 1 Applies to non-armoured, sheathed or unsheathed cables.
- 2 See Tables 3(1), 3(2), 3(3) and 3(4) for cable configurations deemed to have the same currentcarrying capacities as those illustrated.

43

- 3 Derating factors may apply as follows:
 - (a) The current-carrying capacities apply to single circuits. For grouped cable circuits, see Clause 3.5.2 and Tables 22, 23, 25(1), 25(2), 26(1) and 26(2) for appropriate derating factors.
 - (b) For a single circuit fixed to the underside of a ceiling or similar horizontal surface, see Table 22 for the derating factor to be applied to the current-carrying capacities given in Columns 6 and 7.
 - (c) For a single circuit fixed to perforated or unperforated cable tray, see Table 23 for the derating factor to be applied to the current-carrying capacities given in Columns 4 and 5
 - (d) For ambient temperature and depth of laying factors, see Tables 27(1), 27(2), 28(1) and 28(2).
- 4 To determine the single-phase voltage drop of these configurations, refer to the appropriate value in Table 40, Table 41 or Table 46.
- 5 These ratings are based on 40°C ambient air temperature and 25°C ambient soil temperature. For other conditions, see Clause 3.5.3.
- 6 For conductor sizes up to 10 mm² in Column 15, the values are based on ratings for wiring in underground wiring enclosures.

CURRENT-CARRYING CAPACITIES

CABLE TYPE: **INSULATION TYPE:** THREE SINGLE-CORE (See Note 1) THERMOPLASTIC (See Note 2)

75°C

MAXIMUM CONDUCTOR **TEMPERATURE:**

REFERENCE AMBIENT TEMPERATURE:

40°C IN AIR, 25°C IN GROUND

1	2	3	4	5	6	7	8	9	10	11	12	13	
			•		Curren	t-carry	ing capacity	, A					
						Unen	closed						
		Spaced		Spaced	from surfa	ace	Т	ouching		Exposed to sun			
Conductor size		0 0 0			8					<u>ﷺ</u> 			
	С	u		С	u		Cu			С	u		
mm ²	Solid/ Stranded	Flexible	Al	Solid/ Stranded	Flexible	Al	Solid/ Stranded	Flexible	Al	Solid/ Stranded	Flexible	Al	
1	16	16		14	14		13	13	_	8	8	—	
1.5 2.5	20 29	21 27	_	17 25	18 24	_	16 23	17 22	_	10 13	10 13	_	
4	38	37		33	32		31	30	_	18	17	_	
6	49	47		42	41	—	40	38	—	22	21	—	
10	67	66		58	57	—	54	54	—	30	29	—	
16	89	88	69	77	75	59	72	71	56	39	38	30	
25	120	117	93	103	100	80	97	94	75	50	49	39	
35	148	145	115	127	125	98	119	117	92	61	59	47	
50	181	183	141	156	157	121	146	147	113	72	73	56	
70 95	230 287	231 279	179 222	197 246	198 239	153 191	184 230	185 223	143 178	89 107	89 104	69 83	
120	335	331	260	287	284	223	267	264	208	122	120	95	
120	385	383	200	330	328	256	308	305	239	122	135	106	
185	447	438	347	383	376	299	357	350	278	154	149	120	
240	535	528	417	457	451	358	426	420	334	176	172	138	
300	620	609	483	529	519	415	492	484	387	197	191	155	
400	726	734	570	615	621	488	573	578	455	219	216	175	
500	846	855	669	710	717	571	661	668	532	242	237	196	
630	990	1011	789	817	833	668	760	775	622	265	262	219	

14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
						Curren	t-carryir	ng capaci	ity, A			•		<u> </u>
	I	Enclosed		1	hermal i	insulatio	n	Buried	direct	Und	erground v	viring e	enclosure	2
	Wiring	enclosure ir	ı air	surrou the	ially nded by mal ation	-								
Conductor size	Sollu/ Flavible								8		Ő		× C	5
		Solid/ Al		Cu	Cu Al Cu		Al	Cu	Al		Cu	Al	Cu	Al
mm ²	Solid/ Strande Flexible Al		AI	Cu	А	Cu	AI	Cu	AI	Solid/ Strande	Flexible	AI	Cu	AI
1	12	13	_	10	_	6	_	16	_	16	16	_	19	_
1.5 2.5	15 21	15 20	_	12 17	_	8 12	_	20 27	_	20 27	20 26		24 33	
4	28	27	_	23	_	16	_	36	_	36	35	_	43	_
6	35	34		28	—	20	—	45	—	45	43		53	—
10	47	46		37	—	27	_	59	—	59	58		70	
16 25	62 81	61 78	48 63	50 64	39 50	36 48	28 38	104 134	81 104	78 100	76 97	60 78	90 117	70 91
35	100	98	78	80	62	48 59	46	160	104	122	119	94	140	108
50	119	120	92	95	74	_	_	190	147	144	145	112	168	131
70	152	152	118	122	94	—	—	233	181	180	180	140	205	159
95	183	178	142	147	114	—	—	279	216	217	210	168	250	194
120 150	217 244	213 241	169 190	173 195	135 152	—	—	317 356	247 276	252 283	247 279	196 220	283 317	220 246
130	244 284	241 277	222	227	132	_	_	402	313	325	316	220	365	240
240	331	336	269	265	207	_	_	465	364	377	376	295	422	329
300	388	379	305	311	244	_	_	524	412	434	423	341	488	380
400	442	461	351	353	281	_	_	593	471	492	504	391	553	434
500	523 588	520 592	421	418	337	_	_	668 748	537	571 639	566	459	641 723	507
630	288	592	481	471	385	—	—	748	612	039	641	523	723	578

NOTES TO TABLE 7:

- 1 Applies to non-armoured, sheathed or unsheathed cables.
- 2 The normal operating temperature of thermoplastic cables, including flexible cords installed as installation wiring, is based on a conductor temperature of 75°C. This is due to the risk of thermal deformation of insulation if the cables are clipped, fixed or otherwise installed in a manner that exposes the cable to severe mechanical pressure at higher temperatures.

V-90 and V-90HT insulated cables may be operated up to the maximum permissible temperatures 90° C and 105° C provided that the cable is installed in a manner that is not subject to, or is protected against, severe mechanical pressure at temperatures higher than 75°C. Such applications also allow for cables to be used in—

- (a) locations where the ambient temperatures exceed the normal 40°C, e.g. equipment wiring in luminaires and heating appliances, or in roof spaces affected by high summer temperatures; and
- (b) locations affected by bulk thermal insulation that restricts the dissipation of heat from the cable.
- 3 See Tables 3(1), 3(2), 3(3) and 3(4) for cable configurations deemed to have the same current-carrying capacities as those illustrated.
- 4 Derating factors may apply as follows:
 - (a) The current-carrying capacities apply to single circuits. For grouped cable circuits, see Clause 3.5.2 and Tables 22, 23, 25(1), 25(2), 26(1) and 26(2) for appropriate derating factors.
 - (b) For a single circuit fixed to the underside of a ceiling or similar horizontal surface, see Table 22 for the derating factor to be applied to the current-carrying capacities given in Columns 8 to 10.
 - (c) For a single circuit fixed to perforated or unperforated cable tray, see Table 23 for the derating factor to be applied to the current-carrying capacities given in Columns 5 to 7.
 - (d) For ambient temperature and depth of laying factors, see Tables 27(1), 27(2), 28(1) and 28(2).
- 5 To determine the three-phase voltage drop of these configurations, refer to the appropriate value in Table 40, Table 41, Table 43, Table 44 or Table 46.
- 6 These ratings are based on 40°C ambient air temperature and 25°C ambient soil temperature. For other conditions, see Clause 3.5.3.
- 7 For conductor sizes up to 10 mm² in Column 22, the values are based on ratings for wiring in underground wiring enclosures.
- 8 Cables within the scope of AS/NZS 5000.2 (up to 16 mm²) may be rated to the values in the Tables covering 90°C insulated cables, subject to—
 - (a) information provided in Note 2; and
 - (b) any other relevant requirements of AS/NZS 3000.

CURRENT-CARRYING CAPACITIES

CABLE TYPE:

THREE SINGLE-CORE (See Note 1) X-90, X-HF-90, R-EP-90, R-CPE-90, R-HF-90 OR R-CSP-90

INSULATION TYPES:

90°C AND 105°C (See Note 2)

MAXIMUM CONDUCTOR TEMPERATURE:

REFERENCE AMBIENT

TEMPERATURE:

40°C IN AIR, 25°C IN GROUND

1	2	3	4	5	6	7	8	9	10	11	12	13	
					Current	t-carry	ing capacity	y, A					
						Unen	closed						
		Spaced		Spaced	from surf	ace	Т	ouching		Exp	osed to sun	ı	
Conductor size		0 0 0			8					<u>ﷺ</u>			
	C	Cu		С	Cu		С	u		С	u		
mm ²	Solid/ Strande	Flexible	Al	Solid/ Stranded	Flexible	Al	Solid/ Stranded	Flexible	Al	Solid/ Stranded	Flexible	Al	
1	19	20	_	16	17	_	16	16	_	12	13	_	
1.5	25	25	—	21	22	—	20	20	—	15	16	—	
2.5	35	33	—	30	29	—	28	27		21	21	—	
4	46	45	_	40	38	_	37	36	_	28	27	—	
6	59	57	—	50	49	—	47	46		36	34	—	
10	81	80	—	69	69	—	65	64	—	48	48	—	
16	108	106	84	92	91	71	86	85	67	64	63	50	
25	146	142	113	125	121	97	117	114	91	86	83	66	
35	180	177	140	154	151	119	144	141	111	105	103	81	
50	221	223	171	188	191	146	176	178	136	127	128	99	
70	282	283	219	240	241	186	224	225	174	160	161	124	
95	350	341	271	298	290	232	278	271	216	197	192	153	
120	410	406	318	349	346	271	325	322	253	229	226	178	
150	472	470	366	403	400	313	375	372	291	262	260	203	
185	550	540	427	468	459	365	435	427	339	302	296	235	
240	660	651	513	560	553	438	521	514	407	358	352	280	
240 300		752	515 596		555 637	438 508	602	514 591	407	410	402	322	
300 400	766 899	752 909	596 705	648 756	637 764	508 599	602 702	709	472 557	410 474	402 477	322 376	
500	1051	1062	829	874	884	703	812	821	652	544	546	437	
630	1230	1256	978	1010	1030	824	938	956	765	621	630	507	

TABLE 8 (continued)

14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
						Curren	t-carryir	ng capaci	ty, A					<u> </u>
	I	Enclosed		Т	hermal i	insulatio	n	Buried	direct	Underground wiring			enclosure	
	Wiring	enclosure ir	ı air	surro by the	Partially surrounded by thermal insulation		Completely surrounded by thermal insulation							
Conductor size								~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	8				× Co	3
	С	u								C	u			
mm ²	Solid/ Strande	Flexible	Al	Cu	Al	Cu	Al	Cu	Al	Solid/ Strande	Flexible	Al	Cu	Al
1	15	15		12	_	8		18	_	18	19	_	22	_
1.5 2.5	18 25	19 24	_	15 20	_	10 14	_	22 31	_	22 31	23 30	_	27 38	_
4 6 10	33 42 56	31 41 55		26 34 45		19 24 32		40 50 67		40 50 67	38 49 66		49 60 79	
16 25 35	72 97 120	73 94 118	56 75 93	58 77 96	45 60 75	43 58 72	33 45 56	117 151 180	91 117 140	86 113 137	85 109 134	66 87 106	101 132 158	79 103 122
50 70 95	143 183 220	144 183 214	111 142 171	114 146 176	89 114 137			214 262 313	166 203 243	163 203 244	163 203 237	126 158 190	190 232 276	147 180 214
120 150 185	261 295 335	256 291 334	203 229 261	209 236 268	162 183 209		_	356 400 452	277 310 352	284 320 363	279 316 357	221 249 283	320 358 413	248 277 321
240 300 400	399 469 534	391 458 533	312 368 424	320 375 427	250 294 339	 		523 589 668	409 463 530	426 491 557	416 479 554	333 385 442	477 552 626	371 430 491
500 630	633 714	630 719	509 583	506 571	407 466		—	752 843	604 688	648 727	642 729	520 593	707 820	559 654

NOTES TO TABLE 8:

- 1 Applies to non-armoured, sheathed or unsheathed cables.
- 2 The normal operating temperature of thermoplastic cables, including flexible cords installed as installation wiring, is based on a conductor temperature of 75°C. This is due to the risk of thermal deformation of insulation if the cables are clipped, fixed or otherwise installed in a manner that exposes the cable to severe mechanical pressure at higher temperatures.

V-90 and V-90HT insulated cables may be operated up to the maximum permissible temperatures 90°C and 105°C provided that the cable is installed in a manner that is not subject to, or is protected against, severe mechanical pressure at temperatures higher than 75°C. Such applications also allow for cables to be used in—

- (a) locations where the ambient temperatures exceed the normal 40°C, e.g. equipment wiring in luminaires and heating appliances, or in roof spaces affected by high summer temperatures; and
- (b) locations affected by bulk thermal insulation that restricts the dissipation of heat from the cable.
- 3 For cables with a maximum conductor temperature of 105°C, the applicable current ratings are those provided for copper conductors up to and including 10 mm² size.
- 4 See Tables 3(1), 3(2), 3(3) and 3(4) for cable configurations deemed to have the same current-carrying capacities as those illustrated.
- 5 Derating factors may apply as follows:
 - (a) The current-carrying capacities apply to single circuits. For grouped cable circuits, see Clause 3.5.2 and Tables 22, 23, 25(1), 25(2), 26(1) and 26(2) for appropriate derating factors.
 - (b) For a single circuit fixed to the underside of a ceiling or similar horizontal surface, see Table 22 for the derating factor to be applied to the current-carrying capacities given in Columns 8 to 10.
 - (c) For a single circuit fixed to perforated or unperforated cable tray, see Table 23 for the derating factor to be applied to the current-carrying capacities given in Columns 5 to 7.
 - (d) For ambient temperature and depth of laying factors, see Tables 27(1), 27(2), 28(1) and 28(2).
- 6 To determine the three-phase voltage drop of these configurations, refer to the appropriate value in Table 40, Table 41, Table 43, Table 44 or Table 46.
- 7 These ratings are based on 40°C ambient air temperature and 25°C ambient soil temperature. For other conditions, see Clause 3.5.3.
- 8 For conductor sizes up to 10 mm² in Column 22, the values are based on ratings for wiring in underground wiring enclosures.

5

CURRENT-CARRYING CAPACITIES

THREE SINGLE-CORE (See Note 1)

INSULATION TYPES:

CABLE TYPE:

R-HF-110, R-E-110 OR X-HF-110

MAXIMUM CONDUCTOR 110°C

TEMPERATURE:

40°C IN AIR, 25°C IN GROUND

TEMPERATURE:

REFERENCE AMBIENT

1	2	3	4	5	6	7	8	9	
			Curi	rent-carry	ing capacit	y, A			
				Unen	closed				
	Spac	ed	Spaced fro	m surface	Touc	hing	Exposed	l to sun	
Conductor size				\sim		8	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		
	Cı	1	C	u	C	u	Cu		
mm ²	Solid/ Stranded	Flexible	Solid/ Stranded	Flexible	Solid/ Stranded	Flexible	Solid/ Stranded	Flexible	
1	24	25	21	22	20	21	17	18	
1.5	31	31	27	27	25	26	21	22	
2.5	43	42	38	36	36	34	30	29	
4	57	55	50	48	47	45	39	38	
6	73	70	63	61	59	57	50	48	
10	99	99	86	85	81	80	68	67	
16	132	130	114	112	107	105	89	88	
25	177	173	153	149	143	139	119	116	
35	218	214	188	184	176	172	146	143	
50	267	270	230	233	215	217	178	179	
70	339	340	291	292	272	273	224	224	
95	422	410	363	353	339	329	277	269	
120	492	487	422	418	394	390	321	317	
150	565	562	486	482	453	450	368	365	
185	656	644	564	553	526	516	426	417	
240	786	775	674	665	629	620	507	499	
300	912	895	780	766	727	714	584	572	
400	1069	1079	910	918	847	855	678	682	
500	1248	1260	1053	1064	981	990	782	786	
630	1462	1493	1217	1240	1132	1154	898	913	

				Ϋ́,	,			
10	11	12	13	14	15	16	17	18
			Cu	rrent-carrying o	apacity, A	•		
	Encl	osed	Thermal	insulation	Buried direct		ground wi enclosure	ring
		c wiring osure air	Partially surrounded by thermal insulation	Completely surrounded by thermal insulation				
Conductor size		\supset			8	× C	ð.	ð
	C	Ľu				Cu		
mm ²	Solid/ Stranded	Flexible	Cu	Cu	Cu	Solid/ Stranded	Flexible	Cu
1	17	18	14	10	20	20	21	24
1.5 2.5	22 32	23 31	18 25	13 18	25 36	25 36	26 34	30 42
4 6	41 51	40 50	33 41	23 30	46 57	46 57	44 55	54 67
10	71	70	57	40	77	77	76	88
16	93	91	74	53	130	99	97	115
25	125	121	100	72	168	130	125	148
35	151	148	121	88	201	155	151	176
50	182	190	146		237	184	188	212
70	234	234	187	—	291	230	229	259
95	285	277	228		348	277	268	315
120	337	331	269		396	322	316	357
150	382	378	306	—	445	362	357	400
185	449	438	359		503	415	404	461
240	548	538	439	—	583	492	481	533
300 400	626 718	612 757	501 575	—	657 746	556 631	542 648	617 700
500	865	864	692 787	—	843	736	729	815
630	983	993	787		947	827	828	920

TABLE 9 (continued)

NOTES TO TABLE 9:

- 1 Applies to non-armoured, sheathed or unsheathed cables.
- 2 See Tables 3(1), 3(2), 3(3) and 3(4) for cable configurations deemed to have the same current-carrying capacities as those illustrated.
- 3 Derating factors may apply as follows:
 - (a) The current-carrying capacities apply to single circuits. For grouped cable circuits, see Clause 3.5.2 and Tables 22, 23, 25(1), 25(2), 26(1) and 26(2) for appropriate derating factors.
 - (b) For a single circuit fixed to the underside of a ceiling or similar horizontal surface, see Table 22 for the derating factor to be applied to the current-carrying capacities given in Columns 6 and 7.
 - (c) For a single circuit fixed to perforated or unperforated cable tray, see Table 23 for the derating factor to be applied to the current-carrying capacities given in Columns 4 and 5.
 - (d) For ambient temperature and depth of laying factors, see Tables 27(1), 27(2), 28(1) and 28(2).
- 4 To determine the three-phase voltage drop of these configurations, refer to the appropriate value in Table 40, Table 41 or Table 46.
- 5 These ratings are based on 40°C ambient air temperature and 25°C ambient soil temperature. For other conditions, see Clause 3.5.3.
- 6 For conductor sizes up to 10 mm² in Column 15 the values are based on ratings for wiring in underground wiring enclosures.

53

CURRENT-CARRYING CAPACITIES

CABLE TYPE:

TWO-CORE SHEATHED (See Note 1)

INSULATION TYPE:

THERMOPLASTIC (See Note 2)

MAXIMUM CONDUCTOR 75°C

TEMPERATURE:

ENT 40°C IN AIR, 25°C IN GROUND

REFERENCE AMBIENT

TEMPERATURE:

1	2	3	4	5	6	7	8	9	10	11	12	13
					Current	-carrying	capacity, A	4		-		
				τ	J nenclosed					En	closed	
		Spaced			Touching		Exp	osed to s	un	Wiring enclosure in air		
Conductor size		0										
	С	′۸ •		С	<u>ג</u>		Cı			Ci		
mm ²	Solid/ Stranded	u Flexible	Al	Solid/ Stranded	Flexible	A1	Solid/ Stranded	Flexible	A1	Solid/ Stranded	Flexible	A1
1	15	16		14	15	_	11	12		13	13	
1.5	19	20	—	18	18	—	14	14	—	16	17	—
2.5	27	26	—	26	25	—	20	19	—	23	23	—
4	37	35	_	34	33		27	26	_	30	29	—
6	46	45	_	44	42		34	32	—	39	38	—
10	64	63	_	60	59	—	46	45	—	52	51	—
16	85	83	66	80	78	62	60	59	47	68	68	52
25	113	110	88	107	104	83	79	77	62	90	87	70
35	139	137	108	131	128	101	97	94	75	112	109	87
50	170	171	132	159	161	124	116	117	90	133	134	103
70	215	215	167	201	202	156	145	145	112	170	169	132
95	265	257	205	248	241	192	175	170	136	204	198	158
120	307	304	239	288	285	224	202	199	157	241	236	187
150	351	348	239	328	326	255	202	225	177	271	250	210
185	403	395	314	377	370	294	258	252	201	313	305	244
240	477	470	373	446	439	349	300	294	235	364	368	285
300	547	537	429	511	502	401	339	331	266	424	415	333
400	631	636	500	589	593	467	384	384	305	482	500	383
500	716	728	575	668	678	536	429	431	345	561	564	451

5

TABLE 10 (continued)

14	15	16	17	18	19	20	21	22	23	24	25	26	27
						Current	carrying	g capacit	y, A				
			Т	hermal	insulatio	n			Buried	direct	Underground wiring enclosure		
Gurladar	insul	unded ermal		unded ermal ation, viring	ed surrounded al by thermal n, insulation, ng unenclosed		Completely surrounded by thermal insulation, in a wiring enclosure						
Conductor size	XXXXX	×		X		X		ð,			2	\bigcirc	
							×	ð.		9	>	0	
											С	u	
mm ²	Cu	Al	Cu	Al	Cu	Al	Cu	Al	Cu	Al	Solid/ Stranded	Flexible	Al
1 1.5 2.5	11 14 20		10 13 19		7 9 13		6 8 12		17 21 30		17 21 30	18 22 29	
4 6 10	27 35 48		24 31 42	 	17 22 30		15 20 26		39 50 66		39 50 66	38 48 65	
16 25 35	64 85 105	49 66 81	54 72 90	42 56 70	40 53 65	31 41 51	34 45 56	26 35 43	114 147 178	88 114 138	86 112 136	85 108 133	66 87 106
50 70 95	127 161 198	99 125 154	107 136 163	83 105 127					211 259 311	163 201 241	162 202 243	163 202 236	126 157 189
120 150 185	230 263 302	179 204 235	192 217 250	150 168 195	 				355 398 449	276 309 350	282 317 363	277 313 353	220 246 283
240 300 400	357 409 471	279 321 373	291 340 386	228 266 306					520 586 663	406 460 526	421 483 548	419 472 560	329 379 434
500	534	429	449	360	—	_	_	_	741	595	628	629	504

NOTES TO TABLE 10:

- 1 Applies to cables with or without earth core, armoured or unarmoured, including neutral screened cables.
- 2 The normal operating temperature of thermoplastic cables, including flexible cords installed as installation wiring, is based on a conductor temperature of 75°C. This is due to the risk of thermal deformation of insulation if the cables are clipped, fixed or otherwise installed in a manner that exposes the cable to severe mechanical pressure at higher temperatures.

V-90 and V-90HT insulated cables may be operated up to the maximum permissible temperatures 90° C and 105° C provided that the cable is installed in a manner that is not subject to, or is protected against, severe mechanical pressure at temperatures higher than 75°C. Such applications also allow for cables to be used in—

- (a) locations where the ambient temperatures exceed the normal 40°C, e.g. equipment wiring in luminaires and heating appliances, or in roof spaces affected by high summer temperatures; and
- (b) locations affected by bulk thermal insulation that restricts the dissipation of heat from the cable.
- 3 See Tables 3(1), 3(2), 3(3) and 3(4) for cable configurations deemed to have the same current-carrying capacities as those illustrated.
- 4 Derating factors may apply as follows:
 - (a) The current-carrying capacities apply to single circuits. For grouped cable circuits, see Clause 3.5.2 and Tables 22, 23, 25(1), 25(2), 26(1) and 26(2) for appropriate derating factors.
 - (b) For a single circuit fixed to the underside of a ceiling or similar horizontal surface, see Table 23 for the derating factor to be applied to the current-carrying capacities given in Columns 5 to 7.
 - (c) For a single circuit fixed to unperforated cable tray, see Table 24 for the derating factor to be applied to the current-carrying capacities given in Columns 2 to 4.
 - (d) For ambient temperature and depth of laying factors, see Tables 27(1), 27(2), 28(1) and 28(2).
- 5 To calculate the single-phase voltage drop of these configurations, multiply the appropriate three-phase voltage drop value in Table 42, Table 45 or Table 48 by 1.155.
- 6 These ratings are based on 40°C ambient air temperature and 25°C ambient soil temperature. For other conditions, see Clause 3.5.3.
- 7 For conductor sizes up to 10 mm² in Column 23, the values are based on ratings for wiring in underground wiring enclosures.
- 8 Cables within the scope of AS/NZS 5000 (up to 25 mm² and with a maximum permissible conductor operating temperature of not less than 90°C) may be rated to the values in the Table 11 covering 90°C insulated cables, subject to—
 - (a) information provided in Note 2; and
 - (b) any other relevant requirements of AS/NZS 3000.

Refer to Paragraph C3 of AS/NZS 3000 for details on simplified protective device selection (MCBs) for overload protection.

CURRENT-CARRYING CAPACITIES

TWO-CORE SHEATHED (See Note 1)

X-90, X-HF-90, R-EP-90, R-CPE-90, R-HF-90 OR R-CSP-90

MAXIMUM CONDUCTOR 90°C AND 105°C (See Note 2)

TEMPERATURE:

CABLE TYPE:

40°C IN AIR, 25°C IN GROUND

REFERENCE AMBIENT TEMPERATURE:

INSULATION TYPES:

1	2	3	4	5	6	7	8	9	10	11	12	13
					Current	-carryiı	ng capacity	, A				
				U	nenclosed					E	nclosed	
		Spaced		Т	ouching		Exp	osed to sur	1	Wiring ei	nclosure i	n air
Conductor size		0					※					
			r				,773,77		<i></i>			
	C	u		Ci	Cu		C	Cu		Cı	u	
mm ²	Solid/ Stranded	Flexible	Al	Solid/ Stranded	Flexible	Al	Solid/ Stranded	Flexible	Al	Solid Stranded	Flexible	Al
1	18	19		17	18	-	15	16		16	16	_
1.5	24	24	—	22	23	—	19	20	—	20	20	-
2.5	34	32	_	31	30	_	27	26	_	28	27	-
4	45	43		42	40	—	36	35	—	37	35	-
6 10	57 78	55 78	_	53 73	51 72	_	46 63	44 62	_	46 63	44 62	_
												_
16 25	104	103	81	97	96 128	75	83	82	64	82	80	63
25 35	140 173	136 169	109 134	131 162	128 158	102 125	111 136	108 134	86 106	110 132	106 129	85 102
50 70	211 268	213 269	163 208	197 250	199 251	153 194	165 208	167 209	128 162	162 200	163 207	126 155
70 95	331	322	208	309	300	239	208	209	198	200	242	194
120	385	381	299	359	355	279	295	292	230	285	289	222
120	441	438	342	411	408	319	336	333	261	332	328	257
185	509	499	396	473	464	369	385	377	300	377	375	293
240	604	596	472	562	554	439	454	446	354	448	439	350
300	694	682	544	645	633	505	518	507	406	523	511	410
400	804	811	636	745 751		590	594	597	470	596	595	472
500	915	932	734	848	862	680	671	679	538	695	699	557

HIDDE H (continued)	TABLE	11	(continued)
----------------------------	-------	----	-------------

14	15	16	17	18	19	20	21	22	23	24	25	26	27		
						Current	-carrying	g capacity	, A						
			ŗ	Thermal	insulatio	n			Buried	direct		round wiri iclosure	ing		
	surro by the insula		surro by the insula in a v	Partially surrounded by thermal insulation, in a wiring enclosure		surrounded sur by thermal by insulation, ins in a wiring un		Completely surrounded by thermal insulation, unenclosed		nded by rmal ation, viring					
Conductor size	XXXXX	×		X		×.						\bigcirc			
								Ž		9	×	\bigcirc			
											Cu	1			
mm ²	Cu	Al	Cu	Al	Cu	Al	Cu	Al	Cu	Al	Solid/ Stranded	Flexible	Al		
1	14	—	12	—	9	—	8	—	19	—	19	20	—		
1.5 2.5	18 25	_	16 23	_	11 16	_	10 14	_	24 34	_	24 34	25 33	_		
4	33	_	29	_	21	_	18		45	_	45	43	_		
6	42	—	37	—	27		23		56		56	54	—		
10	58	—	51	—	36		32		75		75	74			
16	78	60	66	51	49	38	41	32	132	102	98	95	75		
25 35	105 129	81 100	88 106	68 82	66 81	51 63	55 66	43 51	170 205	132 159	128 154	124 150	99 119		
				-	01	05	00	51							
50 70	158 200	122 155	130 160	101 124				_	244 300	189 233	185 228	186 231	144 177		
95	200	192	200	155		_	_	_	360	233	279	271	216		
120	287	223	228	177			_		410	319	318	318	247		
150	328	255	265	206	_	_	_	_	460	357	365	360	283		
185	379	295	301	235	—	—	-	—	520	405	413	407	322		
240	449	351	358	280	_		_	_	603	471	485	475	379		
300	516	404	418	328	—	—	—	—	680	533	558	544	437		
400	596	472	477	378	_	-	-	—	771	610	633	631	501		
500	678	544	556	446		_	—	—	862	691	728	729	583		

- 1 Applies to cables with or without earth core, armoured or unarmoured, including neutral screened cables.
- 2 The normal operating temperature of thermoplastic cables, including flexible cords installed as installation wiring, is based on a conductor temperature of 75°C. This is due to the risk of thermal deformation of insulation if the cables are clipped, fixed or otherwise installed in a manner that exposes the cable to severe mechanical pressure at higher temperatures.

V-90 and V-90HT insulated cables may be operated up to the maximum permissible temperatures 90° C and 105° C provided that the cable is installed in a manner that is not subject to, or is protected against, severe mechanical pressure at temperatures higher than 75° C. Such applications also allow for cables to be used in—

- (a) locations where the ambient temperatures exceed the normal 40°C, e.g. equipment wiring in luminaires and heating appliances, or in roof spaces affected by high summer temperatures; and
- (b) locations affected by bulk thermal insulation that restricts the dissipation of heat from the cable.
- 3 For cables with a maximum conductor temperature of 105°C the applicable current ratings are those provided for copper conductors up to and including 10 mm² size.
- 4 See Tables 3(1), 3(2), 3(3) and 3(4) for cable configurations deemed to have the same current-carrying capacities as those illustrated.
- 5 Derating factors may apply as follows:
 - (a) The current-carrying capacities apply to single circuits. For grouped cable circuits, see Clause 3.5.2 and Tables 22, 24, 25(1), 25(2), 26(1) and 26(2) for appropriate derating factors.
 - (b) For a single circuit fixed to the underside of a ceiling or similar horizontal surface, see Table 22 for the derating factor to be applied to the current-carrying capacities given in Columns 5 to 7.
 - (c) For a single circuit fixed to unperforated cable tray, see Table 24 for the derating factor to be applied to the current-carrying capacities given in Columns 2 to 4.
 - (d) For ambient temperature and depth of laying factors, see Tables 27(1), 27(2), 28(1) and 28(2).
- 6 To calculate the single-phase voltage drop of these configurations, multiply the appropriate three-phase voltage drop value in Table 42, Table 45 or Table 48 by 1.155.
- 7 These ratings are based on 40°C ambient air temperature and 25°C ambient soil temperature. For other conditions, see Clause 3.5.3.
- 8 For conductor sizes up to 10 mm² in Column 23, the values are based on ratings for wiring in underground wiring enclosures.
- 9 Cables within the scope of AS/NZS 5000 (up to 25 mm²) may be rated to the values in this Table covering 90°C insulated cables, subject to—
 - (a) information provided in Note 2; and
 - (b) any other relevant requirements of AS/NZS 3000.

Refer to Paragraph C3 of AS/NZS 3000 for details on simplified protective device selection (MCBs) for overload protection.

CURRENT-CARRYING CAPACITIES

CABLE TYPE:

TWO-CORE SHEATHED (See Note 1) R-HF-110, R-E-110 OR X-HF-110

MAXIMUM CONDUCTOR 110°C

TEMPERATURE:

TEMPERATURE:

INSULATION TYPES:

REFERENCE AMBIENT 40°C IN AIR, 25°C IN GROUND

1	2 3		4	5	6	7	
		Cur	rent-carryi	ng capacit	ty, A		
			Unend	losed			
	Spa	ced	Touc	hing	Exposed to sun		
Conductor size					<u>پُرْ</u> الاتلاتات		
	Cu		С	u	Cu		
mm ²	Solid/ Stranded	Flexible	Solid/ Stranded	Flexible	Solid/ Stranded	Flexible	
1	23	24	22	23	20	21	
1.5 2.5	29 41	30 40	28 39	28 38	25 36	26 34	
			• •				
4 6	55 69	53 67	51 65	50 63	47 59	45 57	
10	95	94	89	88	81	80	
16	126	124	118	116	107	105	
25	168	163	158	154	142	138	
35	206	202	194	190	174	170	
50	251	254	236	238	211	213	
70	317	318	298	299	265	266	
95	392	381	367	357	326	317	
120	455	450	426	421	377	372	
150	519	515	486	482	429	425	
185	598	586	559	547	491	481	
240	708	698	662	652	580	570	
300	815	799	760	745	664	650	
400	941	949	878	884	763	767	
500	1074	1091	1000	1014	866	877	

8	9	10	11	12	13	14	15	
			Current	-carrying capac	ity, A			
	Encl	osed	Thermal	insulation	Buried direct	Underg wiring e		
	Metallio enclosu		Partially surrounded by thermal insulation	Completely surrounded by thermal insulation				
Conductor size	Cu					Ĩ	5	
	C	u				C	u	
mm ²	Solid/ Stranded	Flexible	Cu	Cu	Cu	Solid/ Stranded	Flexible	
1 1.5 2.5	19 24 33	20 24 32	15 19 27	11 14 19	22 28 39	22 28 39	23 29 37	
4 6 10	45 56 76	43 54 75	36 45 60	26 33 45	51 64 85	51 64 85	49 62 84	
16 25 35	102 133 166	100 129 163	81 107 133	59 79 97	145 188 226	111 144 175	109 139 171	
50 70 95	200 256 312	202 257 303	160 205 250		268 330 396	208 260 313	209 259 304	
120 150 185	368 417 486	362 412 474	294 333 389		452 507 573	363 409 468	357 403 456	
240 300 400	588 670 768	577 656 801	470 536 615		665 751 853	554 626 711	541 611 727	
500	905	913	724	—	957	819	820	

TABLE 12 (continued)

NOTES TO TABLE 12:

- 1 Applies to cables with or without earth core, armoured or non-armoured, including neutral screened cables.
- 2 See Tables 3(1), 3(2), 3(3) and 3(4) for cable configurations deemed to have the same current-carrying capacities as those illustrated.
- 3 Derating factors may apply as follows:
 - (a) The current-carrying capacities apply to single circuits. For grouped cable circuits, see Clause 3.5.2 and Tables 22, 24, 25(1), 25(2), 26(1) and 26(2) for approximate derating factors.
 - (b) For a single circuit fixed to the underside of a ceiling or similar horizontal surface, see Table 22 for the derating factor to be applied to the current-carrying capacities given in Column 4 and 5.
 - (c) For a single circuit fixed to unperforated cable tray, see Table 24 for the derating factor to be applied to the current-carrying capacities given in Columns 2 and 3.
 - (d) For ambient temperature and depth of laying factors, see Tables 27(1), 27(2), 28(1) and 28(2).
- 4 To calculate the single-phase voltage drop of these configurations, multiply the appropriate three-phase voltage drop value in Table 42 or Table 48 by 1.155.
- 5 These ratings are based on 40°C ambient air temperature and 25°C ambient soil temperature. For other conditions, see Clause 3.5.3.
- 6 For conductor sizes up to 10 mm² in Column 13 the values are based on ratings for wiring in underground wiring enclosures.

CURRENT-CARRYING CAPACITIES

THREE-CORE AND FOUR-CORE (See Note 1)

INSULATION TYPE:

CABLE TYPES:

THERMOPLASTIC (See Note 2)

MAXIMUM CONDUCTOR **TEMPERATURE:**

75°C

REFERENCE AMBIENT TEMPERATURE:

40°C IN AIR, 25°C IN GROUND

1	2	3	4	5	6	7	8	9	10	11	12	13	
					Current-	carryi	ng capacity	, A					
				Uı	nenclosed					E	nclosed		
		Spaced		Т	ouching		Exp	osed to sur	1	Wiring enclosure in air			
Conductor size								後 〇					
					8				R				
	C	'u		C	u		C	u		С	u		
mm ²	Solid/ Stranded	Flexible	Al	Solid/ Stranded	Flexible	Al	Solid/ Stranded	Flexible	Al	Solid/ Stranded	Flexible	Al	
1	13	13	_	12	13	_	9	10	_	11	11	_	
1.5	16	17		15	16		12	12	—	14	14	—	
2.5	23	22		22	21		17	16	_	20	19	_	
4 6	31 40	30 38		29 37	28 36	_	23 29	22 28	—	25 33	24 32	—	
10	40 54	58 54	_	51	50	_	39	38	_	44	43	_	
16	72	71	56	68	67	53	51	50	40	58	57	45	
25	97	94	75	91	89	71	67	65	52	76	73	59	
35	120	117	93	112	110	87	82	80	64	94	92	73	
50	146	148	113	137	138	106	99	100	77	112	112	87	
70	185	185	143	172	173	134	123	123	96	142	142	111	
95	228	222	177	213	207	165	150	145	116	177	172	137	
120	265	262	206	247	244	192	172	169	134	202	199	157	
150	303	301	235	282	280	219	194	192	151	228	229	177	
185	348	342	272	324	318	253	220	215	172	263	257	206	
240	412	407	323	383	378	301	256	251	200	316	309	248	
300 400	472 544	464 549	372 434	438 504	430 508	345 402	288 326	282 326	227 260	_	_		
	-												
500	616	627	498	571	580	461	363	365	294	—	—		

	TABLE	13	(continued)
--	-------	----	-------------

14	15	16	17	18	19	20	21	22	23	24	25	26	27
Conductor size					A								
			1	Thermal	Buried direct		Underground wiring enclosure						
	Partially surrounded by thermal insulation, unenclosed		Partially surrounded by thermal insulation, in a wiring enclosure		Completely surrounded by thermal insulation, unenclosed		Completely surrounded by thermal insulation, in a wiring enclosure						
					Ø								
											Cu	1	
mm ²	Cu	Al	Cu	Al	Cu	Al	Cu	Al	Cu	Al	Solid/ Stranded	Flexible	Al
1 1.5 2.5	9 12 17		9 11 16		6 8 11		5 7 10		14 18 25		14 18 25	15 18 24	
4 6 10	23 30 41		20 26 35		15 19 25	 	13 16 22		33 42 55		33 42 55	32 40 54	
16 25 35	54 73 90	42 57 69	47 60 75	36 47 58	34 46 56	26 35 43	29 38 47	23 29 36	96 125 150	75 97 117	73 94 114	71 91 112	56 73 89
50 70 95	109 138 170	85 107 132	89 114 142	69 88 110					178 219 263	138 170 204	136 170 208	137 169 201	105 132 161
120 150 185	198 226 259	154 175 203	162 182 211	126 142 165					300 336 379	233 261 296	237 266 304	232 265 296	184 207 237
240 300 400	307 	240 	253 	198 — —					438 493 557	344 388 444	359 404 468	351 394 467	281 318 374
500	—	—	—	_	—	—	—	—	620	501	522	523	422

NOTES TO TABLE 13:

- 1 Applies to cables with or without earth core, armoured or non-armoured, including neutral screened cables.
- 2 The normal operating temperature of thermoplastic cables, including flexible cords installed as installation wiring, is based on a conductor temperature of 75°C. This is due to the risk of thermal deformation of insulation if the cables are clipped, fixed or otherwise installed in a manner that exposes the cable to severe mechanical pressure at higher temperatures.

V-90 and V-90HT insulated cables may be operated up to the maximum permissible temperatures 90°C and 105°C provided that the cable is installed in a manner that is not subject to, or is protected against, severe mechanical pressure at temperatures higher than 75°C. Such applications also allow for cables to be used in—

- (a) locations where the ambient temperatures exceed the normal 40°C, e.g. equipment wiring in luminaires and heating appliances, or in roof spaces affected by high summer temperatures; and
- (b) locations affected by bulk thermal insulation that restricts the dissipation of heat from the cable.
- 3 See Tables 3(1), 3(2), 3(3) and 3(4) for cable configurations deemed to have the same current-carrying capacities as those illustrated.
- 4 Derating factors may apply as follows:
 - (a) The current-carrying capacities apply to single circuits. For grouped cable circuits, see Clause 3.5.2 and Tables 22, 24, 25(1), 25(2), 26(1) and 26(2) for appropriate derating factors.
 - (b) For a single circuit fixed to the underside of a ceiling or similar horizontal surface, see Table 22 for the derating factor to be applied to the current-carrying capacities given in Columns 5 to 7.
 - (c) For a single circuit fixed to unperforated cable tray, see Table 24 for the derating factor to be applied to the current-carrying capacities given in Columns 2 to 4.
 - (d) For ambient temperature and depth of laying factors, see Tables 27(1), 27(2), 28(1) and 28(2).
- 5 To determine the three-phase voltage drop of these configurations, refer to the appropriate value in Table 42, Table 45 or Table 48.
- 6 These ratings are based on 40°C ambient air temperature and 25°C ambient soil temperature. For other conditions, see Clause 3.5.3.
- 7 For conductor sizes up to 10 mm² in Column 23, the values are based on ratings for wiring in underground wiring enclosures.
- 8 Cables within the scope of AS/NZS 5000 (up to 25 mm²) may be rated to the values in the Table 14 covering 90°C insulated cables, subject to—
 - (a) information provided in Note 2; and
 - (b) any other relevant requirements of AS/NZS 3000.

Refer to Paragraph C3 of AS/NZS 3000 for details on simplified protective device selection (MCBs) for overload protection.

CURRENT-CARRYING CAPACITIES THREE-CORE AND FOUR-CORE (See Note 1)

CABLE TYPES:

X-90, X-HF-90, R-EP-90, R-CPE-90, R-HF-90 OR R-CSP-90

MAXIMUM CONDUCTOR 90°C AND 105°C (See Note 2)

TEMPERATURE:

INSULATION TYPES:

40°C IN AIR, 25°C IN GROUND

REFERENCE AMBIENT TEMPERATURE:

1	2	3	4	5	6	7	8	9	10	11	12	13	
	Unenclosed										Enclosed		
		Spaced		Т	ouching		Exposed to sun			Wiring enclosure in air			
Conductor size		\otimes					الأ						
					8								
	Cu		Cu		u		Cu			Cu			
mm ²	Solid/ Stranded	Flexible	Al	Solid/ Stranded	Flexible	Al	Solid/ Stranded	Flexible	Al	Solid/ Stranded	Flexible	Al	
1	16	16		14	15	_	13	13	_	13	14	_	
1.5 2.5	20 28	20 27	_	19 26	19 26		16 23	17 22		16 24	17 23	—	
4	38	36		35	20 34		30	22		30	23	_	
4 6	48	30 46	_	33 45	54 43	_	30 39	37	_	30	37	_	
10	66	66		62	61		53	52		53	52	—	
16	88	87	68	83	81	64	70	69	54	68	67	53	
25	119	116	93	111	108	86	94	92	73	91	89	71	
35	147	144	114	137	135	106	115	113	89	114	111	88	
50	180	182	140	168	170	130	140	142	109	136	136	105	
70	229	230	178	213	214	165	177	177	137	173	173	134	
95	283	275	220	263	256	204	217	211	168	209	202	162	
120	330	327	256	306	303	238	251	248	195	246	242	192	
150 185	377 436	375 428	293 340	350 404	348 396	272 315	285 327	283 320	222 255	277 322	274 314	216 251	
240 300	517 594	511 584	405 467	479 549	472 539	375 432	385 439	379 430	302 345	386	379	303	
400	685	692	546	632	638	504	502	504	400	_	_	_	
500	779	794	629	718	730	579	566	573	457	—	_	_	

6

TABLE 14 (continued)

													<u> </u>
14	15	16	17	18	19	20	21	22	23	24	25	26	27
Conductor size						y, A							
			r	Fhermal i	insulatio	Buried direct		Underground wiring enclosure					
	Partially surrounded by thermal insulation, unenclosed		Partially surrounded by thermal insulation, in a wiring enclosure		Completely surrounded by thermal insulation, unenclosed		Completely surrounded by thermal insulation, in a wiring enclosure						
										9			
										Cu			
mm ²	Cu	Al	Cu	Al	Cu	Al	Cu	Al	Cu	Al	Solid/ Stranded	Flexible	Al
1 1.5 2.5	12 15 21		10 13 19		7 9 13		6 8 12		16 20 29		16 20 29	17 21 28	
4 6 10	28 36 49		24 30 42		18 22 31		15 19 26		37 46 63		37 46 63	36 45 62	
16 25 35	66 89 110	51 69 85	55 73 91	42 57 71	41 56 69	32 43 53	34 46 57	26 36 44	110 143 172	85 111 133	81 107 130	79 103 127	63 83 101
50 70 95	134 170 210	104 132 163	108 138 167	84 107 129					204 251 302	159 195 234	155 193 233	155 193 226	120 150 181
120 150 185	245 280 323	190 218 252	197 222 257	153 172 201					344 385 435	267 299 340	270 304 348	266 300 339	210 236 272
240 300 400	383 	300 	309 	242 					504 567 640	395 446 510	411 463 524	402 452 537	322 365 417
500						_			714	577	601	602	485

NOTES TO TABLE 14:

- 1 Applies to cables with or without earth core, armoured or non-armoured, including neutral screened cables.
- 2 The normal operating temperature of thermoplastic cables, including flexible cords installed as installation wiring, is based on a conductor temperature of 75°C. This is due to the risk of thermal deformation of insulation if the cables are clipped, fixed or otherwise installed in a manner that exposes the cable to severe mechanical pressure at higher temperatures.

V-90 and V-90HT insulated cables may be operated up to the maximum permissible temperatures 90°C and 105°C provided that the cable is installed in a manner that is not subject to, or is protected against, severe mechanical pressure at temperatures higher than 75°C. Such applications also allow for cables to be used in—

- (a) locations where the ambient temperatures exceed the normal 40°C, e.g. equipment wiring in luminaires and heating appliances, or in roof spaces affected by high summer temperatures; and
- (b) locations affected by bulk thermal insulation that restricts the dissipation of heat from the cable.
- 3 For cables with a maximum conductor temperature of 105°C the applicable current ratings are those provided for copper conductors up to and including 10 mm² size.
- 4 See Tables 3(1), 3(2), 3(3) and 3(4) for cable configurations deemed to have the same current-carrying capacities as those illustrated.
- 5 Derating factors may apply as follows:
 - (a) The current-carrying capacities apply to single circuits. For grouped cable circuits, see Clause 3.5.2 and Tables 22, 24, 25(1), 25(2), 26(1) and 26(2) for appropriate derating factors.
 - (b) For a single circuit fixed to the underside of a ceiling or similar horizontal surface, see Tables 26(1) and 26(2) for the derating factor to be applied to the current-carrying capacities given in Columns 5 to 7.
 - (c) For a single circuit fixed to unperforated cable tray, see Table 24 for the derating factor to be applied to the current-carrying capacities given in Columns 2 to 4.
 - (d) For ambient temperature and depth of laying factors, see Tables 27(1), 27(2), 28(1) and 28(2).
- 5 To determine the three-phase voltage drop of these configurations, refer to the appropriate value in Table 42, Table 45 or Table 48.
- 7 These ratings are based on 40°C ambient air temperature and 25°C ambient soil temperature. For other conditions, see Clause 3.5.3.
- 8 For conductor sizes up to 10 mm² in Column 23, the values are based on ratings for wiring in underground wiring enclosures.
- 9 Cables within the scope of AS/NZS 5000 (up to 25 mm²) may be rated to the values in Table 11 covering 90°C insulated cables, subject to—
 - (a) information provided in Note 2; and
 - (b) any other relevant requirements of AS/NZS 3000.

Refer to Paragraph C3 of AS/NZS 3000 for details on simplified protective device selection (MCBs) for overload protection.

CURRENT-CARRYING CAPACITIES

THREE-CORE AND FOUR-CORE SHEATHED (See Note 1)

CABLE TYPES:

R-HF-110, R-E-110 OR X-HF-110

MAXIMUM CONDUCTOR 110°C

TEMPERATURE:

INSULATION TYPES:

REFERENCE AMBIENT TEMPERATURE: 40°C IN AIR, 25°C IN GROUND

8	9	10	11	12	13	14	15					
	Current-carrying capacity, A											
	Encl	osed		insulation	Buried direct	Underground wiring enclosure						
		e wiring re in air	Partially surrounded by thermal insulation	Completely surrounded by thermal insulation								
Conductor size		$\overline{\mathfrak{S}}$					3					
	C	u				Cu						
mm ²	Solid/ Stranded	Flexible	Cu	Cu	Cu	Solid/ Stranded	Flexible					
1 1.5 2.5	16 20 29	17 21 27	13 16 23	9 12 17	19 24 33	19 24 33	20 24 31					
4 6 10	38 47 64	36 46 65	30 38 51	22 28 38	43 53 71	43 53 71	41 51 71					
16 25 35	86 116 140	84 112 137	68 93 112	50 67 83	122 158 190	93 122 146	91 118 143					
50 70 95	174175217217270263		139 173 216		226 277 333	177 217 267	178 217 259					
120 150 185	311 360 411	306 356 402	249 288 329		379 426 481	304 346 391	298 341 381					
240 300 400	498 	489 	398 		558 629 713	463 522 608	453 509 606					
500					797	680	680					

TABLE 15 (continued)

NOTES TO TABLE 15:

- 1 Applies to cables with or without earth core, armoured or non-armoured, including neutral screened cables.
- 2 See Tables 3(1), 3(2), 3(3) and 3(4) for cable configurations deemed to have the same current-carrying capacities as those illustrated.
- 3 Derating factors may apply as follows:
 - (a) The current-carrying capacities apply to single circuits. For grouped cable circuits, see Clause 3.5.2 and Tables 22, 24, 25(1), 25(2), 26(1) and 26(2) for appropriate derating factors.
 - (b) For a single circuit fixed to the underside of a ceiling or similar horizontal surface, see Table 22 for the derating factor to be applied to the current-carrying capacities given in Columns 5 to 7.
 - (c) For a single circuit fixed to unperforated cable tray, see Table 24 for the derating factor to be applied to the current-carrying capacities given in Columns 2 to 4.
- 4 For ambient temperature and depth of laying factors, see Tables 27(1), 27(2), 28(1) and 28(2).
- 5 These ratings are based on 40°C ambient air temperature and 25°C ambient soil temperature. For other conditions, see Clause 3.5.3.
- 6 For conductor sizes up to 10 mm² in Column 13, the values are based on ratings for wiring in underground wiring enclosures.

CURRENT-CARRYING CAPACITIES

CABLE TYPE: FLEXIBLE CORDS

INSULATION TYPES: THERMOPLASTIC OR CROSS-LINKED

60°C

CONDUCTOR TEMPERATURE:

MAXIMUM

REFERENCE AMBIENT 25°C IN AIR TEMPERATURE:

Conductor size	Current-carrying capacity
mm ²	A
0.5	3 (see Note 2)
0.75	7.5
1.0	10
1.5	16
2.5	20
4.0	25

NOTES:

1 Where a flexible cord is wound on a drum, multiply currentcarrying capacity by the appropriate factor, as follows:

Number of layers	1	2	3	4
Derating factor	0.76	0.58	0.47	0.40

- 2 Flexible cords having tinsel conductors with a nominal crosssectional area of 0.5 mm² have a current-carrying capacity of 0.5 A.
- 3 The current-carrying capacity is based on a cable maximum conductor operating temperature of 60°C in order to limit the surface temperatures for the expected use of such cables. Where flexible cords are used as installation wiring, the current ratings are given in Tables 4 to 15 and 17 (see Clause 3.3.2).
- 4 To determine the three-phase voltage drop, refer to the appropriate value in Table 46, Table 47 or Table 48. To determine the single-phase voltage drop, multiply the three-phase value by 1.155.

CURRENT-CARRYING CAPACITIES

CABLE TYPES: CABLES AND FLEXIBLE CORDS

INSULATION TYPES: R-S-150, TYPE 150 FIBROUS OR 150°C RATED FLUOROPOLYMER

1	2	3	4	5			
		Current-carry	rrying capacity, A				
Conductor	Two singl		Three or four single-core or				
size	one tw		three or four core				
size	Unenclosed in air	Enclosed in air	Unenclosed in air	Enclosed in air			
²	(8)		8				
0.5	19	15	15	13			
0.75	24	20	20	16			
1.0	28	23	24	19			
1.5	37	28	31	24			
2.5	50	38	43	32			
4	67	50	58	42			
6	87	67	74	55			
10	120	90	105	76			
16	165	119	140	99			
25	215	160	185	135			
35	265	194	230	163			

- 1 As a conservative alternative to cable manufacturers' recommendations, the values given in this Table may also be applied to fibrous or fluoropolymer insulated cables designed for a maximum operating temperature of 200°C.
- 2 No values are given in Section 4 for voltage drop for these types of cable as they are generally installed for relatively short connections to high temperature equipment. However, on longer cable runs, as the increase in conductor impedance at 150°C is considerable, it may be necessary to take voltage drop into account.
- 3 These ratings are based on 40° C ambient air temperature. For other conditions, see Clause 3.5.3.

CURRENT-CARRYING CAPACITIES

CABLE TYPE:

BARE SINGLE-CORE MIMS CABLES WITH COPPER CONDUCTORS

SHEATH TEMPERATURE: 100°C

1	2	3	4	5	6	7
			Current-carrying	capacity, A		
Conductor size	Vertical spaced— spaced from wall	Flat horizontal— spaced from wall	Flat vertical— clipped to wall	Vertical spaced— spaced from wall	Trefoil— spaced from wall	Flat vertical— clipped to wall
mm ²	00	8	1 R	0 0 0	æ	
			0.6/0.6 kV cables			
1	20	18	16	19	16	15
1.5	26	23	21	25	21	19
2.5	35	31	28	34	28	26
4	47	42	38	45	38	35
		L	1/1 kV cables	I	L	
1.5	30	27	24	29	22	22
2.5	40	36	33	39	33	30
4	54	48	43	52	43	40
6	68	62	55	66	55	50
10	93	84	76	90	75	69
16	125	115	100	120	100	92
25	165	150	135	160	135	125
35	205	185	170	200	165	155
50	260	235	210	250	210	190
70	325	295	265	315	265	240
95	380	345	310	365	315	280
120	445	405	360	430	370	330
150	520	470	420	500	430	385
185	610	550	495	590	505	450
240	730	660	590	705	605	540
300	815	735	660	785	690	600
400	1010	915	820	975	855	745

- 1 The current-carrying capacities given in this Table are based on a maximum operating temperature of 100°C for the external surface of the bare copper sheath. The current-carrying capacities of served cables may be 1.1 times higher than these if they are served with a material that is suitable for a copper sheath temperature of 105°C. See Clause 3.2.2 and Table 1 for conditions, where higher cable operating temperatures may be permitted for bare sheathed cables.
- 2 To determine the three-phase voltage drop, refer to the appropriate value in Table 49. To determine the singlephase voltage drop, multiply the three-phase value by 1.155.
- 3 The current-carrying capacities apply to single circuits. For grouped cable circuits see—
 - (a) Clause 3.5.2 and Tables 22 to 26 for derating factors for served cables; and
 - (b) Clause 3.5.2.2(a) for the treatment of unserved cables.
- 4 For earth sheath return system, temperature rises could be higher. Refer to manufacturer's instructions.
- 5 These ratings are based on 40°C ambient air temperature. For other conditions, see Clause 3.5.3.

CURRENT-CARRYING CAPACITIES

CABLE TYPE:

BARE MULTICORE MIMS CABLES WITH COPPER CONDUCTORS

SHEATH TEMPERATURE: 100°C

1	2	3	4	5	6	7				
			Current-carrying capacity, A							
Conductor size	Two core— spaced from wall	Two core— clipped to wall	Three and four core—spaced from wall	Three and four core—clipped to wall	Seven core— spaced from wall	Seven core— clipped to wall				
mm ²	\odot		$ \otimes$	\otimes						
0.6/0.6 kV cables										
1 1.5 2.5 4	18 23 32 43	16 21 29 40	15 20 27	14 18 26	11 15 20	10 14 19 —				
			1/1 kV cables			•				
1.5 2.5 4	27 36 48	25 33 44	22 30 40	21 28 38	16 22 30	15 20 28				
6 10 16	61 85 115	57 78 105	51 71 96	48 67 90	 					
25	150	140	125	120	—	—				

- 1 The current-carrying capacities given in this Table are based on a maximum operating temperature of 100°C for the external surface of the bare copper sheath. The current-carrying capacities of served cables may be 1.1 times higher than these if they are served with a material which is suitable for a copper sheath temperature of 105°C. See Clause 3.2.2 and Table 1 for conditions where higher cable operating temperatures may be permitted for bare sheathed cables.
- 2 To determine the three-phase voltage drop, refer to the appropriate value in Table 49. To determine the single-phase voltage drop, multiply the three-phase value by 1.155.
- 3 The current-carrying capacities apply to single circuits. For grouped cable circuits see-
 - (a) Clause 3.5.2 and Tables 22 to 26 for derating factors for served cables; and
 - (b) Clause 3.5.2.2(a) for the treatment of unserved cables.
- 4 For earth sheath return system, temperature rises could be higher. Refer to manufacturer's instructions.
- 5 These ratings are based on 40°C ambient air temperature. For other conditions, see Clause 3.5.3.

75

TABLE20

CURRENT-CARRYING CAPACITIES

CABLE TYPES:

AERIAL CABLES WITH COPPER CONDUCTORS

1	2	3	4	5	6	7	8 9 10			
				Current-ca	arrying c	apacity,	A			
Conductor size (mm ²)	Bare	conduct	ors		C insulat ngle-core		twisto neutra two-co	sulated tw ed, single- al screened re or three el-webbed	core and e-core	
or standing (No./mm)		00 000 0 00			00 000 0 00		00 000			
	Still air	1 m/s wind	2 m/s wind	Still air 1 m/s 2 m/s wind			Still air	1 m/s wind	2 m/s wind	
7/1.00 6 7/1.25	37 38 49	74 76 97	87 89 115	 	 70 	 79 	 	 50 	 59 	
10 16 7/1.75	53 71 76	105 139 148	123 164 174	48 65 —	96 127 —	109 145 —	40 52	68 90	80 107 —	
7/2.00 25 35	89 96 117	174 186 226	205 220 267		 167 203	 191 232		 120 145	— 142 171	
7/2.75 50 19/1.75	133 142 142	257 272 272	303 321 322	130 —	 242 	 276 	97 —	 173 	 205 	
19/2.00 70 7/3.50	168 179 181	321 341 345	379 403 407	 164 	 303 	 347 	 119 	217 —	257 —	
7/3.75 95 37/1.75	197 216 216	376 410 410	444 484 485	 198 	 360 	 413 				
19/2.75 120 19/3.00	251 255 280	474 481 528	560 568 625	 234 	 423 	 485 				
150 185 37/2.50	290 336 339	547 628 634	646 742 750	267 311	477 543	546 622 —				

(continued)

11	12	13	14	15	16	17	18	19	20		
			(Current-c	arrying o	capacity,	A				
Conductor size (mm ²) or	four		sted and core or ıtral	single	sulated t ABC and e-core ne eened ca	utral	and fou two-co	sulated th ir core AB re, three-c e neutral s cable	C and ore or		
standing		&						&			
(No./mm)		88			00			88			
	Still air	1 m/s wind	2 m/s wind	Still air	1 m/s wind	2 m/s wind	Still air	Still air 1 m/s 2 m wind wi			
7/1.00		_	_		_	_		_	_		
6	26	48	56	36	56	66	32	54	62		
7/1.25			_		_	_		_	_		
10	36	65	76	48	77	90	44	73	84		
16 7/1.75	47	85	100	64	101	119	58	96	111		
7/2.00											
25	63	113	133	84	135	158	77	127	148		
35	76	136	160						_		
7/2.75		_	_		_	_		_	_		
50	92	163	192		_	_		_	_		
19/1.75	—	—	—	—	—	—	—	—	—		
19/2.00		—	_		—	—		_	—		
70	115	204	242	—	—	—	—	_	—		
7/3.50			_		_	_		_	_		
7/3.75 95											
37/1.75									_		
19/2.75											
120		_	_		_	_		_	_		
19/3.00	—	—	—	—	—		—	—	—		
150	—		—		—		—	—			
185	—	—		_					—		
37/2.50	—						—		—		

TABLE 20 (continued)

7

NOTES:

1 The current-carrying capacities are based on an ambient temperature of 40°C, a maximum conductor temperature of 75°C for PVC or 80°C for XLPE, and exposure to direct sunlight having an intensity of 1000 W/m². In addition the values for bare conductors are based on black (weathered) conductors and the values for insulated conductors are based on the use of black PVC or XLPE.

2 Under normal circumstances there will always be some air movement and a minimum rating for 1.0 m/s wind is recommended.

- 3 To determine the three-phase voltage drop of these configurations, refer to the following Tables:
 - (a) For twisted cables, see Table 40.
 - (b) For parallel and webbed cables, see Table 41.
 - (c) For bare and single insulated cables, see Table 50.
- 4 These ratings are based on 40°C ambient air temperature. For other conditions, see Clause 3.5.3.

TABLE 21CURRENT-CARRYING CAPACITIES

CABLE TYPES: AERIAL CABLES WITH ALUMINIUM CONDUCTORS

1	2	3	4	5	6	7	8	9	10	
				Curre	nt-carryi	ng, A				
Conductor size (mm ²)	Bare	conducto	ors		PVC insulated single-core			PVC insulated two-core twisted, single-core neutral screened and two-core or three-core parallel-webbed cable		
or standing (No./mm)						00 000				
	Still air	1 m/s wind	2 m/s wind	Still air	1 m/s wind	2 m/s wind	Still air	1 m/s wind	2 m/s wind	
16 25 35	56 76 92	109 146 177	128 173 209	49 67 82	97 128 156	111 146 178	41 53 63	71 91 111	84 108 132	
7/2.50 7/2.75 50	93 105 111	180 202 214	213 239 252	 99	 186	 213	 75	 134	 158	
7/3.00 70 7/3.75	117 141 156	225 268 297	266 317 350	 126 	 233 	 267 	92 —	 167 	 158 	
95 7/4.50 120	172 196 200	327 370 378	386 438 447	155 180	282 326	323 — 374	110 	203 	243 	
7/4.75 150 19/3.25	209 228 244	395 429 459	467 507 542	 206 	 367 	420 —		 		
185 19/3.50	264 269	493 503	583 595	239	419	479 —			—	

(continued)

TABLE21	(continued)
---------	-------------

11	12	13	14	15	16	17	18	19	20
			Cur	rent-carr	ying cap	pacity, A	L		
Conductor size (mm ²) or	and four-	llated thr core twist e, three-co neutral s cable	ted and ore or	two co single-	E insula re ABC core ne ened ca	and utral	XLPE insulated three core and four core ABC and two-core, three-core or four-core neutral screened cable		
standing (No./mm)		æ						ക	
(110./1111)		88			00			88	
	Still air	1 m/s wind	2 m/s wind	Still air	1 m/s wind	2 m/s wind	Still air	1 m/s wind	2 m/s wind
16 25 35	36 48 59	66 87 105	77 101 123	49 64 78	78 103 125	91 121 147	44 59 72	74 97 118	86 113 137
7/2.50 7/2.75 50	 71	 126	— — 148	 94	— — 151	 178	 	— — 142	 165
7/3.00 70 7/3.75	 89 	 157 	 185 	 116 	 189 	 223	 110 	 177 	 207
95 7/4.50 120	108 	191 	229 	141 	231 	274 	136 157	216 249	257 300
7/4.75 150 19/3.25							 179 	 282 	 343
185 19/3.50	_					_			_

- 1 The current-carrying capacities are based on an ambient air temperature of 40°C, a maximum conductor temperature of 75°C for PVC or 80°C for XLPE, and exposure to direct sunlight having an intensity of 1000 W/m². In addition the values for bare conductors are based on black (weathered) conductors and the values for insulated conductors are based on the use of black PVC or XLPE.
- 2 Under normal circumstances there will always be some air movement and a minimum rating for 1.0 m/s wind is recommended.
- 3 To determine the three-phase voltage drop of these configurations, refer to the following Tables:
 - (a) For twisted cables, see Table 43.
 - (b) For parallel and webbed cables, see Table 44.
 - (c) For bare and single insulated cables, see Table 51.
- 4 These ratings are based on 40°C ambient air temperature. For other conditions, see Clause 3.5.3.

17

18

0.39

0.70

0.90

0.61

0.85

0.52 0.50 0.48 0.45 0.43 0.41

0.70

0.90

0.61

0.85

0.70

0.90

0.61

0.85

0.70

0.90

0.61

0.85

0.70

0.90

0.61

0.85

18

20 or

more

0.38

0.70

0.90

0.61

0.85

TABLE 22

79

DERATING FACTORS FOR BUNCHED CIRCUITS

CABLE TYPES:

SINGLE-CORE AND MULTICORE IN AIR OR IN WIRING ENCLOSURES

INSTALLATION CONDITIONS:

Bunched on a surface

Touching

(see Notes 5

(see Notes 5

Spaced

and 6)

Touching

Spaced

and 6)

or enclosed

Single

wall or

Single

layer

under

ceiling

floor

layer on

1

Item No.

1

3

4

5

6

2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
								Dera	ting f	actors	5				
	ngement of ables						Ν	Numb	er of (circui	ts				
-	tes 1 and 2)	1	2	3	4	5	6	7	8	9	10	12	14	16	
Bunched	in air	1.00	0.87	0.75	0.72	0.70	0.67				_	_		_	

0.60 0.57 0.54

0.72

0.90

0.64

0.85

0.72

0.90

0.63

0.85

0.71

0.90

0.62

0.85

0.70

0.90

0.61

0.85

0.70 0.65

0.75

0.90

0.68

0.85

0.73

0.90

0.66

0.85

0.79

0.90

0.72

0.85

1.00

1.00

1.00

0.95

0.95

0.80

0.85

0.94

0.81

0.85

- 1 Where the cable in the arrangements shown in Columns 2 and 3 consist of n loaded conductors, the conductors may be considered as—
 - (a) $\frac{n}{2}$ groups of two loaded conductors; or
 - (b) $\frac{n}{2}$ groups of three loaded conductors.
- 2 Earthing conductors, lightly loaded neutral conductors of three-phase circuits and conductors subject only to momentary loading, such as control wiring, are not taken into account when considering the number of circuits.
- 3 These factors are based on uniform groups of cables, equally loaded. In accordance with Clause 3.5.6 the factors for circuits subject to intermittent or varying loads may be higher.
- 4 These factors are applicable to numbers of circuits comprising the following:
 - (a) Groups of two, three or four single-core cables.
 - (b) Multicore cables.
 - (c) Cables passing more than once through the same group of cables or wiring enclosures and circuits connected in parallel in accordance with Clause 3.5.2.7.
- 5 'Spaced' means a clearance of one cable diameter between cable surfaces of adjacent cables. Where the cables concerned are not of the same size, the spacing will be based on the largest cable diameter in the adjacent groups.
- 6 No derating factor is applicable for the minimum spacings specified in Clause 3.5.2.2(c) and Figure 1.

TABLE23 **DERATING FACTORS FOR CIRCUITS**

CABLE TYPE: INSTALLATION

IN TRAYS, RACKS, CLEATS OR OTHER SUPPORTS IN AIR

CONDITIONS:

1	2	3	4	5	6	7	8	
			Number of	Arrangements of	Derating factors			
Item No.	Installa	tion	tiers or rows of cable	cables in a circuit	Number of circuits per tier or 1			
110.			supports	(see Note 2)	1	2	3	
1		000000	1	-2 or 3 cables in	0.95	0.85	0.84	
2	Unperforated trays	. ക്ക	2	horizontal	0.92	0.83	0.79	
3		(See Note 6)	3	formation	0.91	0.82	0.76	
4		.000000	1	2 or 3 cables in	0.97	0.89	0.87	
5	Perforated trays		2	horizontal	0.94	0.85	0.81	
6		(See Note 6)	3	formation	0.93	0.84	0.79	
7			1	2 or 3 cables in	1.00	0.95	0.94	
8	Ladder supports, racks and cleats		2	horizontal formation	0.95	0.90	0.88	
9		(See Note 6)	3		0.95	0.89	0.85	
10	Vertical perforated	000	1	2 or 3 cables in vertical formation	0.94	0.85	_	
11	trays	(See Note 7)	2		0.92	0.83	_	
12			1		0.95	0.95	0.94	
13	Unperforated trays		2	2 or 3 cables in horizontal	0.92	0.91	0.87	
14		(See Note 6)	3	formation	0.91	0.90	0.85	
15			1	2 or 3 cables in	0.97	0.97	0.96	
16	Perforated trays		2	horizontal	0.94	0.93	0.89	
17		(See Note 6)	3	formation	0.93	0.92	0.86	
18		• _ • ′	1		1.00	1.00	1.00	
19	Loddon cumports	$-\frac{\infty}{\infty}$	2	2 or 3 cables in	0.95	0.95	0.93	
20	-Ladder supports	(See Note 6)	3	horizontal formation	0.95	0.94	0.90	
21		 	1		1.00	0.91	0.89	
22	Vertical perforated trays	(See Note 7)	2	2 or 3 cables in vertical formation	1.00	0.90	0.86	

SINGLE-CORE

8

NOTES TO TABLE 23:

- 1 *D* equals the cable outside diameter.
- 2 Earthing conductors, lightly loaded neutral conductors of three-phase circuits and conductors subject only to momentary loading, such as control wiring, shall not be taken into account when considering the number of circuits.
- 3 These derating factors are to be applied to groups of two, three or four single-core cables for which the current-carrying capacity for a single circuit is obtained from Columns 5 to 7 of Tables 4, 5, 7 and 8, Columns 4 and 5 of Tables 6 and 9 and Tables 16 to 19. The factors are also applicable to groups of single-core cables making up parallel circuits in accordance with Clause 3.5.2.7.
- 4 These factors are based on uniform groups of cables, equally loaded. In accordance with Clause 3.5.6, the factors for circuits subject to intermittent or varying loads may be higher.
- 5 These factors are applicable to single layers of cables or trefoil groups, as shown in Column 2. Where there is more than one layer on the same tray or ladder support, Table 22 may be used.
- 6 The vertical spacing of horizontal trays and ladder supports shall be not less than 300 mm, see also Figure 1.
- 7 The horizontal spacing of vertical trays mounted back-to-back shall be not less than 230 mm.
- 8 No derating factor is applicable for the minimum spacings specified in Clause 3.5.2.2(c) and Figure 1(a).

TABLE24 **DERATING FACTORS FOR CIRCUITS**

MULTICORE

CABLE TYPE:

IN TRAYS, RACKS, CLEATS OR OTHER SUPPORTS IN AIR

1	2	3	4	5	6	7	8	9	10		
-			Number of tiers			Derati	ng facto	ſS			
Item No.	Inst	allation	or rows of cable	Number of cables							
			supports	1	2	3	4	6	9		
1	_	_ කිහිහි	1	0.97	0.85	0.78	0.75	0.71	0.68		
2	_	Touching	2	0.97	0.84	0.76	0.73	0.68	0.63		
3	Unperforated	(see Note 6)	3	0.97	0.83	0.75	0.72	0.66	0.61		
4	trays		1	0.97	0.96	0.94	0.93	0.90			
5	_	Braced	2	0.97	0.95	0.92	0.90	0.86			
6		(see Note 6)	3	0.97	0.94	0.91	0.89	0.84	_		
7		<u>&&</u>	1	1.00	0.88	0.82	0.78	0.76	0.73		
8		Touching	2	1.00	0.87	0.80	0.76	0.73	0.68		
9	Perforated	(see Note 6)	3	1.00	0.86	0.79	0.75	0.71	0.66		
10	trays		1	1.00	1.00	0.98	0.95	0.91			
11			2	1.00	0.99	0.96	0.92	0.87			
12		Spaced (see Note 6)	3	1.00	0.98	0.95	0.91	0.85	_		
13		6888	1	1.00	0.87	0.82	0.80	0.79	0.78		
14		Touching	2	1.00	0.86	0.80	0.78	0.76	0.73		
15	Ladder supports,	(see Note 6)	3	1.00	0.85	0.79	0.76	0.73	0.70		
16	racks and		1	1.00	1.00	1.00	1.00	1.00	_		
17	cleats		2	1.00	0.99	0.98	0.97	0.96			
18		Spaced (see Note 6)	3	1.00	0.98	0.97	0.96	0.93			
19		88 88 80	1	1.00	0.88	0.82	0.77	0.73	0.72		
20	Vertical perforated	Touching (see Note 7)	2	1.00	0.88	0.81	0.76	0.72	0.70		
21	trays		1	1.00	0.91	0.89	0.88	0.87			
22		Spaced (see Note 7)	2	1.00	0.91	0.88	0.87	0.86			

NOTES TO TABLE 24:

1 *D* equals the cable outside diameter or in the case of a flat multicore cable the maximum dimension of the cable.

83

- 2 Earthing conductors, lightly loaded neutral conductors of three-phase circuits and conductors subject only to momentary loading, such as control wiring, shall not be taken into account when considering the number of circuits.
- 3 These derating factors are to be applied to groups of multicore cables for which the current-carrying capacity for a single circuit is obtained from Columns 2 to 4 of Tables 10, 11, 13 and 14, Columns 2 and 3 of Tables 12 and 15 and Tables 16 to 19. The factors are also applicable to groups of multicore cables making up parallel circuits in accordance with Clause 3.5.2.7.
- 4 These factors are applicable to uniform groups of cables, equally loaded. In accordance with Clause 3.5.6 the factors for circuits subject to intermittent or varying loads may be higher.
- 5 These factors are applicable to single layers of cables as shown in Column 2. Where there is more than one layer on the same tray or ladder support, Table 22 may be used.
- 6 The vertical spacing of horizontal trays and ladder supports shall be not less than 300 mm.
- 7 The horizontal spacing of vertical trays mounted back-to-back shall be not less than 230 mm.
- 8 No derating factor is applicable for the minimum spacings specified in Clause 3.5.2.2(c) and Figure 1(b).

TABLE 25(1)

DERATING FACTORS FOR GROUPS OF CIRCUITS

CABLE TYPE:

SINGLE-CORE

INSTALLATION CONDITIONS:

BURIED DIRECT IN GROUND

1	2	3	4	5	6	7	
Number of			\otimes			xxx xxx	
circuits			Derati	ng factors			
	Touc	hing		Distance	e (S), m		
	1000		0.15	0.30	0.45	0.60	
	Trefoil	Laid flat	0.10	0.00	0110	0.00	
2	0.78	0.81	0.83	0.88	0.91	0.93	
3	0.66	0.70	0.73	0.79	0.84	0.87	
4	0.61	0.64	0.68	0.74	0.81	0.85	
5	0.56	0.60	0.64	0.73	0.79	0.83	
6	0.53	0.57	0.61	0.71	0.78	0.82	
7	0.50	0.54	0.59	0.69	0.76	0.82	
8	0.49	0.53	0.57	0.68	0.76	0.81	
9	0.47	0.51	0.56	0.67	0.75	0.81	
10	0.46	0.50	0.55	0.67	0.75	0.80	
	0.44	0.49	0.54	0.66	0.74	0.80	
11		0.48	0.53	0.66	0.74	0.80	

TABLE 25(2)

DERATING FACTORS FOR GROUPS OF CIRCUITS

CABLE TYPE:

MULTICORE

INSTALLATION CONDITIONS:

BURIED DIRECT IN GROUND

1	2	3	4	5	6						
Number of			<u>s</u>	\bigotimes							
cables in group		Derating factors									
			Distance	(S), m							
	Touching	0.15	0.30	0.45	0.60						
2	0.81	0.87	0.91	0.93	0.95						
3	0.70	0.78	0.84	0.88	0.90						
4	0.63	0.74	0.81	0.86	0.89						
5	0.59	0.70	0.78	0.84	0.87						
6	0.55	0.68	0.77	0.83	0.87						
7	0.52	0.66	0.75	0.82	0.86						
8	0.50	0.64	0.75	0.81	0.86						
9	0.48	0.63	0.74	0.81	0.85						
10	0.47	0.62	0.73	0.80	0.85						
11	0.45	0.61	0.73	0.80	0.85						
12	0.44	0.60	0.72	0.80	0.84						

NOTES:

1 For derating factors applicable to other arrangements of single-core and multicore cables laid direct in the ground, refer to ERA Report 69-30 or alternative specifications.

2 The derating factors have been determined from the hottest cable in the group and assume that all cables are of the same thermal grade of insulation.

TABLE 26(1)

DERATING FACTORS FOR GROUPS OF CIRCUITS

CABLE TYPE:

SINGLE-CORE

INSTALLATION CONDITIONS: IN UNDERGROUND WIRING ENCLOSURES—ENCLOSED SEPARATELY

1	2	3	4
Number of circuits			
circuits –		Derating factor	
	Transling	Dista	nce (S), m
	Touching	0.45	0.60
2	0.87	0.91	0.93
3	0.78	0.84	0.87
4	0.74	0.81	0.85
5	0.70	0.79	0.83
6	0.69	0.78	0.82
7	0.67	0.76	0.82
8	0.66	0.76	0.81
9	0.65	0.75	0.81
10	0.64	0.75	0.80
11	0.63	0.74	0.80
12	0.63	0.74	0.80

TABLE 26(2)

DERATING FACTORS FOR GROUPS OF CIRCUITS

CABLE TYPES:

SINGLE-CORE OR MULTICORE

INSTALLATION CONDITIONS:

IN UNDERGROUND WIRING ENCLOSURES—MULTICORE CABLES ENCLOSED SEPARATELY OR MORE THAN ONE SINGLE-CORE CABLE PER WIRING ENCLOSURE

1	2	3	4	5					
Number of									
circuits	Derating factor								
			Derating factor Distance (S), m						
	Touching	0.30	0.45	0.60					
2	0.90	0.93	0.95	0.96					
3	0.83	0.88	0.91	0.93					
4	0.79	0.85	0.89	0.92					
5	0.75	0.83	0.88	0.91					
6	0.73	0.82	0.87	0.90					
7	0.71	0.81	0.86	0.89					
8	0.70	0.80	0.85	0.89					
9	0.68	0.79	0.85	0.89					
10	0.67	0.79	0.85	0.89					
11	0.66	0.78	0.84	0.88					
12	0.66	0.78	0.84	0.88					

NOTE: For derating factors applicable to other arrangements of cables in underground wiring enclosures, refer to ERA Report 69-30 or alternative specifications.

Accessed by North Metropolitan TAFE on 10 Mar 2017 (Document currency not guaranteed when printed)

TABLE 27(1)

RATING FACTORS

VARIANCE: **INSTALLATION**

AIR AND CONCRETE SLAB AMBIENT TEMPERATURES

CABLES IN AIR OR HEATED CONCRETE SLABS

CONDITIONS:

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
Conductor		Rating factor																			
tempera- ture			-	-	Air a	and co	oncre	te slal	b amb	ient t	empe	ratur	e (see	Notes	1, 2	and 3), °C	-			
°C	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	100	110	120	130	140
150	1.11	1.09	1.07	1.04	1.02	1.0	0.98	0.95	0.93	0.90	0.88	0.85	0.83	0.80	0.77	0.74	0.69	0.60	0.52	0.43	0.30
110	1.16	1.13	1.10	1.07	1.04	1.0	0.96	0.93	0.89	0.85	0.80	0.76	0.71	0.65	0.60	0.53	0.38	—	—	_	—
90	1.26	1.20	1.15	1.10	1.05	1.0	0.94	0.88	0.81	0.73	0.65	0.57	0.47	0.34	0.19	—	—	—	—	—	—
80	1.31	1.25	1.19	1.12	1.06	1.0	0.92	0.84	0.76	0.66	0.56	0.45	0.27			_				_	_
75	1.35	1.28	1.21	1.14	1.07	1.0	0.91	0.82	0.72	0.60	0.49	0.37	—	—	—	—	—	—	—	—	

NOTES:

1 For heated concrete slabs, the ambient temperature shall be taken as the operating temperature of the slab.

The normal usage of high temperature insulation cables is in ambient air temperatures greater than 40°C, see Table 17. 2

3 For cables with a maximum permissible operating temperature above the normal use temperatures specified in Tables 3(1), 3(2), 3(3) and 3(4), derating may not be necessary, see Notes to Table 1 for further details.

TABLE 27(2)

RATING FACTORS

VARIANCE: SOIL AMBIENT TEMPERATURE CABLES BURIED DIRECT IN GROUND OR IN UNDERGROUND **INSTALLATION CONDITIONS:** WIRING ENCLOSURES

1	2	3	4	5	6	7	8					
Conductor	Rating factor											
temperature		Soil ambient temperature, °C										
°C	10	15	20	25	30	35	40					
110	1.08	1.06	1.03	1.0	0.97	0.94	0.91					
90	1.11	1.07	1.03	1.0	0.97	0.93	0.89					
80	1.13	1.09	1.04	1.0	0.96	0.91	0.85					
75	1.14	1.10	1.05	1.0	0.95	0.89	0.83					

TABLE 28(1)

RATING FACTORS

CABLE TYPES:

VARIANCE:

SINGLE-CORE OR MULTICORE **DEPTH OF LAYING**

BURIED DIRECT IN GROUND

INSTALLATION CONDITIONS:

1	2	3	4
		Rating factor	
Depth of laying		Conductor size, mm ²	
m	Up to 50	Above 50 up to 300	Above 300
0.5	1.00	1.00	1.00
0.6	0.99	0.98	0.97
0.8	0.97	0.96	0.94
1.0	0.95	0.94	0.92
1.25	0.94	0.92	0.90
1.5	0.93	0.91	0.89
1.75	0.92	0.89	0.87
2.0	0.91	0.88	0.86
2.5	0.90	0.87	0.85
3.0 or more	0.89	0.86	0.83

NOTE: The ambient temperature at the surface is to be taken at 40°C and not 25°C as at a depth of 0.5 m.

TABLE 28(2)

RATING FACTORS

CABLE TYPES:

DEPTH OF LAYING

SINGLE-CORE OR MULTICORE

INSTALLATION

VARIANCE:

IN UNDERGROUND WIRING ENCLOSURES

CONDITIONS:

1	2	3
Depth of laying	Ratin	g factor
m	Single-core*	Multicore
0.5	1.00	1.00
0.6	0.98	0.99
0.8	0.95	0.97
1.0	0.93	0.96
1.25	0.90	0.95
1.5	0.89	0.94
1.75	0.88	0.94
2.0	0.87	0.93
2.5	0.86	0.93
3.0 or more	0.85	0.92

* These rating factors apply to single-core cables enclosed

separately, or grouped in a single wiring enclosure.

NOTE: The ambient temperature at the surface is to be taken as 40° C and not 25° C as at a depth of 0.5 m. For depth less than 0.5 m, see Table 3(4).

TABLE 29 RATING

FACTORS

VARIANCE: INSTALLATION CONDITIONS:

THERMAL RESISTIVITY OF THE SOIL (FROM 1.2°C.m/W)

BURIED DIRECT IN GROUND AND IN UNDERGROUND WIRING ENCLOSURES

1	2	3	4	5	6					
	Rating factor									
Thermal resistivity of soil °C.m/W	Multicore cable buried direct	Two or three single-core cables buried direct	Multicore cable in a wiring enclosure	Two single- core cables in a wiring enclosure*	Three single-core cables in a wiring enclosure*					
0.8	1.09	1.16	1.03	1.06	1.08					
0.9	1.07	1.11	1.02	1.04	1.06					
1.0	1.04	1.07	1.02	1.03	1.04					
1.2	1.00	1.00	1.00	1.00	1.00					
1.5	0.92	0.90	0.95	0.94	0.92					
2.0	0.81	0.80	0.88	0.86	0.83					
2.5	0.74	0.72	0.83	0.80	0.77					
3.0	0.69	0.66	0.78	0.75	0.71					

* These rating factors apply to single-core cables enclosed separately, or grouped in a single wiring enclosure.

NOTE: See Clause 3.5.5 for additional information on thermal resistivity of soil.

SECTION 4 VOLTAGE DROP

4.1 GENERAL

The provisions of this Section apply to the selection of conductor sizes with regard to voltage drop.

NOTE: AS/NZS 3000 imposes limitations on circuit arrangements in order to restrict excessive voltage drop between supply and load.

Clauses 4.2 and 4.3 describe a simplified method of determining the voltage drop for use with Tables 40 to 51 for applications where only the route length and load current of balanced circuits are known.

Clauses 4.4 and 4.5 describe a more accurate method of determining the voltage drop for use with Tables 30 to 39 where the cable size is known or anticipated.

Clause 4.6 describes a method for determining the voltage drop where unbalanced load current conditions occur.

4.2 DETERMINATION OF VOLTAGE DROP FROM MILLIVOLTS PER AMPERE METRE

The voltage drop (mV/A.m) values given in Tables 40 to 51 are for various cable types and configurations and maximum operating temperatures.

In applying these voltage drop values, the smallest permissible conductor is the smallest that satisfies the following equations:

$$V_{\rm c} = \frac{1000V_{\rm d}}{L \times I} \qquad \dots 4.2(1)$$

$$V_{\rm d} = \frac{L \times I \times V_{\rm c}}{1000} \qquad \dots 4.2(2)$$

 $V_{\rm p} \ge {\rm sum \ of \ } V_{\rm d}$ on circuit run

where

 V_c = the millivolt drop per ampere-metre route length of circuit, as shown in the tables for various conductors, in millivolts per ampere metre (mV/A.m)

NOTES:

1 To convert single-phase voltage drop (mV/A.m) values to three-phase values, multiply the single-phase values by $0.866 \left(\frac{\sqrt{3}}{2} \right)$. To convert three-phase values to single-phase values,

multiply the three-phase values by $1.155 \left(\frac{2}{\sqrt{2}}\right)$.

- 2 Paragraph C4 and Table C7 of AS/NZS 3000:2007 details a simplified method of calculating the voltage drop for PVC cables up to 95 mm², operating at 75°C with maximum values of V_c . The method allows the addition of single phase and three phase percentages.
- $V_{\rm d}$ = actual voltage drop, in volts
- $V_{\rm p}$ = permissible voltage drop on the circuit run, e.g. 5% of supply voltage, in volts
- L = route length of circuit, in metres
- I = the current to be carried by the cable, in amperes

The voltage drop values in Tables 40 to 51 may not be applicable under the following conditions:

- (a) Where the cable operating temperature is lower than the maximum temperature permitted for the insulation material. See Clause 4.4 for a method of determining the cable operating temperature for use with the tables.
- (b) Where the load power factor and cable power factor do not give rise to conditions for maximum voltage drop, or the load power factor for larger size conductors varies from 0.8 lagging. See Clause 4.5 for a method of determining the voltage drop where other power factor values are known to be consistent.
- (c) Where out-of-balance load conditions exist. See Clause 4.6 for a method of determining the actual voltage drop on a circuit where out-of-balance loads are known to be consistent.

4.3 DETERMINATION OF VOLTAGE DROP FROM CIRCUIT IMPEDANCE

4.3.1 General

Voltage drop in a circuit represents the vectorial difference in voltage between the origin or supply end and the load end. For the purpose of determining the maximum voltage drop value in Clause 4.2, the voltage drop (V_d) has been related to the impedance of the cables forming the circuit when the power factor of the cable is equal to the power factor of the load, in which case—

$$V_{\rm d} = IZ_{\rm c} \qquad \dots 4.3(1)$$

where

- $V_{\rm d}$ = voltage drop in cable, in volts
- I = current flowing in cable, in amperes
- Z_c = impedance of cable, in ohms

$$= \sqrt{(R^2_{\rm c} + X^2_{\rm c})}$$

where

- R_c = cable resistance, in ohms; a function of the material, size and temperature of the conductors
- X_c = cable reactance, in ohms; a function of the conductor shape and cable spacing
 - = 0, for direct current conditions

The reactance X_c and resistance R_c of cables is expressed in this Standard as ohms per kilometre, which enables the total impedance Z_c for any given cable route length L to be readily calculated.

Therefore, the maximum volt drop in a cable, when the power factor of the cable is equal to the power factor of the load is obtained by multiplying the cable impedance Z_c by the length of cable and the current as follows:

$$V_{\rm d} = \frac{ILZ_{\rm c}}{1000} \qquad \dots 4.3(2)$$

where

L = route length, in metres, see Clause 1.5.6

 $V_{\rm d}$ = voltage drop in cable, in volts

 Z_c = impedance of cable, in ohms/km

4.3.2 Single-phase, two-wire supply system

For a single-phase circuit the impedance of the active and neutral conductors is taken into account. As these conductors are of the same material and generally the same size, the voltage drop on the circuit is twice what it would be for a single cable—

$$V_{dI\varphi} = \frac{ILZc}{1000} \text{ or } \frac{IL(2Z)}{1000^{c}} \qquad \dots 4.3(3)$$

4.3.3 Three-phase, three-wire or four-wire supply system

For a balanced three-phase circuit no current is flowing in the neutral conductor and at any given instant the current flowing in one active conductor will be balanced by the currents flowing in the other active conductors. The voltage drop per phase to neutral is the voltage drop in one cable and the voltage drop between phases is therefore—

$$V_{d3\phi} = \frac{\sqrt{3ILZ_{c}}}{1000} \text{ or } \frac{IL\sqrt{3Z_{c}}}{1000} \qquad \dots \ 4.3(4)$$

As the single-phase voltage drop (mV/A.m) values represent $2Z_c$ and the three-phase voltage drop (mV/A.m) values represent $\sqrt{3}Z_c$, then the following conversions may be used:

- (a) Single-phase voltage drop (mV/A.m) value = 1.155 × three-phase voltage drop (mV/A.m) value.
- (b) Three-phase voltage drop (mV/A.m) value = 0.866 × single-phase voltage drop (mV/A.m) value.

4.3.4 Two-phase, three-wire, earthed neutral 120° supply system

For a balanced two-phase circuit of this type the current flowing in the neutral conductor will balance the currents flowing in the active conductors. The voltage drop may be assessed on a single-phase basis by summing the voltage drop in one active conductor (IZ_c) with the in-phase component of voltage drop in the neutral $(0.5IZ_c)$, i.e.—

$$V_{\rm d} = \frac{ILZ_{\rm c} + 0.5 ILZ_{\rm c}}{1000}$$

= $\frac{1.5(ILZ_{\rm c})}{1000}$... 4.3(5)
= $0.75V_{\rm dl\phi}$

4.3.5 Single-phase, three-wire, earthed centre-tapped 180° supply system

117

For a balanced single-phase circuit of this type no current is flowing in the neutral or centretapped conductor. Therefore the voltage drop on a single-phase basis will only be that associated with the current flowing in one active conductor, i.e.—

$$V_{\rm d} = \frac{c}{1000} \dots 4.3(6)$$

= 0.5 V_{d1\u03c6}

4.4 DETERMINATION OF VOLTAGE DROP FROM CABLE OPERATING TEMPERATURE

As described in Clause 3.2.2 and Table 1 of this Standard, the sustained cable currentcarrying capacities given in Tables 4 to 19 are based on cables operating at the maximum conductor temperature permitted by the cable insulation material when installed in specified ambient conditions. In many situations, however, the cable operating temperature is considerably less than the maximum figure. Some situations where this will occur are as follows:

- (a) Cables sizes are selected in order not to exceed a certain voltage drop figure.
- (b) Cable sizes are selected for convenience, mechanical strength or short-circuit capacity as required by AS/NZS 3000.
- (c) The ambient air or soil temperatures are consistently below the specified or standard conditions.

The conductor temperature can be estimated using the following equation:

$$\left(\frac{I_0}{I_R}\right)^2 = \frac{\theta_0 - \theta_A}{\theta_R - \theta_A} \qquad \dots 4.4$$

where

- I_0 = operating current, in amperes
- $I_{\rm R}$ = rated current given in Tables 4 to 21, in amperes

(For cable affected by the presence of certain external influences as detailed in Clauses 3.5.2 to 3.5.8, it will be necessary to correct the rated current given in Tables 4 to 21 by the application of an appropriate rating factor or factors obtained from Tables 22 to 29.)

- θ_0 = operating temperature of cable when carrying I_0 , in degrees Celsius
- $\theta_{\rm R}$ = operating temperature of the cable when carrying $I_{\rm R}$, in degrees Celsius
- $\theta_{\rm A}$ = ambient air or soil temperature, in degrees Celsius

The calculated operating temperature (θ_0) is then raised to the nearest temperature 45°C, 60°C, 75°C, 80°C, 90°C or 110°C for use with Tables 34 to 50 to determine the cable a.c. resistance and three-phase voltage drop.

NOTE: An example of the application of this method is provided in Appendix A, Paragraph A6.

4.5 DETERMINATION OF VOLTAGE DROP FROM LOAD POWER FACTOR

The relationship between the supply and load voltages under different conditions of load power factor is illustrated in the phasor diagrams of Figure 2.

From the phasor diagrams of Figure 2 it can be seen that a larger value of supply voltage is required to maintain a given load voltage when the current is lagging the voltage than when the same current and voltage are in phase. Furthermore, a still smaller supply voltage is required to maintain the given load voltage when the current leads the load voltage.

The voltage drop (IZ_c) is the same in all cases, but because of the different power factors the voltage (IZ_c) is added to the load voltage at a different angle in each case. It can be seen that in the particular instance where the cable power factor and the load power factor are equal, the voltage drop (V_d) is a maximum of IZ_c as discussed in Clause 4.3. In other situations of load power factor the difference between the magnitudes of the supply voltage (E) and the load voltage (V_L) is smaller. It will be noted that the magnitude of the phasors IR_c and IX_c has been exaggerated with respect to V_L in Figure 2 to illustrate the point. In practice the voltage drop is very much smaller than the supply voltage and the difference between the magnitudes of the supply and load voltages may be approximated by the following equation:

95

$$E-V_{\rm L} = I(R_{\rm c} \cos \theta + X_{\rm c} \sin \theta) \text{ for lagging p.f.} \qquad \dots 4.5(1)$$

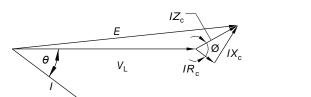
$$= I(R_c \cos \theta - X_c \sin \theta) \text{ for leading p.f.} \qquad \dots 4.5(2)$$

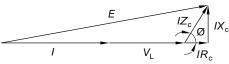
Therefore, for a single-phase system:

$$V_{d1\phi} = IL \left[2(R_c \cos \theta + X_c \sin \theta) \right] \qquad \dots 4.5(3)$$

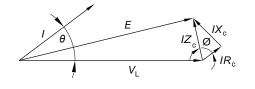
and a three-phase system:

$$V_{d3\phi} = IL \left[\sqrt{3} (R_c \cos \theta + X_c \sin \theta) \right] \qquad \dots 4.5(4)$$

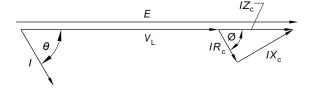

where


L = route length of circuit, in metres

 $R_{\rm c}$ = cable resistance, in ohms per metre


 $X_{\rm c}$ = cable reactance, in ohms per metre

Values of R_c and X_c are given in units of ohms per kilometre (Ω /km) in Tables 30 to 39. It will be noted that the influence of skin effect on resistance has been taken into account in the specification of cable resistance values in Tables 34 to 39 and as such are referred to as values of a.c. resistance.



(b) $\cos \theta = 1$

(a) $\cos \theta = 0.8$ lagging

(c) $\cos \theta = 0.8$ leading

(d) $\cos \theta = \cos \emptyset$ (maximum voltage drop condition)

LEGEND:

- I = current flowing in cable
- E = voltage at supply
- $V_{\rm L}$ = voltage at load

 $V_{\rm d}$ = E - $V_{\rm L}$

 IZ_c = voltage drop associated with the impedance of the cable = $I\sqrt{(R_c^2 + R_c^2)}$

 $\cos \theta$ = power factor of load

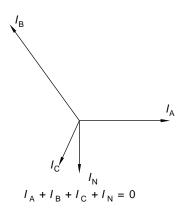

 $\cos \emptyset$ = power factor of cable

FIGURE 2 PHASOR DIAGRAMS ILLUSTRATING VOLTAGE DROP VARIATION WITH LOAD POWER FACTOR

9

4.6 DETERMINATION OF VOLTAGE DROP IN UNBALANCED MULTIPHASE CIRCUITS

For unbalanced multiphase circuits, current will be flowing in the neutral conductor as illustrated in the phasor diagram of Figure 3.

FIGURE 3 PHASOR DIAGRAM OF CURRENTS IN UNBALANCED THREE-PHASE CIRCUIT

A conservative solution to the voltage drop assessment in these situations would be to assume balanced three-phase load conditions and perform calculations using the current flowing in the heaviest-loaded phase. In many cases this will still be necessary if the out-of-balance conditions are inconsistent or intermittent.

However, where the currents in each phase can be shown to be of different magnitudes for consistent periods, voltage drop calculations can be performed on a single-phase basis by geometrically summing the voltage drop in the heaviest loaded phase and the voltage drop in the neutral, as follows:

 $V_{\rm d}$ = voltage drop in heaviest loaded active + voltage drop in neutral

 $= I_A L_A Z_{cA} + I_N L_N Z_{cN}$

... 4.6

The voltage drop in each conductor can then be assessed with a knowledge of the specific conductor material, size, temperature and length, the magnitude and phase angle of the current flowing in each conductor, and the phase angle of the load by using the appropriate equations given in this Clause.

NOTE: An example of the application of this method is provided in Appendix A, Paragraph A7.

9

REACTANCE (Xc) AT 50 Hz

CABLE TYPE: ALL CABLES INCLUDING ABC* BUT EXCLUDING FLEXIBLE CORDS, FLEXIBLE CABLES, MIMS CABLES AND AERIAL CABLES

1	2	3	4	5	6	7	8	9	10	11	12			
		Reactance (X _c) at 50 Hz, Ω/km												
Conductor size		Single-core (see Notes 1 to 3)							Aulticore					
5120	Trefoil (or single phase)			Flat touc	hing (see	Note 4)	Circu	lar conduc	tors	Shaped co	onductors			
mm ²	Elastomer PVC XLPE E		Elastomer	PVC	XLPE	Elastomer	Elastomer PVC		PVC	XLPE				
1	0.179	0.168	0.166	0.194	0.184	0.181	0.139	0.119	0.114	_	—			
1.5	0.167	0.157	0.155	0.183	0.172	0.170	0.129	0.111	0.107	—	—			
2.5	0.153	0.143	0.141	0.168	0.159	0.156	0.118	0.102	0.0988	_	—			
4	0.142	0.137	0.131	0.157	0.152	0.146	0.110	0.102	0.0930	_	_			
6	0.133	0.128	0.123	0.148	0.143	0.138	0.104	0.0967	0.0887	_	—			
10	0.123	0.118	0.114	0.138	0.134	0.129	0.0967	0.0906	0.0840	_	—			
16	0.114	0.111	0.106	0.130	0.126	0.122	0.0913	0.0861	0.0805	0.0794	0.0742			
25	0.109	0.106	0.102	0.125	0.121	0.118	0.0895	0.0853	0.0808	0.0786	0.0744			
35	0.104	0.101	0.0982	0.120	0.117	0.113	0.0863	0.0826	0.0786	0.0761	0.0725			
50	0.0988	0.0962	0.0924	0.114	0.111	0.108	0.0829	0.0797	0.0751	0.0734	0.0692			
70	0.0941	0.0917	0.0893	0.109	0.107	0.104	0.0798	0.0770	0.0741	0.0710	0.0683			
95	0.0924	0.0904	0.0868	0.108	0.106	0.102	0.0790	0.0766	0.0725	0.0706	0.0668			
120	0.0889	0.0870	0.0844	0.104	0.102	0.0996	0.0765	0.0743	0.0713	0.0685	0.0657			
150	0.0885	0.0868	0.0844	0.104	0.102	0.0996	0.0765	0.0745	0.0718	0.0687	0.0662			
185	0.0878	0.0862	0.0835	0.103	0.101	0.0988	0.0762	0.0744	0.0720	0.0686	0.0663			
240	0.0861	0.0847	0.0818	0.101	0.0999	0.0970	0.0751	0.0735	0.0709	0.0678	0.0653			
300	0.0852	0.0839	0.0809	0.100	0.0991	0.0961	0.0746	0.0732	0.0704	0.0675	0.0649			
400	0.0841	0.0829	0.0802	0.0993	0.0982	0.0955	0.0740	0.0728	0.0702	0.0671	0.0647			
500	0.0830	0.0820	0.0796	0.0983	0.0973	0.0948	0.0734	0.0723	0.0700	0.0666	0.0645			
630	0.0809	0.0820	0.0790	0.0961	0.0973	0.0940								

* For ABC and other twisted aerial cables, see Columns 3 and 4.

NOTES:

1 These reactance values should only be applied for single-core cables installed strictly in touching formation. Where single-core cables are spaced apart a correction factor to the reactance value should be applied according to the magnitude of the cable spacing, e.g. where cables are spaced apart with 0.5*D*, 1*D* or 2*D* separation distances add 0.0254 Ω/km , 0.0435 Ω/km or 0.0690 Ω/km , respectively, to the values in Column 2 to Column 7:

where

D = diameter of single-core cable.

- 2 For single-core cables in single-way ducts, D in Note 1 is the diameter of the single-core cable, i.e. not the diameter of the duct.
- 3 A correction factor is not required for cable sizes less than 25 mm^2 that are spaced up to 5D apart as the impact on voltage drop is less than 2.5% and can be ignored.
- 4 These reactance values may also be used as a conservative estimate for cables that are not strictly arranged 'flat touching', e.g. where cables are installed in a common wiring enclosure.

REACTANCE (*X*_c) AT 50 Hz

CABLE TYPES:

FLEXIBLE CORDS AND FLEXIBLE CABLES

1	2	3	4	5	6	7	8	9	10			
	Reactance (X_c) at 50 Hz, Ω /km											
Conductor size		Singl	N	Iulticore								
5120	Trefoil (or single	phase)	Flat touch	ing (see I	Note 4)	Circula	ar condu	ctors			
mm ²	Elastomer PVC XLPE			Elastomer	PVC	XLPE	Elastomer	PVC	XLPE			
0.5	0.192	0.180	0.178	0.207	0.195	0.193	0.153	0.131	0.125			
0.75	0.179	0.168	0.166	0.194	0.183	0.181	0.142	0.122	0.117			
1	0.171	0.161	0.158	0.186	0.176	0.173	0.136	0.116	0.111			
1.5	0.160	0.150	0.148	0.176	0.165	0.163	0.127	0.109	0.105			
2.5	0.149	0.139	0.137	0.164	0.155	0.153	0.118	0.101	0.0977			
4	0.137	0.132	0.126	0.152	0.147	0.141	0.108	0.100	0.0911			
6	0.129	0.124	0.119	0.144	0.139	0.134	0.103	0.0954	0.0871			
10	0.116	0.112	0.107	0.131	0.127	0.123	0.0936	0.0876	0.0810			
16	0.109	0.105	0.101	0.124	0.120	0.116	0.0887	0.0835	0.0779			
25	0.104	0.1010	0.0973	0.119	0.116	0.113	0.0871	0.0829	0.0783			
35	0.0991	0.0961	0.0930	0.114	0.111	0.108	0.0839	0.0801	0.0761			
50	0.0964	0.0938	0.0901	0.112	0.109	0.105	0.0832	0.0799	0.0754			
70	0.0917	0.0894	0.0869	0.107	0.105	0.102	0.0800	0.0773	0.0744			
95	0.0905	0.0885	0.0849	0.106	0.104	0.100	0.0796	0.0771	0.0729			
120	0.0872	0.0854	0.0828	0.102	0.101	0.0980	0.0774	0.0753	0.0723			
150	0.0870	0.0853	0.0830	0.102	0.101	0.0982	0.0775	0.0755	0.0728			
185	0.0862	0.0847	0.0821	0.101	0.0999	0.0973	0.0771	0.0754	0.0730			
240	0.0849	0.0835	0.0808	0.100	0.0988	0.0960	0.0764	0.0749	0.0722			
300	0.0842	0.0830	0.0800	0.0994	0.0982	0.0953	0.0761	0.0747	0.0718			
400	0.0825	0.0814	0.0788	0.0977	0.0966	0.0941	0.0750	0.0738	0.0714			
500	0.0812	0.0803	0.0780	0.0965	0.0955	0.0932	0.0743	0.0732	0.0711			
630	0.0797	0.0789	0.0777	0.0950	0.0941	0.0929		—				

NOTES:

1 These reactance values should only be applied for single-core cables installed strictly in touching formation. Where single-core cables are spaced apart a correction factor to the reactance value should be applied according to the magnitude of the cable spacing, e.g. where cables are spaced apart with 0.5D, 1D or 2D separation distances add 0.0254 Ω /km, 0.0435 Ω /km or 0.0690 Ω /km, respectively, to the values in Column 2 to Column 7:

where

D = diameter of single-core cable.

- 2 For single-core cables in single-way ducts, *D* in Note 1 is the diameter of the single-core cable, i.e. not the diameter of the duct.
- 3 A correction factor is not required for cable sizes less than 25 mm^2 that are spaced up to 5D apart as the impact on voltage drop is less than 2.5% and can be ignored.
- 4 These reactance values may also be used as a conservative estimate for cables that are not strictly arranged 'flat touching', e.g. where cables are installed in a common wiring enclosure.

REACTANCE (Xc) AT 50 Hz

CABLE TYPE:

MIMS

Conductor size	Reactance (X_c) at 50 Hz, Ω/km						
mm ²	Single-core (trefoil formation)	Multicore					
0.6/0.6 kV cables							
1	0.123	0.0912					
1.5	0.116	0.0865					
2.5	0.107	0.0814					
4	0.101	—					
1/1 kV cables							
1.5	0.139	0.1010					
2.5	0.128	0.0937					
4	0.120	0.0879					
6	0.112	0.0835					
10	0.104	0.0788					
16	0.0976	0.0752					
25	0.0927	0.0723					
35	0.0889	_					
50	0.0854	—					
70	0.0827						
95	0.0804						
120	0.0785	—					
150	0.0772	_					
185	0.0784	_					
240	0.0768	—					
300	0.0777	_					
400	0.0784						

Accessed by North Metropolitan TAFE on 10 Mar 2017 (Document currency not guaranteed when printed)

REACTANCE (Xc) AT 50 Hz

CABLE TYPE:

SINGLE-CORE AERIAL WITH BARE OR INSULATED CONDUCTORS

Conductor size (mm ²)	Reactance (X_c) of 50 Hz, Ω/km^*						
or stranding (No./mm)	Single phase and trefoil	Three cores in flat formation					
7/1.00	0.371	0.385					
6	0.368	0.383					
7/1.25	0.357	0.371					
10	0.352	0.366					
16	0.337	0.352					
7/1.75	0.336	0.350					
7/2.00	0.327	0.342					
25	0.317	0.332					
35	0.309	0.324					
7/2.50	0.313	0.328					
7/2.75	0.307	0.322					
50	0.300	0.314					
19/1.75	0.301	0.315					
7/3.00	0.302	0.316					
19/2.00	0.292	0.307					
70	0.288	0.303					
7/3.50	0.292	0.307					
7/3.75	0.288	0.302					
95	0.278	0.292					
37/1.75	0.279	0.293					
7/4.50	0.276	0.291					
19/2.75	0.272	0.287					
120	0.270	0.284					
7/4.75	0.273	0.287					
19/3.00	0.267	0.282					
150	0.263	0.278					
19/3.25	0.262	0.276					
185	0.256	0.271					
19/3.50	0.257	0.272					
37/2.50	0.257	0.271					

* Values are based on a spacing of 0.4 m.

COPYRIGHT

a.c. RESISTANCE (Rc) AT 50 Hz

CABLE TYPE:

SINGLE-CORE

1	2	3	4	5	6	7	8	9	10	11	12		
	a.c. resistance (R_c) at 50 Hz, Ω/km												
Conductor size		Copper*						Aluminium					
5120			Condu	ctor tem	perature, °	°C		Со	nductor ter	mperature	, °C		
mm ²	45	60	75	80	90	110	45	60	75	80	90		
1 1.5 2.5	23.3 14.9 8.14	24.5 15.7 8.57	25.8 16.5 9.01	 	27.0 17.3 9.45	28.7 18.4 10.0					 		
4 6 10	5.06 3.38 2.01	5.33 3.56 2.12	5.61 3.75 2.23	3.81 2.26	5.88 3.93 2.33	6.24 4.17 2.48							
16 25 35	1.26 0.799 0.576	1.33 0.842 0.607	1.40 0.884 0.638	1.42 0.899 —	1.47 0.927 0.668	1.56 0.984 0.710	2.10 1.32 0.956	2.22 1.39 1.01	2.33 1.47 1.06	2.37 1.49 1.08	2.45 1.54 1.11		
50 70 95	0.426 0.295 0.213	0.448 0.311 0.225	0.471 0.327 0.236		0.494 0.342 0.247	0.524 0.363 0.262	$0.706 \\ 0.488 \\ 0.353$	0.745 0.515 0.372	0.783 0.542 0.392	0.796 0.551 0.398	0.822 0.568 0.411		
120 150 185	0.170 0.138 0.111	0.179 0.145 0.117	0.188 0.153 0.123		0.197 0.160 0.129	0.208 0.169 0.136	0.279 0.228 0.182	0.295 0.240 0.192	0.310 0.253 0.202	0.315 0.257 —	0.325 0.265 0.212		
240 300 400	0.0862 0.0703 0.0569	0.0736	0.0948 0.0770 0.0620		0.0991 0.0803 0.0646	0.105 0.0846 0.0677	0.140 0.113 0.0890	0.147 0.119 0.0936	0.155 0.125 0.0981		0.162 0.130 0.103		
500 630	0.0467 0.0389		$0.0506 \\ 0.0418$		0.0525 0.0432	0.0547 0.0448	0.0709 0.0571	0.0744 0.0597	0.0779 0.0623		0.0813 0.0649		

* For the a.c. resistance of tinned copper conductor, multiply copper value by 1.01.

a.c. RESISTANCE (Rc) AT 50 Hz

CABLE TYPE:

MULTICORE WITH CIRCULAR CONDUCTORS

1	2	3	4	5	6	7	8	9	10
~			a.c	. resistan	ce (R _c) at s	50 Hz, Ω/k	m		
Conductor size			Copper*			Alumi	nium		
Sille		Conduct	or tempera	ature, °C		Cone	luctor tem	perature	, °C
mm ²	45	60	75	90	110	45	60	75	90
1	23.3	24.5	25.8	27.0	28.7	_	—		_
1.5	14.9	15.7	16.5	17.3	18.4			—	—
2.5	8.14	8.57	9.01	9.45	10.0			—	—
4	5.06	5.33	5.61	5.88	6.24		—		—
6	3.38	3.56	3.75	3.93	4.17			_	_
10	2.01	2.12	2.23	2.33	2.48		—	—	—
16	1.26	1.33	1.40	1.47	1.56	2.10	2.22	2.33	2.45
25	0.799	0.842	0.884	0.927	0.984	1.32	1.39	1.47	1.54
35	0.576	0.607	0.638	0.669	0.710	0.956	1.01	1.06	1.11
50	0.426	0.449	0.471	0.494	0.524	0.706	0.745	0.784	0.822
70	0.295	0.311	0.327	0.343	0.364	0.488	0.515	0.542	0.569
95	0.214	0.225	0.236	0.248	0.262	0.353	0.373	0.392	0.411
120	0.170	0.179	0.188	0.197	0.209	0.280	0.295	0.310	0.325
150	0.139	0.146	0.153	0.160	0.170	0.228	0.241	0.253	0.265
185	0.112	0.118	0.123	0.129	0.136	0.182	0.192	0.202	0.212
240	0.0870	0.0912	0.0955	0.0998	0.105	0.140	0.148	0.155	0.162
300	0.0712	0.0745	0.0778	0.0812	0.0852	0.113	0.119	0.125	0.131
400	0.0580	0.0605	0.0630	0.0656	0.0685	0.0897	0.0943	0.0988	0.103
500	0.0486	0.0506	0.0525	0.0544	0.0565	0.0730	0.0765	0.0800	0.0835

* For the a.c. resistance of tinned copper conductor, multiply copper value by 1.01.

1

a.c. RESISTANCE (Rc) AT 50 Hz

CABLE TYPE:

MULTICORE WITH SHAPED CONDUCTORS

1	2	3	4	5	6	7	8	9			
	a.c. resistance (R_c) at 50 Hz, Ω /km										
Conductor size		Cor	oper*			Alu	minium				
5120	Сог	nductor te	mperatur	re, °C	Con	ductor t	emperati	ıre, °C			
mm ²	45	60	75	90	45	60	75	90			
16	1.26	1.33	1.40	1.47	2.10	2.22	2.33	2.45			
25	0.799	0.842	0.884	0.927	1.32	1.39	1.47	1.54			
35	0.576	0.607	0.638	0.669	0.956	1.01	1.06	1.11			
50	0.426	0.448	0.471	0.494	0.706	0.745	0.783	0.822			
70	0.295	0.311	0.327	0.342	0.488	0.515	0.542	0.568			
95	0.213	0.224	0.236	0.247	0.353	0.372	0.392	0.411			
120	0.170	0.179	0.187	0.196	0.279	0.295	0.310	0.325			
150	0.138	0.145	0.153	0.160	0.228	0.240	0.253	0.265			
185	0.111	0.117	0.123	0.128	0.182	0.192	0.202	0.211			
240	0.0859	0.0902	0.0945	0.0988	0.139	0.147	0.154	0.162			
300	0.0698	0.0732	0.0766	0.0800	0.112	0.118	0.124	0.130			
400	0.0563	0.0589	0.0615	0.0641	0.0886	0.0932	0.0978	0.102			
500	0.0466	0.0486	0.0506	0.0526	0.0716	0.0752	0.0788	0.0824			

* For the a.c. resistance of tinned copper conductor, multiply copper value by 1.01.

a.c. RESISTANCE (Rc) AT 50 Hz

CABLE TYPES:

FLEXIBLE CORDS AND FLEXIBLE CABLES WITH COPPER CONDUCTORS*

1	2	3	4	5	6	7	8	9	10	11	
				a.c. res	istance (R	e) at 50 Hz	, Ω/km				
Conductor size		ſ	Single-cor	e		Multicore					
5120		Conduct	or temper	ature, °C			Conduct	or temper	ature, °C		
\mathbf{mm}^2	45	60	75	90	110	45	60	75	90	110	
0.5	42.8	45.1	47.4	49.7	52.8	42.8	45.1	47.4	49.7	52.8	
0.75	28.6	30.1	31.6	33.2	35.2	28.6	30.1	31.6	33.2	35.2	
1	21.4	22.6	23.7	24.9	26.4	21.4	22.6	23.7	24.9	26.4	
1.5	14.6	15.4	16.2	17.0	18.0	14.6	15.4	16.2	17.0	18.0	
2.5	8.76	9.23	9.70	10.2	10.8	8.76	9.23	9.70	10.2	10.8	
4	5.44	5.73	6.02	6.31	6.70	5.44	5.73	6.02	6.31	6.70	
6	3.62	3.82	4.01	4.21	4.47	3.62	3.82	4.01	4.21	4.47	
10	2.10	2.21	2.32	2.44	2.59	2.10	2.21	2.32	2.44	2.59	
16	1.33	1.40	1.47	1.54	1.64	1.33	1.40	1.47	1.54	1.64	
25	0.857	0.903	0.949	0.995	1.06	0.857	0.903	0.949	0.995	1.06	
35	0.609	0.641	0.674	0.707	0.750	0.609	0.642	0.674	0.707	0.750	
50	0.424	0.447	0.470	0.493	0.523	0.425	0.447	0.470	0.493	0.523	
70	0.300	0.316	0.332	0.348	0.369	0.300	0.316	0.332	0.348	0.369	
95	0.227	0.240	0.252	0.264	0.280	0.228	0.240	0.252	0.264	0.280	
120	0.178	0.188	0.197	0.207	0.219	0.179	0.188	0.198	0.207	0.219	
150	0.144	0.151	0.159	0.166	0.176	0.144	0.152	0.159	0.167	0.176	
185	0.119	0.125	0.131	0.137	0.145	0.119	0.126	0.132	0.138	0.146	
240	0.0912	0.0958	0.100	0.105	0.111	0.0920	0.0965	0.101	0.106	0.111	
300	0.0745	0.0780	0.0817	0.0853	0.0898	0.0753	0.0789	0.0825	0.0860	0.0905	
400	0.0587	0.0613	0.0640	0.0666	0.0699	0.0597	0.0623	0.0649	0.0675	0.0706	
500	0.048	0.0507	0.0527	0.0548	0.0571	0.0498	0.0518	0.0538	0.0558	0.0580	
630	0.0395	0.0409	0.0424	0.0438	0.0455						

* For the a.c. resistance of tinned copper conductors, multiply copper value by 1.01.

a.c. RESISTANCE (Rc) AT 50 Hz

CABLE TYPE:

MIMS

1	2	3	4	5	6	7					
Conductor	a.c. resistance (R_c) at 50 Hz, Ω/km										
size	Conductor temperature, °C										
mm ²	45	60	75	90	100	105					
1	18.9	19.9	20.9	21.9	22.6	22.9					
1.5	12.7	13.3	14.0	14.7	15.2	15.4					
2.5	7.61	8.02	8.43	8.83	9.11	9.24					
4	4.76	5.02	5.27	5.53	5.70	5.78					
6	3.16	3.33	3.50	3.67	3.79	3.84					
10	1.89	1.99	2.09	2.20	2.26	2.30					
16	1.19	1.25	1.31	1.38	1.42	1.44					
25	0.758	0.799	0.840	0.880	0.907	0.921					
35	0.541	0.570	0.599	0.628	0.647	0.657					
50	0.379	0.400	0.420	0.440	0.454	0.460					
70	0.271	0.286	0.300	0.315	0.325	0.329					
95	0.201	0.211	0.222	0.233	0.240	0.243					
120	0.160	0.168	0.176	0.185	0.190	0.193					
150	0.129	0.135	0.142	0.149	0.153	0.155					
185	0.105	0.110	0.116	0.121	0.125	0.127					
240	0.0825	0.0866	0.0906	0.0947	0.0975	0.0988					
300	0.0674	0.0706	0.0739	0.0771	0.0792	0.0803					
400	0.0527	0.550	0.0574	0.0597	0.0613	0.0621					

107

TABLE 39

a.c. RESISTANCE (Rc) AT 50 Hz

CABLE TYPE:

SINGLE-CORE AERIAL WITH BARE OR INSULATED CONDUCTORS

1	2	3	4	5	6	7	8	9	
Conductor			a.c. resi	stance (R _c)) at 50 Hz,	Ω/km^*			
size (mm ²)		Cop	oper			Alum	inium		
or stranding	Con	ductor ter	nperature	, °C	Conductor temperature, °C				
(No./mm)	45	60	75	80	45	60	75	80	
7/1.00 6 7/1.25	3.57 3.48 2.30	3.76 3.67 2.42	3.95 3.86 2.54	4.02 3.92 2.58					
10 16 7/1.75	2.06 1.30 1.16	2.18 1.37 1.23	2.29 1.44 1.29	2.32 1.46 1.31	2.10	2.21	2.32	2.36	
7/2.00 25 35	0.895 0.823 0.593	0.943 0.867 0.625	0.991 0.911 0.657	1.01 0.926 0.667	1.32 0.953	 1.39 1.00	 1.46 1.06	1.48 1.07	
7/2.50 7/2.75 50	 0.476 0.438	0.501 0.462	 0.527 0.485	 0.535 0.493	0.915 0.757 0.704	0.964 0.797 0.742	1.01 0.838 0.780	1.03 0.852 0.792	
19/1.75 7/3.00 19/2.00	0.434 0.333	0.457 0.351	0.481 0.369	0.488 0.375	0.636 —	0.670	0.704 	0.716	
70 7/3.50 7/3.75	0.303 0.295 0.256	0.320 0.310 0.270	0.336 0.326 0.284	0.341 0.331 0.288	0.487 0.407	0.513 0.428	0.539 0.450	0.548 0.457	
95 37/1.75 7/4.50	0.226 0.223 —	0.238 0.235 —	0.250 0.247 —	0.254 0.251 —	0.352 0.284	0.371 0.299	0.389 0.314	0.396 0.319	
19/2.75 120 7/4.75	0.176 0.174 —	0.186 0.183 —	0.195 0.193 —	0.198 0.196 —	0.278 0.255	 0.293 0.269	0.308 0.282	0.313 0.287	
19/3.00 150 19/3.25	0.148 0.141 —	0.156 0.149 —	0.163 0.156 —	0.166 0.159 —	 0.227 0.201	 0.239 0.212	0.251 0.223	0.255 0.227	
185 19/3.50 37/2.50	0.113 0.110	0.119 0.116	0.125 0.122	0.127 0.124	0.181 0.173 —	0.190 0.182 —	0.200 0.191 —	0.203 0.194 —	

* Values are based on a spacing of 0.4 m.

1

THREE-PHASE VOLTAGE DROP (Vc) AT 50 Hz

CABLE TYPES:

SINGLE-CORE INSULATED AND SHEATHED COPPER CONDUCTORS LAID IN TREFOIL

1	2	3	4	5	6	7	8	9	10	11	12	13
					Three-	phase vol	ltage dro	op (Vc) at	50 Hz, 1	nV/A.m		
Conductor size						Cond	luctor te	mperatui	re, °C			
5124	4	15	6()	7	5	80 (see	Note 3)	ç	0	1	110
mm ²	Max.	0.8 p.f.	Max.	0.8 p.f.	Max.	0.8 p.f.	Max.	0.8 p.f.	Max.	0.8 p.f.	Max.	0.8 p.f.
1 1.5 2.5	40.3 25.9 14.1	40.3 25.9 14.1	42.5 27.3 14.9	42.5 27.3 14.9	44.7 28.6 15.6	44.7 28.6 15.6			46.8 30.0 16.4	46.8 30.0 16.4	49.7 31.9 17.4	49.7 31.9 17.4
4 6 10	8.77 5.86 3.49	8.77 5.86 3.49	9.24 6.18 3.67	9.24 6.18 3.67	9.71 6.49 3.86	9.71 6.49 3.86	6.60 3.92	6.60 3.92	10.2 6.81 4.05	10.2 6.81 4.05	10.8 7.23 4.30	10.8 7.23 4.30
16 25 35	2.20 1.40 1.01	2.20 1.40 1.01	2.31 1.47 1.07	2.31 1.47 1.07	2.43 1.54 1.12	2.43 1.54 1.12	2.47 1.57	2.47 1.57 —	2.55 1.62 1.17	2.55 1.62 1.17	2.70 1.72 1.24	2.70 1.72 1.24
50 70 95	0.757 0.537 0.402	0.757 0.537 0.402	0.795 0.563 0.420	0.795 0.563 0.420	0.834 0.589 0.439	0.834 0.589 0.439			0.872 0.615 0.457	0.872 0.615 0.457	0.924 0.650 0.481	0.924 0.650 0.481
120 150 185	0.332 0.284 0.245	0.332 0.284 0.245	0.345 0.295 0.253	0.345 0.295 0.253	0.359 0.305 0.261	0.359 0.305 0.261			0.373 0.316 0.269	0.373 0.316 0.269	0.392 0.331 0.280	0.392 0.331 0.280
240 300 400	0.211 0.191 0.175	0.208 0.185 0.166	0.216 0.195 0.178	0.214 0.190 0.169	0.221 0.198 0.181	0.220 0.195 0.173			0.227 0.202 0.183	0.226 0.199 0.176	0.235 0.208 0.187	0.234 0.206 0.181
500 630	0.165 0.155	0.150 0.138	0.166 0.156	0.153 0.140	0.168 0.157	0.156 0.142			0.170 0.159	0.158 0.144	0.172 0.160	0.162 0.146

NOTES:

1 These V_c values apply to a balanced three-phase circuit in which no current flows in the neutral conductor. To determine the single phase V_c the current in the neutral conductor needs to be considered by multiplying the three-phase value by—

$$\frac{2}{\sqrt{3}} = 1.155.$$

2 These V_c values should only be applied for single-core cables installed strictly in touching formation. Where single-core cables are spaced apart or in single-way ducts the V_c shall be calculated using the impedance of the cable, see Clause 4.3, and using the revised value of reactance as detailed in footnote to Tables 30 and 31.

(These V_c values may be used for cable sizes less than 25 mm² that are spaced up to 5D apart as the impact on V_c is less than 2.5% and can be ignored.)

3 These V_c values apply also to aerial bundled cables (ABC).

THREE-PHASE VOLTAGE DROP (Vc) AT 50 Hz

CABLE TYPES: CABLE TYPES: SINGLE-CORE INSULATED AND SHEATHED COPPER CONDUCTORS, LAID FLAT TOUCHING OR TOUCHING INSIDE A COMMON WIRING ENCLOSURE

1	2	3	4	5	6	7	8	9	10	11
			Thre	e-phase vo	oltage dro	p (V _c) at 5	0 Hz, mV	/A.m		
Conductor size				Con	ductor ter	nperature	¢, °C			
5120	4	15	60		7	5	9	0	110	
mm ²	Max.	0.8 p.f.	Max.	0.8 p.f.	Max.	0.8 p.f.	Max.	0.8 p.f.	Max.	0.8 p.f.
1	40.3	40.3	42.5	42.5	44.7	44.7	46.8	46.8	49.7	49.7
1.5	25.9	25.9	27.3	27.3	28.6	28.6	30.0	30.0	31.9	31.9
2.5	14.1	14.1	14.9	14.9	15.6	15.6	16.4	16.4	17.4	17.4
4	8.77	8.77	9.24	9.24	9.71	9.71	10.2	10.2	10.8	10.8
6	5.86	5.86	6.18	6.18	6.49	6.49	6.81	6.81	7.23	7.23
10	3.49	3.49	3.68	3.68	3.86	3.86	4.05	4.05	4.30	4.30
16	2.20	2.20	2.32	2.32	2.43	2.43	2.55	2.55	2.71	2.71
25	1.40	1.40	1.47	1.47	1.55	1.55	1.62	1.62	1.72	1.72
35	1.02	1.02	1.07	1.07	1.12	1.12	1.18	1.18	1.25	1.25
50	0.763	0.763	0.801	0.801	0.840	0.840	0.878	0.878	0.929	0.929
70	0.545	0.545	0.571	0.571	0.597	0.597	0.623	0.623	0.657	0.657
95	0.413	0.413	0.431	0.431	0.449	0.449	0.467	0.467	0.491	0.491
120	0.345	0.345	0.358	0.358	0.371	0.371	0.385	0.385	0.403	0.403
150	0.299	0.299	0.309	0.309	0.319	0.319	0.330	0.330	0.344	0.344
185	0.262	0.261	0.270	0.269	0.277	0.277	0.285	0.285	0.296	0.296
240	0.230	0.224	0.235	0.230	0.240	0.236	0.245	0.242	0.252	0.250
300	0.212	0.201	0.215	0.206	0.219	0.211	0.222	0.215	0.227	0.222
400	0.198	0.181	0.200	0.185	0.202	0.189	0.205	0.192	0.208	0.197
500	0.188	0.166	0.190	0.169	0.191	0.172	0.193	0.174	0.195	0.178
630	0.179	0.153	0.180	0.155	0.181	0.157	0.182	0.159	0.184	0.162

NOTES:

1 These V_c values apply to a balanced three-phase circuit in which no current flows in the neutral conductor. To determine the single phase V_c the current in the neutral conductor needs to be considered by multiplying the three phase value by $\frac{2}{2} = 1.155$

three-phase value by $\frac{2}{\sqrt{3}} = 1.155$.

2 These V_c values should only be applied for single-core cables installed strictly in touching formation. Where single-core cables are spaced apart, e.g. in separate wiring enclosures, the V_c shall be calculated using the impedance of the cable, see Clause 4.3, and using the revised value of reactance as detailed in footnote to Tables 30 and 31.

(These V_c values may be used for cable sizes less than 25 mm² that are spaced up to 5D apart as the impact on V_c is less than 2.5% and can be ignored.)

TABLE 42THREE-PHASE VOLTAGE DROP (Vc) AT 50 Hz

1

CABLE TYPE:

MULTICORE WITH CIRCULAR COPPER CONDUCTORS

1	2	3	4	5	6	7	8	9	10	11
			Thre	ee-phase vo	ltage drop	(V _c) at 50]	Hz, mV/A	m		
Conductor size				Con	ductor tem	perature,	°C			
5120	4	15	6	50	7	5	9	0	1	10
mm ²	Max.	0.8 p.f.	Max.	0.8 p.f.	Max.	0.8 p.f.	Max.	0.8 p.f.	Max.	0.8 p.f.
1	40.3	40.3	42.5	42.5	44.7	44.7	46.8	46.8	49.7	49.7
1.5	25.9	25.9	27.3	27.3	28.6	28.6	30.0	30.0	31.9	31.9
2.5	14.1	14.1	14.9	14.9	15.6	15.6	16.4	16.4	17.4	17.4
4	8.77	8.77	9.24	9.24	9.71	9.71	10.2	10.2	10.8	10.8
6	5.86	5.86	6.18	6.18	6.49	6.49	6.80	6.80	7.22	7.22
10	3.49	3.49	3.67	3.67	3.86	3.86	4.05	4.05	4.29	4.29
16	2.19	2.19	2.31	2.31	2.43	2.43	2.55	2.55	2.70	2.70
25	1.39	1.39	1.47	1.47	1.54	1.54	1.61	1.61	1.71	1.71
35	1.01	1.01	1.06	1.06	1.11	1.11	1.17	1.17	1.24	1.24
50	0.751	0.751	0.790	0.790	0.829	0.829	0.868	0.868	0.920	0.920
70	0.530	0.530	0.556	0.556	0.583	0.583	0.609	0.609	0.645	0.645
95	0.394	0.394	0.413	0.413	0.431	0.431	0.450	0.450	0.475	0.475
120	0.323	0.323	0.337	0.337	0.351	0.351	0.366	0.366	0.385	0.385
150	0.274	0.274	0.285	0.285	0.296	0.296	0.307	0.307	0.322	0.322
185	0.234	0.234	0.242	0.242	0.251	0.251	0.259	0.259	0.271	0.271
240	0.198	0.198	0.204	0.204	0.210	0.210	0.216	0.216	0.224	0.224
300	0.178	0.175	0.182	0.180	0.186	0.185	0.190	0.189	0.196	0.196
400	0.162	0.157	0.165	0.160	0.168	0.164	0.171	0.167	0.175	0.172
500	0.152	0.143	0.154	0.146	0.156	0.148	0.158	0.151	0.160	0.155

NOTE: These V_c values apply to a balanced three-phase circuit in which no current flows in the neutral conductor. To determine the single phase V_c the current in the neutral conductor needs to be considered by multiplying the three-phase value by $\frac{2}{\sqrt{3}} = 1.155$.

THREE-PHASE VOLTAGE DROP (Vc) AT 50 Hz

CABLE TYPES:

SINGLE-CORE INSULATED AND SHEATHED ALUMINIUM CONDUCTORS, LAID IN TREFOIL

1	2	3	4	5	6	7	8	9	10	11		
				Thre	e-phase v	oltage droj	p (V _c) at 5	0 Hz, mV	/A.m			
Conductor size				Conductor temperature, °C								
5120	4	15	6	60 75 80 (see Note 3) 90								
mm ²	Max.	0.8 p.f.	Max.									
16	3.65	3.65	3.85	3.85	4.05	4.05	4.11	4.11	4.25	4.25		
25	2.30	2.30	2.42	2.42	2.55	2.55	2.59	2.59	2.67	2.67		
35	1.66	1.66	1.75	1.75	1.85	1.85	1.88	1.88	1.94	1.94		
50	1.23	1.23	1.30	1.30	1.37	1.37	1.39	1.39	1.43	1.43		
70	0.860	0.860	0.906	0.906	0.952	0.952	0.966	0.966	0.997	0.997		
95	0.631	0.631	0.663	0.663	0.696	0.696	0.706	0.706	0.727	0.727		
120	0.507	0.507	0.532	0.532	0.558	0.558	0.565	0.565	0.582	0.582		
150	0.422	0.422	0.443	0.443	0.463	0.463	0.468	0.468	0.482	0.482		
185	0.349	0.349	0.364	0.364	0.380	0.380	—		0.394	0.394		
240	0.283	0.283	0.294	0.294	0.305	0.305			0.314	0.314		
300	0.243	0.243	0.251	0.251	0.260	0.260			0.266	0.266		
400	0.211	0.209	0.216	0.216	0.222	0.222			0.226	0.226		
500	0.188	0.183	0.192	0.188	0.196	0.193			0.197	0.195		
630	0.170	0.162	0.173	0.166	0.175	0.169		_	0.177	0.172		

NOTES:

- 1 These V_c values apply to a balanced three-phase circuit in which no current flows in the neutral conductor. To determine the single phase V_c the current in the neutral conductor needs to be considered by multiplying the three-phase value by $\frac{2}{\sqrt{2}} = 1.155$.
- 2 These V_c values should only be applied for single-core cables installed strictly in touching formation. Where single-core cables are spaced apart or in single-way ducts the V_c shall be calculated using the impedance of the cable, see Clause 4.3, and using the revised value of reactance as detailed in footnote to Tables 30 and 31.

(These V_c values may be used for cable sizes less than 25 mm² that are spaced up to 5D apart as the impact on V_c is less than 2.5% and can be ignored.)

3 These V_c values apply also to aerial bundled cables (ABC).

THREE-PHASE VOLTAGE DROP (Vc) AT 50 Hz

CABLE TYPES: SINGLE-CORE INSULATED AND SHEATHED ALUMINIUM CONDUCTORS, LAID FLAT TOUCHING OR TOUCHING INSIDE A COMMOM WIRING ENCLOSURE

1	2	3	4	5	6	7	8	9				
		Thre	e-phase vo	oltage dro	p (V _c) at 5	0 Hz, mV	/A.m					
Conductor size		Conductor temperature, °C										
5120	4	5	6	0	7	5	9	0				
\mathbf{mm}^2	Max.	0.8 p.f.	Max.	0.8 p.f.	Max.	0.8 p.f.	Max.	0.8 p.f.				
16	3.65	3.65	3.85	3.85	4.05	4.05	4.25	4.25				
25	2.30	2.30	2.42	2.42	2.55	2.55	2.67	2.67				
35	1.67	1.67	1.76	1.76	1.85	1.85	1.94	1.94				
50	1.24	1.24	1.30	1.30	1.37	1.37	1.44	1.44				
70	0.866	0.866	0.911	0.911	0.956	0.956	1.00	1.00				
95	0.638	0.638	0.670	0.670	0.702	0.702	0.733	0.733				
120	0.515	0.515	0.540	0.540	0.565	0.565	0.589	0.589				
150	0.432	0.432	0.452	0.452	0.472	0.472	0.491	0.491				
185	0.361	0.361	0.376	0.376	0.391	0.391	0.404	0.404				
240	0.297	0.297	0.308	0.308	0.319	0.319	0.327	0.327				
300	0.260	0.259	0.268	0.267	0.276	0.275	0.281	0.281				
400	0.229	0.225	0.235	0.231	0.240	0.238	0.243	0.242				
500	0.208	0.199	0.212	0.204	0.216	0.209	0.216	0.211				
630	0.192	0.178	0.195	0.181	0.197	0.185	0.198	0.188				

NOTES:

1 These V_c values apply to a balanced three-phase circuit in which no current flows in the neutral conductor. To determine the single phase V_c the current in the neutral conductor

needs to be considered by multiplying the three-phase value by $\frac{2}{\sqrt{3}} = 1.155$.

2 These V_c values should only be applied for single-core cables installed strictly in touching formation. Where single-core cables are spaced apart, e.g. in separate wiring enclosures, the V_c shall be calculated using the impedance of the cable, see Clause 4.3, and using the revised value of reactance as detailed in footnote to Tables 30 and 31.

(These V_c values may be used for cable sizes less than 25 mm² that are spaced up to 5D apart as the impact on V_c is less than 2.5% and can be ignored.)

TABLE 45THREE-PHASE VOLTAGE DROP (Vc) AT 50 Hz

CABLE TYPE:

MULTICORE CABLES WITH CIRCULAR ALUMINIUM CONDUCTORS

1	2	3	4	5	6	7	10	11
			Three-pha	se voltage d	rop (Vc) at	50 Hz, mV/	A.m	
Conductor size				Conductor	temperatu	re, °C		
5124	4	5		60	,	75	9	0
mm ²	Max.	0.8 p.f.	Max.	0.8 p.f.	Max.	0.8 p.f.	Max.	0.8 p.f.
16	3.64	3.64	3.84	3.84	4.04	4.04	4.24	4.24
25	2.29	2.29	2.42	2.42	2.54	2.54	2.67	2.67
35	1.66	1.66	1.75	1.75	1.84	1.84	1.93	1.93
50	1.23	1.23	1.30	1.30	1.36	1.36	1.43	1.43
70	0.856	0.856	0.902	0.902	0.948	0.948	0.993	0.993
95	0.626	0.626	0.659	0.659	0.691	0.691	0.723	0.723
120	0.501	0.501	0.527	0.527	0.552	0.552	0.577	0.577
150	0.416	0.416	0.436	0.436	0.457	0.457	0.476	0.476
185	0.341	0.341	0.357	0.357	0.373	0.373	0.388	0.388
240	0.274	0.274	0.285	0.285	0.297	0.297	0.307	0.307
300	0.233	0.233	0.242	0.242	0.251	0.251	0.258	0.258
400	0.200	0.200	0.206	0.206	0.212	0.212	0.216	0.216
500	0.178	0.176	0.182	0.181	0.186	0.185	0.189	0.189

NOTES:

1 For aerial bundled cables (ABC) use XLPE single-core, trefoil figures.

2 These V_c values apply to a balanced three-phase circuit in which no current flows in the neutral conductor. To determine the single phase V_c the current in the neutral conductor needs to be considered by multiplying the three-phase value by $\frac{2}{\sqrt{3}} = 1.155$.

1

THREE-PHASE VOLTAGE DROP (Vc) AT 50 Hz

CABLE TYPES:

SINGLE-CORE FLEXIBLE CORDS AND FLEXIBLE CABLES, LAID IN TREFOIL

1	2	3	4	5	6	7	8	9	10	11
			Thre	e-phase vo	oltage dro	$p(V_c)$ at 5	0 Hz, mV	/A.m		
Conductor size				Con	ductor te	mperature	, °C			
5120	4	5	6	0	7	5	9	0	110	
mm ²	Max.	0.8 p.f.	Max.	0.8 p.f.	Max.	0.8 p.f.	Max.	0.8 p.f.	Max.	0.8 p.f.
0.5	74.2	74.2	78.2	78.2	82.2	82.2	86.1	86.1	91.4	91.4
0.75	49.5	49.5	52.1	52.1	54.8	54.8	57.4	57.4	61.0	61.0
1	37.1	37.1	39.1	39.1	41.1	41.1	43.1	43.1	45.7	45.7
1.5	25.3	25.3	26.7	26.7	28.0	28.0	29.4	29.4	31.2	31.2
2.5	15.2	15.2	16.0	16.0	16.8	16.8	17.6	17.6	18.7	18.7
4	9.42	9.42	9.92	9.92	10.4	10.4	10.9	10.9	11.6	11.6
6	6.28	6.28	6.62	6.62	6.95	6.95	7.29	7.29	7.74	7.74
10	3.64	3.64	3.83	3.83	4.03	4.03	4.22	4.22	4.48	4.48
16	2.31	2.31	2.43	2.43	2.56	2.56	2.68	2.68	2.84	2.84
25	1.50	1.50	1.57	1.57	1.65	1.65	1.73	1.73	1.84	1.84
35	1.07	1.07	1.12	1.12	1.18	1.18	1.24	1.24	1.31	1.31
50	0.754	0.754	0.792	0.792	0.831	0.831	0.869	0.869	0.921	0.921
70	0.543	0.543	0.569	0.569	0.596	0.596	0.622	0.622	0.658	0.658
95	0.424	0.424	0.443	0.443	0.463	0.463	0.483	0.483	0.509	0.509
120	0.344	0.344	0.358	0.358	0.373	0.373	0.388	0.388	0.408	0.408
150	0.291	0.291	0.302	0.302	0.313	0.313	0.325	0.325	0.340	0.340
185	0.254	0.254	0.263	0.263	0.272	0.272	0.280	0.280	0.293	0.293
240	0.215	0.214	0.221	0.221	0.227	0.227	0.233	0.233	0.242	0.242
300	0.194	0.190	0.198	0.195	0.203	0.200	0.207	0.205	0.213	0.212
400	0.175	0.166	0.178	0.170	0.180	0.174	0.183	0.178	0.187	0.183
500	0.164	0.151	0.165	0.154	0.167	0.157	0.169	0.160	0.172	0.164
630	0.154	0.137	0.155	0.139	0.156	0.141	0.157	0.143	0.159	0.146

NOTES:

1 These V_c values apply to a balanced three-phase circuit in which no current flows in the neutral conductor. To determine the single phase V_c the current in the neutral conductor needs to be considered by multiplying the three-phase value by $\frac{2}{\sqrt{3}}$ =1.155.

2 These V_c values should only be applied for single-core cables installed strictly in touching formation. Where single-core cables are spaced apart or in single-way ducts the V_c shall be calculated using the impedance of the cable, see Clause 4.3, and using the revised value of reactance as detailed in footnote to Tables 30 and 31.

(These V_c values may be used for cable sizes less than 25 mm² that are spaced up to 5D apart as the impact on V_c is less than 2.5% and can be ignored.)

115

THREE-PHASE VOLTAGE DROP (Vc) AT 50 Hz

CABLE TYPES: SINGLE-CORE FLEXIBLE CORDS AND FLEXIBLE CABLES, LAID FLAT TOUCHING OR TOUCHING INSIDE A COMMON WIRING ENCLOSURE

1	2	3	4	5	6	7	8	9	10	11			
			Thre	e-phase v	oltage dro	p (Vc) at 5	0 Hz, mV	/A.m					
Conductor size		Conductor temperature, °C											
5120	4	15 60		0	7	5	9	0	110				
mm ²	Max.	0.8 p.f.	Max.	0.8 p.f.	Max.	0.8 p.f.	Max.	0.8 p.f.	Max.	0.8 p.f.			
0.5	74.2	74.2	78.2	78.2	82.2	82.2	86.1	86.1	91.4	91.4			
0.75	49.5	49.5	52.1	52.1	54.8	54.8	57.4	57.4	61.0	61.0			
1	37.1	37.1	39.1	39.1	41.1	41.1	43.1	43.1	45.7	45.7			
1.5	25.3	25.3	26.7	26.7	28.0	28.0	29.4	29.4	31.2	31.2			
2.5	15.2	15.2	16.0	16.0	16.8	16.8	17.6	17.6	18.7	18.7			
4	9.42	9.42	9.92	9.92	10.4	10.4	10.9	10.9	11.6	11.6			
6	6.28	6.28	6.62	6.62	6.96	6.96	7.29	7.29	7.74	7.74			
10	3.64	3.64	3.84	3.84	4.03	4.03	4.22	4.22	4.48	4.48			
16	2.31	2.31	2.43	2.43	2.56	2.56	2.68	2.68	2.85	2.85			
25	1.50	1.50	1.58	1.58	1.66	1.66	1.74	1.74	1.84	1.84			
35	1.07	1.07	1.13	1.13	1.18	1.18	1.24	1.24	1.31	1.31			
50	0.760	0.760	0.798	0.798	0.837	0.837	0.875	0.875	0.926	0.926			
70	0.551	0.551	0.577	0.577	0.603	0.603	0.630	0.630	0.665	0.665			
95	0.434	0.434	0.453	0.453	0.473	0.473	0.492	0.492	0.518	0.518			
120	0.356	0.356	0.370	0.370	0.385	0.385	0.399	0.399	0.419	0.419			
150	0.305	0.305	0.316	0.316	0.327	0.327	0.338	0.338	0.353	0.353			
185	0.270	0.270	0.279	0.278	0.287	0.287	0.295	0.295	0.307	0.307			
240	0.234	0.230	0.240	0.236	0.245	0.243	0.251	0.249	0.259	0.258			
300	0.215	0.206	0.219	0.211	0.223	0.216	0.227	0.221	0.232	0.228			
400	0.197	0.182	0.199	0.186	0.202	0.190	0.204	0.193	0.208	0.198			
500	0.187	0.167	0.188	0.170	0.190	0.173	0.192	0.176	0.194	0.179			
630	0.178	0.153	0.179	0.155	0.180	0.157	0.181	0.159	0.182	0.162			

NOTES:

1 These V_c values apply to a balanced three-phase circuit in which no current flows in the neutral conductor. To determine the single phase V_c the current in the neutral conductor needs to be considered by multiplying the three-phase value by $\frac{2}{\sqrt{3}}$.

2 These V_c values should only be applied for single-core cables installed strictly in touching formation. Where single-core cables are spaced apart, e.g. in separate wiring enclosures, the V_c shall be calculated using the impedance of the cable, see Clause 4.3, and using the revised value of reactance as detailed in footnote to Tables 30 and 31.

(These V_c values may be used for cable sizes less than 25 mm² that are spaced up to 5D apart as the impact on V_c is less than 2.5% and can be ignored.)

TABLE 48THREE-PHASE VOLTAGE DROP (Vc) AT 50 Hz

CABLE TYPES:

MULTICORE FLEXIBLE CORDS AND FLEXIBLE CABLES

1	2	3	4	5	6	7	8	9	10	11
			Three	e-phase vol	tage drop	(Vc) at 50 H	Iz, mV/	A.m		
Conductor size				Cond	uctor tem	perature, °	С			
SIZC	4	5		60	7	5	9	0	1	10
mm ²	Max.	0.8 p.f.	Max.	0.8 p.f.	Max.	0.8 p.f.	Max.	0.8 p.f.	Max.	0.8 p.f.
0.5	74.2	74.2	78.2	78.2	82.2	82.2	86.1	86.1	91.4	91.4
0.75	49.5	49.5	52.1	52.1	54.8	54.8	57.4	57.4	61.0	61.0
1	37.1	37.1	39.1	39.1	41.1	41.1	43.1	43.1	45.7	45.7
1.5	25.3	25.3	26.7	26.7	28.0	28.0	29.4	29.4	31.2	31.2
2.5	15.2	15.2	16.0	16.0	16.8	16.8	17.6	17.6	18.7	18.7
4	9.42	9.42	9.92	9.92	10.4	10.4	10.9	10.9	11.6	11.6
6	6.28	6.28	6.62	6.62	6.95	6.95	7.29	7.29	7.74	7.74
10	3.64	3.64	3.83	3.83	4.03	4.03	4.22	4.22	4.48	4.48
16	2.31	2.31	2.43	2.43	2.55	2.55	2.68	2.68	2.84	2.84
25	1.49	1.49	1.57	1.57	1.65	1.65	1.73	1.73	1.84	1.84
35	1.06	1.06	1.12	1.12	1.18	1.18	1.23	1.23	1.31	1.31
50	0.749	0.749	0.788	0.788	0.827	0.827	0.866	0.866	0.917	0.917
70	0.537	0.537	0.564	0.564	0.591	0.591	0.618	0.618	0.654	0.654
95	0.418	0.418	0.437	0.437	0.457	0.457	0.477	0.477	0.504	0.504
120	0.337	0.337	0.352	0.352	0.367	0.367	0.383	0.383	0.403	0.403
150	0.283	0.283	0.295	0.295	0.306	0.306	0.318	0.318	0.334	0.334
185	0.246	0.246	0.255	0.255	0.264	0.264	0.273	0.273	0.286	0.286
240	0.207	0.206	0.213	0.213	0.219	0.219	0.225	0.225	0.234	0.234
300	0.185	0.183	0.189	0.188	0.194	0.193	0.198	0.198	0.205	0.204
400	0.165	0.160	0.168	0.164	0.171	0.167	0.174	0.171	0.178	0.176
500	0.154	0.145	0.156	0.148	0.158	0.151	0.160	0.154	0.163	0.158

NOTE: These V_c values apply to a balanced three-phase circuit in which no current flows in the neutral conductor. To determine the single phase V_c the current in the neutral conductor needs to be considered by

multiplying the three-phase value by $\frac{2}{\sqrt{3}} = 1.155$.

THREE-PHASE VOLTAGE DROP (Vc) AT 50 Hz

CABLE TYPES:

SINGLE-CORE AND MULTICORE MIMS, LAID IN TREFOIL

1	2	3	4	5	6	7	8	9	10	11	12	13
		l	I	Three-pl	nase volt	age drop	(V _c) at 5	0 Hz, m'	V/A.m		I	
Conductor						ctor tem						
size	4	5		60	7	5	9	0	1	.00	1	05
mm ²	Max.	0.8 p.f.	Max.	0.8 p.f.	Max.	0.8 p.f.	Max.	0.8 p.f.	Max.	0.8 p.f.	Max.	0.8 p.f.
1.6/0.6 kV C	ables								•			
1	32.8	32.8	34.6	34.6	36.3	36.3	38.1	38.1	39.1	31.4	39.7	31.9
1.5	21.9	21.9	23.0	23.0	24.2	24.2	25.4	25.4	26.3	21.2	26.7	21.5
2.5	13.1	13.1	13.8	13.8	14.5	14.5	15.2	15.2	15.8	12.7	16.0	12.9
4	8.20	8.20	8.64	8.64	9.08	9.08	9.52	9.52	9.87	8.00	10.01	8.11
1/1 kV Cable	s											
1.5	21.9	21.9	23.0	23.0	24.2	24.2	25.4	25.4	26.3	21.2	26.7	21.5
2.5	13.1	13.1	13.8	13.8	14.5	14.5	15.2	15.2	15.8	12.8	16.0	12.9
4	8.20	8.20	8.64	8.64	9.08	9.08	9.52	9.52	9.87	8.02	10.01	8.13
6	5.46	5.46	5.77	5.77	6.05	6.05	6.34	6.34	6.57	5.37	6.65	5.44
10	3.30	3.30	3.47	3.47	3.65	3.65	3.83	3.83	3.92	3.24	3.99	3.30
16	2.06	2.06	2.17	2.17	2.28	2.28	2.39	2.39	2.47	2.07	2.50	2.10
25	1.32	1.32	1.39	1.39	1.46	1.46	1.53	1.53	1.58	1.35	1.60	1.37
35	0.949	0.949	0.999	0.999	1.05	1.05	1.10	1.10	1.13	0.99	1.15	1.00
50	0.672	0.672	0.706	0.706	0.741	0.741	0.775	0.775	0.800	0.718	0.810	0.726
70	0.491	0.491	0.515	0.515	0.539	0.539	0.563	0.563	0.581	0.536	0.588	0.542
95	0.375	0.375	0.393	0.393	0.410	0.410	0.427	0.427	0.438	0.416	0.443	0.420
120	0.307	0.307	0.320	0.320	0.333	0.333	0.346	0.346	0.356	0.345	0.361	0.349
150	0.260		0.270		0.280		0.290		0.297	0.292	0.300	0.295
185	0.228		0.236	—	0.243	—	0.251	—	0.256	0.255	0.258	0.257
240	0.195	0.194	0.201	0.200	0.206	0.206	0.211	0.211	0.215	0.215	0.217	0.217
300	0.178	0.173	0.181	0.178	0.185	0.182	0.189	0.187	0.192	0.190	0.194	0.192
400	0.163	0.154	0.166	0.157	0.168	0.161	0.170	0.164	0.172	0.166	0.173	0.168

NOTE: These V_c values apply to a balanced three-phase circuit in which no current flows in the neutral conductor. To determine the single phase V_c the current in the neutral conductor needs to be considered by multiplying the three-phase value by $\frac{2}{\sqrt{3}} = 1.155$.

THREE-PHASE VOLTAGE DROP (Vc) AT 50 Hz

CABLE TYPE:

AERIAL WITH BARE OR INSULATED COPPER CONDUCTORS

1	2	3	4	5	6	7
Conductor size	Th	ree-phase	voltage d	rop (Vc) at	50 Hz, mV/	A.m
(mm ²)		Co	nductor	temperatu	re, °C	
or stranding	45			60	7	75
(No./mm)	Max	0.8 p.f	Max	0.8 p.f	Max	0.8 p.f
7/1.00	6.22	6.22	6.55	6.55	6.88	6.88
6	6.06	6.06	6.39	6.39	6.71	6.71
7/1.25	4.02	4.02	4.23	4.23	4.45	4.45
10	3.63	3.63	3.82	3.82	4.01	4.01
16	2.32	2.32	2.44	2.44	2.55	2.55
7/1.75	2.10	2.10	2.20	2.20	2.31	2.31
7/2.00	1.65	1.65	1.73	1.73	1.81	1.81
25	1.53	1.53	1.60	1.60	1.67	1.67
35	1.16	1.16	1.21	1.21	1.26	1.26
7/2.75	0.981	0.981	1.02	1.02	1.06	1.06
50	0.920	0.920	0.954	0.954	0.988	0.988
19/1.75	0.915	0.915	0.948	0.948	0.982	0.982
19/2.00	0.768	0.765	0.791	0.790	0.815	0.815
70	0.725	0.720	0.745	0.742	0.767	0.765
7/3.50	0.719	0.712	0.738	0.734	0.758	0.756
7/3.75	0.667	0.654	0.683	0.673	0.700	0.692
95	0.620	0.601	0.633	0.618	0.647	0.635
37/1.75	0.619	0.599	0.632	0.616	0.646	0.632
19/2.75	0.562	0.527	0.571	0.540	0.580	0.553
120	0.556	0.521	0.565	0.534	0.574	0.547
19/3.00	0.529	0.482	0.535	0.493	0.542	0.504
150	0.517	0.469	0.523	0.479	0.530	0.490
185	0.485	0.422	0.489	0.431	0.493	0.439
37/2.50	0.484	0.419	0.488	0.427	0.492	0.435

NOTES:

These V_c values apply to a balanced three-phase circuit in which no current flows 1 in the neutral conductor. To determine the single phase V_c the current in the neutral conductor needs to be considered by multiplying the three-phase value

by $\frac{2}{\sqrt{3}} = 1.155$.

These V_c values are based on a spacing of 0.4 m. For aerial bundled cables 2 (ABC), use XLPE single-core, trefoil figures.

TABLE 51THREE-PHASE VOLTAGE DROP (Vc) AT 50 Hz

CABLE TYPE:

AERIAL WITH BARE OR INSULATED ALUMINIUM CONDUCTORS

1	2	3	4	5	6	7
Conductor	J	Three-phase	voltage drop	(V _c) at 50	Hz, mV/A.r	n
size (mm ²)		Co	nductor tem	perature,	°C	
or stranding	4	15	60)	7	5
(No./mm)	Max.	0.8 p.f.	Max.	0.8 p.f.	Max.	0.8 p.f.
16	3.68	3.68	3.87	3.87	4.07	4.07
25	2.35	2.35	2.47	2.47	2.59	2.59
35	1.74	1.74	1.82	1.82	1.91	1.91
7/2.50	1.68	1.68	1.76	1.76	1.84	1.84
7/2.75	1.41	1.41	1.48	1.48	1.55	1.55
50	1.33	1.33	1.39	1.39	1.45	1.45
7/3.00	1.22	1.22	1.27	1.27	1.33	1.33
70	0.980	0.980	1.02	1.02	1.06	1.06
7/3.75	0.863	0.863	0.894	0.894	0.925	0.925
95	0.776	0.776	0.802	0.802	0.829	0.829
7/4.50	0.686	0.680	0.705	0.701	0.725	0.722
120	0.671	0.666	0.690	0.686	0.709	0.707
7/4.75	0.647	0.637	0.664	0.656	0.680	0.675
150	0.601	0.587	0.615	0.604	0.630	0.621
19/3.25	0.572	0.551	0.584	0.566	0.596	0.581
185	0.543	0.516	0.552	0.530	0.563	0.543
19/3.50	0.537	0.507	0.546	0.520	0.555	0.533

NOTES:

1 These V_c values apply to a balanced three-phase circuit in which no current flows in the neutral conductor. To determine the single phase V_c the current in the neutral conductor needs to be considered by multiplying the three-phase value by

 $\frac{2}{\sqrt{3}} = 1.155.$

2 These V_c values are based on a spacing of 0.4 m. For aerial bundled cables (ABC), use XLPE single-core, trefoil figures.

SECTION 5 SHORT-CIRCUIT PERFORMANCE

5.1 GENERAL

This Section is applicable to the short-circuit maximum temperature rating of electric cables having a rated voltage not exceeding 0.6/1 kV. Guidance is given on the following aspects:

- (a) Maximum permissible short-circuit temperatures for cable—
 - (i) insulating materials;
 - (ii) outer jacket and bedding materials; and
 - (iii) conductor and metallic sheath materials and components.
- (b) The influence of the method of installation on the temperature limit.
- (c) The calculation of the permissible short-circuit current in the current-carrying components of the cable.

5.2 FACTORS GOVERNING THE APPLICATION OF THE TEMPERATURE LIMITS

The short-circuit temperatures given in Clause 5.5 are the actual temperatures of the currentcarrying component as limited by the adjacent materials in the cable and are valid for short-circuit durations of up to 5 s. These temperatures will only be obtained in practice if non-adiabatic heating is assumed (i.e. an appropriate allowance for heat loss into the dielectric during the short circuit is made) when calculating the allowable short-circuit current for a given time (not longer than 5 s). The use of the adiabatic method (i.e. when heat loss from the current-carrying component during the short circuit is neglected) gives short-circuit currents that are on the safe side. The 5 s period quoted is the limit for the temperatures quoted to be valid, not for the application of the adiabatic calculation method. The time limit for the use of the adiabatic method has a different definition, being a function of both the short-circuit duration and the cross-sectional area of the currentcarrying component.

For thermoplastic insulating materials the limits shall be applied with caution when the cables are either directly buried or securely clamped when in air. Local pressure due to clamping or the use of an installation radius less than 8 times the cable outside diameter, especially for cables that are rigidly restrained, can lead to high deforming forces under short-circuit conditions. Where these conditions cannot be avoided it is suggested that the limit be reduced by 10°C. The limits quoted are based on average hardness grades of PVC and some adjustment may be necessary for other grades, especially those compounded for improved low-temperature properties.

NOTES:

- 1 Caution should be exercised when using the limits recommended for thermosetting materials on large conductors because the high mechanical forces combined with any residual characteristics could result in deformation sufficient to cause failure.
- 2 Caution may be needed with total cross-sectional areas in the region of 1000 mm² when using the conductor temperatures specified for impregnated paper, cross-linked polyethylene (XLPE) and ethylene propylene rubber (EPR) insulation and the cable is sheathed with a lowertemperature material.
- 3 Information on the short-circuit performance of MIMS cable is not included in this Standard and reference should be made to manufacturer's recommendations.

5.3 CALCULATION OF PERMISSIBLE SHORT-CIRCUIT CURRENTS

The following adiabatic method, which neglects heat loss, is accurate enough for calculating permissible conductor and metallic sheath short-circuit currents for the majority of practical cases and any error is on the safe side. However, for thin screens the adiabatic method indicates much higher temperature rises than actually occur in practice and thus should be used with some discretion.

121

The generalized form of the adiabatic temperature rise equation, which is applicable to any starting temperature, is as follows:

$$I^2 t = K^2 S^2 \qquad \dots 5.3$$

where

I = short-circuit current (r.m.s. over duration), in amperes

t = duration of short circuit, in seconds

K =constant depending on the material of the current-carrying component, the initial temperature and the final temperature

NOTE: See Table 52 for values of constant (K).

S = cross-sectional area of the current-carrying component, in square millimetres NOTES:

- 1
- For conductors and metallic sheaths, it is sufficient to take the nominal cross-sectional area but in the case of screens, this quantity requires careful consideration.
- An example of the application of this method is provided in Appendix A, Paragraph A8. 2

TABLE52

VALUES OF CONSTANT K FOR DETERMINATION OF PERMISSIBLE SHORT-CIRCUIT CURRENTS

Constant (K)

						Const	ant (A)							
Initial temperature					Fin	al temp	eraturo	e of con	ductor	°C				
of conductor			Cop	per				Alum	inium		Le	ead	Steel	
°C	140	150	160	220	250	350	140	150	160	250	150	200	150	200
130	37.2	52.2	63.6	106	121	155	24.6	34.5	42.0	79.6	9.5	17.3	18.9	34.1
125	45.7	58.6	68.9	109	123	158	30.2	38.7	45.5	81.5	10.7	17.9	21.2	35.4
110	65.3	74.9	83.2	119	132	164	43.2	49.5	55.0	87.1	13.7	19.9	27.1	39.3
90	85.6	93.1	99.9	131	143	173	56.6	61.5	66.0	94.5	17.0	22.3	33.7	44.1
85	90.1	97.3	104	134	146	176	59.5	64.3	68.6	96.3	17.8	22.9	35.2	45.3
80	94.4	101	108	137	149	178	62.4	67.0	71.1	98.1	18.5	23.5	36.7	46.4
75	98.7	105	111	140	151	180	65.2	69.6	73.6	99.9	19.2	24.0	38.2	47.6
70	103	109	115	143	154	182	68.0	72.2	76.0	102	19.9	24.6	39.6	48.8
65	107	113	119	146	157	185	70.7	74.7	78.4	104	20.6	25.2	41.0	49.9
60	111	117	122	149	159	187	73.3	77.2	80.8	105	21.3	25.7	42.4	51.0
55	115	120	126	152	162	189	75.8	79.6	83.1	107	22.0	26.3	43.7	52.2
50	118	124	129	155	165	192	78.4	82.0	85.5	109	22.7	26.9	45.1	53.3
45	122	128	133	158	168	194	80.9	84.4	87.7	111	23.3	27.4	46.4	54.4
40	126	131	136	160	170	196	83.3	86.8	90.0	113	24.0	28.0	47.7	55.6
35	130	135	140	163	173	199	85.8	89.1	92.3	114	24.6	28.5	49.1	56.7
30	133	138	143	166	176	201	88.2	91.5	94.5	116	25.3	29.1	50.4	57.8
25	137	142	146	169	179	204	90.6	93.8	96.8	118	25.9	29.6	51.7	59.0

5.4 INFLUENCE OF METHOD OF INSTALLATION

When it is intended to make full use of the short-circuit limits of a cable, consideration should be given to the influence of the method of installation. An important aspect concerns the extent and nature of the mechanical restraint imposed on the cable. Longitudinal expansion of a cable during a short circuit can be significant and when this expansion is restrained the resultant forces are considerable.

1

Where cables are installed in air, provision should be made so that expansion may be absorbed uniformly along the length by snaking rather than permitting it to be relieved by excessive movement at a few points only. Fixings should be spaced sufficiently far apart to permit lateral movement of multicore cables or groups of single core cables.

Where cables are buried directly in the ground, or are restrained by frequent fixing, provision should be made to accommodate the resulting longitudinal forces on terminations and joint boxes. Sharp bends should be avoided because the longitudinal forces are translated into radial pressures at bends in the cable route and these may damage thermoplastic components of the cable such as insulation and sheaths. Attention is drawn to the minimum bending radius recommended for the type of cable. For cables in air, it is also desirable to avoid fixings at a bend, which may cause local pressure on the cable.

In determining the short-circuit stresses that will be imposed on a cable, the characteristics of the protective devices used shall be considered.

5.5 MAXIMUM PERMISSIBLE SHORT-CIRCUIT TEMPERATURES

5.5.1 General

Taking into account the recommendation given in Clause 5.2, the temperature values given in Tables 52 to 54 are—

- (a) the actual temperatures of the current-carrying components; and
- (b) the limits specified for short circuits of up to 5 s duration.

5.5.2 Insulating materials

The temperature limits given in Table 53 are for all types of conditions when the insulating materials specified are in contact with conductors.

TABLE53

TEMPERATURE LIMITS FOR INSULATING MATERIALS IN CONTACT WITH CONDUCTORS

Material	Temperature limit °C
Thermoplastic: LLDPE, PE, V-75, HFI-75-TP, TPE-75, V-90, HFI-90-TP, TP 90 and V-90HT—	
-up to and including 300 mm ²	160
—greater than 300 mm ²	140
Cross-linked elastomeric: R-EP-90, R-CPE-90, R-HF-90	
R-CSP-90, R-HF-110, and R-E-110	250
Cross-linked polyolefin: X-90, X-90UV, X-HF-90 and X-HF-110	250
High temperature: R-S-150 and Type 150 fibrous	350

5.5.3 Outer sheath and bedding materials

The temperature limits given in Table 54 are for the outer sheath and bedding materials comprising a continuous screen/sheath or a complete layer of armour wires. These temperatures are for materials where there are no electrical or other requirements necessary, i.e. screen/sheath/armour temperature limits when in contact with the outer sheath materials but thermally separated from the insulation by layers of suitable material of sufficient thickness. If thermal separation is not provided, the temperature limits of the insulation should be used if it is lower than that of the sheath.

TABLE54

TEMPERATURE LIMITS FOR OUTER SHEATH AND BEDDING MATERIALS

Material	Temperature limit °C
Thermoplastic	200
Polyethylene	150
High density polyetheylene	180
Polychloroprene, chlorosuphonated polyethylene and similar	200

5.5.4 Conductor and metallic sheath materials and components

The temperature limits specified in Table 55 apply to the conductor and metallic sheath materials and components.

NOTE: Limitations of materials in contact with these metals should also be considered.

TABLE 55

TEMPERATURE LIMITS FOR CONDUCTOR AND METALLIC SHEATH MATERIALS AND COMPONENTS

Metals	Condition	Temperature limit °C
Copper and aluminium	Conductor only* Welded joint	+ +
	Exothermic welded joint Soldered joint Compression (mechanical deformation) joint Mechanical (bolted) joint	250‡ 160 250‡ §
Lead Lead alloy Steel		170 200 †

* Includes concentric neutral conductors.

[†] Limited by the material with which it is in contact.

‡ Temperature of adjacent conductor, actual joint will be at a lower temperature.

§ Refer to manufacturer's recommendations.

APPENDIX A

EXAMPLES OF THE SELECTION OF CABLES TO SATISFY CURRENT-CARRYING CAPACITY, VOLTAGE DROP AND SHORT-CIRCUIT PERFORMANCE REQUIREMENTS

(Informative)

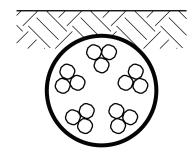
A1 EXAMPLE 1

A1.1 Problem

An underground 1450 A three-phase circuit is to be made up of parallel circuits of 400 mm^2 V-75 single-core insulated and sheathed copper cables. Determine the minimum number of active conductors required for each of the following forms of installation:

- (a) All cables in one conduit or duct.
- (b) Each parallel circuit comprising three cables in one conduit or duct.
- (c) Each parallel circuit comprising a trefoil group of single-way underground ducts.
- (d) Each parallel circuit comprising a trefoil group of three cables buried direct.

A1.2 Solution

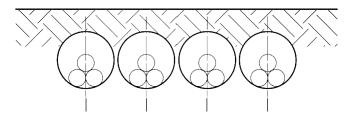

Assuming that the conditions specified in Clause 3.4 apply, i.e. soil ambient temperature, thermal resistivity and depth of laying, the following methods would satisfy the load requirements, if the voltage drop is acceptable:

(a) *Method A—Single conduit or duct* Current-carrying capacity of single 400 mm² circuit = 492 A (Table 7, Column 24).

From the derating factors of Table 22, which vary according to the number of enclosed circuits, it can be shown that five parallel circuits of 400 mm^2 conductors, as illustrated, are required.

The current-carrying capacity of the arrangement is-

 $492 \times 5 \times 0.6 = 1476$ A.

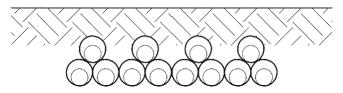


(b) Method B—Groups of conduits or ducts Current-carrying capacity of single 400 mm^2 circuit = 492 A (Table 7, Column 24).

From the derating factors of Table 26(2) for groups of underground enclosures, it can be shown that four conduits or ducts, each containing a circuit of 400 mm^2 conductors and touching, as illustrated, are required.

The current-carrying capacity of the arrangement is—

 $492 \times 4 \times 0.79 = 1554.7.$

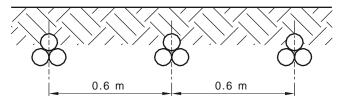

(c) Method C—Trefoil groups of single-way underground ducts

Current-carrying capacity of single 400 mm^2 circuit = 553 A (Table 7, Column 27).

From the derating factors of Table 26(1) for groups of underground enclosures, it can be shown that four trefoil groups of single-way underground ducts, each group representing a circuit of 400 mm² conductors, as illustrated, are required.

The current-carrying capacity of the arrangement-

 $553 \times 4 \times 0.74 = 1636.9$ A.



(d) *Method D—Trefoil groups of cable buried direct* Current-carrying capacity of single 400 mm² circuit = 593 A (Table 7, Column 22).

From the derating factors of Table 25(1) for groups of single-core cables buried direct, it can be shown that three trefoil groups of single-core cables, each group representing a circuit of 400 mm² conductors and spaced apart, as illustrated, are required.

The current-carrying capacity of the arrangement is-

 $593 \times 3 \times 0.87 = 1547.7$ A.

A1.3 Comparison of different methods

Each of the four methods of installation described in Paragraph A1.2 provide a satisfactory solution to the circuit design problem where the number of 400 mm² active conductors are to be kept to a minimum for a given installation method. However, in doing so the following factors that may determine the system to be selected are highlighted:

- (a) *Number of cables* Method A leads to the largest number of cables.
- (b) *Number of enclosures* Method C requires twelve enclosures (excluding neutral) whilst Method D requires none.
- (c) *Size of enclosures* The enclosures in Method C need only be sufficient to accommodate one conductor. However, the single enclosure in Method A will need to be considerably larger.

- (d) *Size of excavated trench* Methods A, B and C require relatively small trench widths in comparison to Method D.
- (e) *Provision for additional load* Methods B, C and D have provision for a further load increase of approximately 100 A to 190 A. Method A would be operating at near maximum load.

The relative importance of these different factors for a particular installation will, in general, determine the cable arrangement selected.

A2 EXAMPLE 2

A2.1 Problem

If 12 loaded single-core conductors are run through a wiring enclosure what derating factor should be applied?

A2.2 Solution

The applicable derating factors could be determined from Table 22. If it is a three-phase circuit, then 12/3 is 4 groups, i.e. 4 circuits, and a derating factor of 0.65 could be applied. If the circuits are single-phase, there would be 6 circuits and therefore a derating factor of 0.57 could be applied.

Applying these derating factors for, say, V-75 insulated 4 mm² conductors, from Table 7 a three-phase current-carrying capacity is 28 A while the single-phase value from Table 4 is 32 A.

Using the three-phase approach, $28 \times 0.65 = 18.2$ A.

Using the single-phase approach, $32 \times 0.57 = 18.2$ A.

Note that these methods result in approximately the same answer.

A3 EXAMPLE 3

A3.1 Problem

A three-phase circuit is to supply a load of 125 A per phase. It is proposed to use two V-75 insulated and sheathed four-core cables bunched together on a surface in a confined ceiling space where the ambient air temperature is 50° C.

Determine-

- (a) the minimum conductor size; and
- (b) the maximum route length of the circuit if a voltage drop of 3% is permitted on the circuit,

for both aluminium and copper conductors.

A3.2 Solution

The solution is as follows:

(a) *Minimum cable size*:

Derating factor for bunching = 0.8 (Table 22, Column 5).

Derating factor for 50° C ambient = 0.82 (Table 27(1), Column 9).

Minimum current-carrying capacity of two parallel cables-

$$125 \times \frac{1}{0.8} \times \frac{1}{0.82} = 190.5 \text{ A}$$
; or

95.25 A per cable.

From Columns 5, 6 and 7 of Table 13, the minimum size of the two cables making up the circuit are—

Aluminium—50 mm².Copper—

 35 mm^2 .

(b) *Maximum route length*:

With the same length and disposition of the two cables throughout the circuit, balanced current flow between the parallel cables can be expected.

Assuming worst case conditions of cable operating temperature and load power factor, the simplified method of Clause 4.2 may be used to determine the maximum route length of the circuit (L), in metres, by substitution of the 62.5 A load current for each cable and 3% (12.45 V) permissible voltage drop in the following equation:

$$L = \frac{1000 \times V_{\rm d}}{I \times V_{\rm c}} \qquad \dots \text{ A3.2}$$

The values of V_c are obtained from Table 42 for copper and Table 45 for aluminium and result in the following maximum route lengths:

Aluminium
$$\frac{1000 \times 12.45}{62.5 \times 1.36} = 146.5 \text{ m}$$

Copper $\frac{1000 \times 12.45}{62.5 \times 1.11} = 179.5 \text{ m}$

A4 EXAMPLE 4

A4.1 Problem

Six four-core V-75 insulated and sheathed copper cables are arranged touching in a single horizontal row on a perforated cable tray for the supply of six identical 22 kW motors which have a full-load current of 45 A per phase and are installed at distances of 40 m, 55 m, 90 m, 135 m, 180 m and 225 m from the origin of the cable tray. Determine the minimum conductor size if a voltage drop of 2.4% (10 V) is permitted for each cable.

A4.2 Solution

The selection of conductor size in this instance shall satisfy both the current-carrying capacity requirement, including the effect of the cables being grouped, and the voltage drop limitation.

The cable sizes required to satisfy the voltage drop restriction are assessed using the formula of Clause 4.2, the actual load current of 45 A, the permissible voltage drop, V_d , of 10 V and the three-phase voltage drop figures of Table 42. The results of these calculations, the current-carrying capacity given in Table 13 and its ratio to the load current, are as follows:

Cable	Length m	Maximum Vc mV/A.m	Minimum cable size mm ²	Maximum current-carrying capacity A	Ratio of actual load current to max. current-carrying capacity of cable
А	40	5.56	10	51	0.88
В	55	4.04	10	51	0.88
С	90	2.47	16	68	0.66
D	135	1.65	25	91	0.49
E	180	1.23	35	112	0.40
F	225	0.98	50	137	0.33

Because of voltage drop limitations, Cables C to F are substantially larger than required to meet the maximum current-carrying capacity requirements. As a result the contribution of these cables to the effects of mutual heating will be small, in the case of Cables E and F, almost negligible.

An examination of the derating factors for groups of multicore cables on perforated trays given in Table 24 would indicate that a factor of 0.76 (Column 9) would apply if all six cables in the group were loaded to achieve the same conductor temperature. Although these conditions do not exist for all cables in this example, the application of this factor will give a conservative but practical solution, as follows:

Minimum current-carrying capacity required of cables = $45 \times \frac{1}{76} = 59.2$ A.

Minimum cable size = 16 mm^2 (Table 13, Column 5).

As expected, only Cables A and B are affected and therefore the recommended minimum cable sizes for the Cables A, B, C, D, E and F will be 16 mm^2 , 16 mm^2 , 16 mm^2 , 25 mm^2 , 35 mm^2 and 50 mm^2 respectively.

NOTE: The actual derating factor in this situation may be closer to 0.82, the derating factor for three cables on a tray, which allows for restricted ventilation to cables nested in the middle of others. Alternative arrangements of the cables, e.g. spacing Cables A and B, which operate at a higher temperature, away from each other and others in the group, may also give rise to less onerous derating factors and smaller cable sizes.

A5 EXAMPLE 5

A5.1 Problem

Five single-phase circuits of two-core flat V-75 insulated and sheathed cables are fixed to a wall. Where the continuous loading of the cables is assessed as 16, 20, 25, 32, and 40 A, determine the minimum cable sizes required where the cables are in one of the following conditions:

- (a) Condition A—spaced apart in a single layer in accordance with Clause 3.5.2.2(c) and Figure 1.
- (b) Condition B—spaced apart in a single layer by a distance of one cable diameter between adjacent cables.
- (c) Condition C—touching in a single layer.

(d) Condition D—bunched together.

A5.2 Solution

The solution is as follows:

- (a) For installation condition A to avoid derating because of grouping, Clause 3.5.2.2(c) and Figure 1 require a minimum vertical spacing between adjacent cables 6 times the diameter of the largest cable in the group.
- (b) For Condition B, the derating factor = 0.90 (Table 22, Column 8).
- (c) For Condition C, the derating factor = 0.73 (Table 22, Column 8).
- (d) For Condition D, the derating factor = 0.60 (Table 22, Column 8).

The minimum conductor sizes determined from Column 5 of Table 13 are as follows:

Load		Cable si	ze, mm ²	
Α	Spaced 6 diameters	Spaced 1 diameter	Touching single layer	Bunched
16	1.5	1.5	2.5	2.5
20	2.5	2.5	4	4
25	2.5	4	4	6
32	4	6	6	10
40	6	6	10	16

A6 EXAMPLE 6

A6.1 Problem

A single-phase circuit comprises two 16 mm^2 copper single-core sheathed cables with V-75 insulation installed unenclosed on a wall for the supply of a 55 A resistive load.

Determine which single-phase voltage drop values will apply when the cable is operating in-

- (a) an ambient air temperature of 40° C; or
- (b) an ambient air temperature of 25° C.

A6.2 Solution

From Table 4 it will be noted that the cable current-carrying capacity of this configuration is 72 A in an ambient air temperature of 40°C. Equation 4.4(1) may therefore be solved directly for cable operating temperature (θ_0) where the ambient air temperature is 40°C but requires some correction to the rated current (I_R) before application to an ambient air temperature of 25°C. Appropriate calculations are as follows:

(a) Ambient air temperature $40^{\circ}C$

$$\left(\frac{55}{72}\right)^2 = \left(\frac{\theta_0 - 40}{75 - 40}\right) \qquad \dots \quad A6.2(1)$$

 $\theta_0 = 60.4^{\circ}$ C, rounding to 60° C for calculation purposes.

The three-phase voltage drop for this cable configuration and operating temperature obtained from Table 41 is 2.32 mV/A.m. The single-phase value is then determined in accordance with Clause 4.3.3(a).

Single-phase voltage drop value = 1.155×2.32

$$= 2.68 \text{ mV/A.m}$$

(b) Ambient air temperature $25^{\circ}C$ The correction factor for operation in a $25^{\circ}C$ ambient air temperature is used to determine the maximum current that will give rise to the maximum operating temperature of $75^{\circ}C$.

Correction factor = 1.21 [from Table 27(1)]

$$\left(\frac{55}{72 \times 1.21}\right)^2 = \left(\frac{\theta_0 - 25}{75 - 25}\right) \qquad \dots \quad A6.2(2)$$

 $\theta_0 = 44.9^{\circ}$ C, rounding to 45° C for calculation purposes.

The three-phase voltage drop for this cable configuration and operating temperature obtained from Table 41 is 2.20 mV/A.m. The single-phase value is then determined in accordance with Clause 4.3.3(a)—

Single-phase voltage drop value = 1.155×2.20

= 2.54 mV/A.m

A7 EXAMPLE 7

A7.1 Problem

A three-phase circuit comprises $3 \times 150 \text{ mm}^2$ single-core copper V-75 sheathed active conductors and a $1 \times 70 \text{ mm}^2$ single-core copper V-75 sheathed neutral conductor bunched together in free air. Assuming an ambient air temperature of 40° C and the same length of 150 m for all conductors, determine the maximum voltage drop when the magnitude and phase angle of the currents in the respective active conductors are as follows:

 $I_{\rm A} = 195 \angle 0^{\circ} {\rm A}$ $I_{\rm B} = 300 \angle 120^{\circ} {\rm A}$ $I_{\rm C} = 230 \angle 240^{\circ} {\rm A}$

A7.2 Solution

It is not necessary in this example to take into account the load power factor as the maximum voltage drop conditions are assumed where load power factor and cable power factor are equal. The voltage drop in each cable will then be equal to ILZ_c .

The 300 A load current in Phase B is, according to Table 7, close to the maximum permissible for such an arrangement and consequently the conductor operating temperature may be assessed as 75° C for the application of Table 40 corresponding to a three-phase voltage drop of 0.305 mV/A.m.

The voltage drop on Phase B conductor alone is therefore—

$$V_{dB} = I_{B}L_{B}Z_{cB} \qquad \dots A7.2(1)$$

= $\frac{300 \angle 120^{\circ} \times 150 \times \frac{0.305}{\sqrt{3}} \times \frac{1}{1000}$
= $7.924 \angle 120^{\circ}V$

The current flowing in the neutral is determined from the relationship-

$$I_{A} + I_{B} + I_{C} + I_{N} = 0 \qquad \dots A7.2(2)$$

$$I_{A} + I_{B} + I_{C} = 195 \angle 0^{\circ} + 300 \angle 120^{\circ} + 230 \angle 240^{\circ}$$

$$= 195 + (-150 + j259.8) + (-115 - j199.2)A$$

$$= -70 + j60.6$$

$$\therefore I_{\rm N} = 70 - {\rm j}60.6$$

= 92.6 $\angle -$ 40.9°A

The operating temperature of the neutral may then be determined in accordance with Clause 4.4 and the rated figure given in Table 7, i.e.

$$\left(\frac{92.6}{184}\right)^2 = \frac{\theta_0 - 40}{75 - 40} \qquad \dots \quad A7.2(3)$$

$$\theta_0 = 49^{\circ}$$
C, say 60°C allowing for contact with conductors operating at higher temperatures

From Table 40 and a conductor temperature of 60° C the three-phase voltage drop is given as 0.563 mV/A.m.

The voltage drop on the neutral conductor alone is therefore—

$$V_{dN} = I_N L_N Z_{cN} \qquad \dots A7.2(4)$$

=
$$\frac{92.6 \angle -40.9 \text{V} \times 150 \times \frac{0.563}{\sqrt{3}} \times \frac{1}{1000}$$

=
$$4.515 \angle -40.9^{\circ} \text{V}$$

The maximum single-phase voltage drop is therefore—

$$V_{d} = V_{dB} - V_{dN} = 7.924 \angle 120^{\circ} - 4.515 \angle -40.9^{\circ}$$

$$= -3.962 + j6.863 - 3.413 + j2.956$$

$$= -7.375 + j9.818$$

$$= 12.28 \angle 126.9^{\circ}V$$

A8 EXAMPLE 8

A8.1 Problem

Select the minimum size conductor based on thermal consideration, for a copper cable with compression joints connected to a supply where protection is provided by an air circuit-breaker with a clearance time of 1 s and a breaking capacity of 10 kA.

Calculate the minimum conductor size for the following two types of cable:

- (a) PVC insulated.
- (b) XLPE insulated.

A8.2 Solution

The solution is as follows:

- (a) PVC insulated
 - (i) To find the value of constant (*K*) the initial conductor temperature and the final conductor temperature must be known.

For PVC it is assumed that the initial operating temperature is 75°C (for V-75, V-90 and V-90HT). From Table 53, and assuming that the cable is smaller than 300 mm², the final operating temperature can be selected as 160°C. From Table 52 the value of *K* can be selected as 111 for a copper conductor.

(ii) As the circuit-breaker protecting the circuit is rated at 10 kA breaking capacity, we can assume a value of 10 000 A for I.

- (iii) As the clearance time of the circuit-breaker is 1 s, it can be assumed that the value of t, which is the total time the fault current is flowing, is also 1 s.
- (iv) Rearranging Equation 5.3(1) we get—

$$S = \sqrt{\left(\frac{I^2 t}{\kappa^2}\right)} \qquad \dots \quad \text{A8.2(1)}$$

Substituting the values for *I*, *t* and *K*, the minimum cross-sectional area is calculated as—

$$S = \sqrt{\left[\frac{(10\ 000^2 \times 1)}{(111)^2}\right]}$$
... A8.2(2)
= 90.1 mm²

Therefore, the minimum cable size would be 95 mm^2 .

(b) *XLPE insulation*

Using the same process as in Item (a) the following steps are taken:

- (ii) Value of short circuit current (I) 10 000 A.

$$S = \sqrt{\left(\frac{I^2 t}{\kappa^2}\right)} \qquad \dots \quad A8.2(3)$$
$$2 = \sqrt{\left[\frac{(10\ 000)^2 \times 1}{(143)^2}\right]}$$
$$= 69.9\ \mathrm{mm}^2$$

Therefore, the minimum cable size would be 70 mm².

A9 EXAMPLE 9

A9.1 Economic cable sizing

The principle of economic cable sizing is to select a cable size of minimum admissible cross-sectional area that is safe to use and where the cost of the losses that will occur during the life of the cable are minimized. This objective is met by optimizing the present value of upfront costs and cost savings that are due to lifetime savings for the electricity consumer. Such cable should always be of greater cross-sectional area than one that is selected through the application of the normal safety based processes explained in Clauses 2.2 to 2.5 of this Standard and others (e.g. AS/NZS 3000).

The process of selecting a cable size that is based on economic arguments, in this example, has six main steps which are illustrated below.

Results are sensitive to input parameters such as cost of electricity, cable and installation and care should be taken to ensure that all data is appropriate for each installation.

The beneficiary, in this example, is assumed to be the entity that pays for both the upfront costs and the electricity bill for an economically sufficient period.

A9.2 Problem

Three copper conductor, XLPE insulated, single-core cables are arranged in a single horizontal row touching each other on a cable ladder for the supply of an electric motor which has a full-load current of 200 A per phase. The installation has a route length of 100 m and the ambient air temperature is 40° C.

Determine the minimum conductor size—

- (a) that fulfils the current carrying requirements;
- (b) that permits a maximum voltage drop of 2.4% (10 V); and
- (c) has the least lifetime cost when the motor is operated at 80% of its full-load current.

A9.3 Solution

Step 1 Basic information

Using normal practice of considering current-carrying capacity and voltage drop requirements, the initial cross-sectional area of conductor is selected. In this example, such practice selects a 95 mm² conductor size. The cables considered for economic optimization in this example are nominal sizes with conductors ranging in cross-sectional area from 95 mm² to 630 mm², but this does not preclude the use of other cross-sectional areas including those achieved with combinations of conductors that are connected in parallel.

The utility represents the percentage of daily use and the current expressed as a fraction of the maximum demand. In this example the utility is set at full time use and 80% of the maximum demand current. Since losses are proportional to the square of current, if the current is not the maximum demand then the losses will be lower leading to a conservative value for the optimal conductor size.

The initial information is summarized in Table A9.1 below:

TABLE A9.1

Maximum Conductor Maximum Route Utility demand cross-sectional area voltage drop length А mm² v % m 95 200 10 100 80

SUMMARY OF INFORMATION

Step 2 Calculate phase conductor operating temperature and a.c. resistance

Column 5 of Table 8 provides the current rating. For a three-phase circuit comprising $3 \times 95 \text{ mm}^2$ single core copper conductor, XLPE insulated phase cables and $1 \times 25 \text{ mm}^2$ single core copper conductor, XLPE insulated earth cable, the current rating is 298A. The phase conductor temperature (θ_0) is estimated by using Equation 4.4(1). The calculated temperature is then raised to the nearest temperature 45°C, 60°C, 75°C, 80°C, 90°C or 110°C for use with Table 34 to determine the conductor a.c. resistance.

$$\begin{pmatrix} \frac{160}{40} \\ 298 \end{pmatrix}^2 = \frac{\theta_0 - \dots \text{ A9.3(1)}}{90 - 40}$$

 $\theta_0 = 54$ °C raised to 60 °C.

Therefore the a.c. resistance of the 95 mm² is 0.225 Ω /km (Table 34, Column 3).

The a.c. resistance for a route length of $100m = 0.225 \times 0.1 = 0.0225$ Ω .

Step 3 Calculate I^2R loss of the cable

At 80% utility (a current of 160 A), the I^2R loss of the cable is calculated as follows:

 $I^2 R = (80\% \times 200)^2 \times 0.0225 = 576$ W per phase or 1728 W for three-phase ... A9.3(2)

where

I = current flowing in the conductor, in amperes

R = a.c. resistance of the conductor, in ohms

The a.c. resistance of the conductor is lower when the utility is 80% because the conductor temperature is lower.

In this example the unit cost of electricity is assumed to be 15 c/kWh. The annual cost of 1728 W is therefore—

 $1.728 \times 0.15 \times 24 \times 365 =$ \$2271.

The above steps are to be repeated for all cable sizes considered in the example.

TABLE A9.2

1	2	3	4	5	6	7	8	9	10
Phase conductor size	Earth conductor size*	Upfront cost (3-phase plus earth)†	Current rating‡	Phase conductor temperature	Increase in upfront cost over cost of 95 mm ² cable	a.c resistance of phase conductor§	<i>I</i> ² <i>R</i> loss of cable (3-phase)	Cost of <i>I</i> ² <i>R</i> loss	I ² R loss savings
					(<i>cc</i>)				(Y)
mm ²	mm ²	\$	Α	°C	\$	Ω	kW	\$/year	\$/year
95	25	3 511	298	54	—	0.0225	1.728	2 271	_
120	35	4 4 1 6	349	51	905	0.0179	1.375	1 806	465
150	50	5 490	403	48	1 979	0.0145	1.114	1 463	808
185	70	6 874	468	46	3 363	0.0117	0.899	1 181	1 090
240	95	8 996	560	44	5 485	0.00862	0.662	870	1 401
300	120	11 260	648	43	7 749	0.00703	0.540	709	1 562
400	120	13 854	756	42	10 343	0.00569	0.437	574	1 697
500	120	17 513	874	42	14 002	0.00467	0.359	471	1 800
630	120	22 278	1010	41	18 767	0.00389	0.299	393	1 878

SUMMARY OF CALCULATIONS

* Earth size in accordance with AS/NZS 3000:2007, Table 5.1.

 \dagger Indicative cost of 4 single core cables, i.e. 3×1 C phase and 1×1 C earth, only. Additional installation and other costs, if incurred, should be added to these numbers.

‡ Table 8, Column 5.

§ Table 34, Column 2 to Column 6 and adjusted for a route length of 100 m.

Step 4 Calculation of the net present value of the total cost of the installation

The net present value of the total cost is the difference between the net present value of savings in the cost of I^2R loss over the time period and the increase in upfront costs.

$$NPV_{total} = NPV_{savings} - cc$$
 ... A9.3(3)

where

 NPV_{total} = Net present value of the total cost of the installation, in \$ NPV_{savings} = Net present value of the savings in the cost of I^2R loss, in \$

$$= \frac{Y(1-(1+r)^{-n})}{r} \dots A9.3(4)$$

сс

= increase in upfront costs, in \$, i.e. additional cable cost and other associated costs, as a result of using a larger cable in today's value

where

- n = time period, in years = 20 years (see Note 1)
- r = discount rate, in % = 7% (see Note 2)
- Y = savings in cost of $I^2 R$ loss (a cash flow) as a result of using a larger cable, \$/year (see Note 3)

NOTES:

- 1 n is assumed to be the time period the entity that pays the capital costs accrues benefits from the savings due to the selection of a larger cable size. For a domestic situation this time period is the average time first home owners stay in the home (~7 years). An appropriate time period should be used for commercial installations. In this commercial or industrial example the time period is assumed to be 20 years. If the calculated payback period is longer than 20 years then the cable size will not be economically viable. The time period (n) is not to be confused with the payback period (N), which is a particular instance of n when the NPV_{total} is equal to 0.
- 2 The discount rate (r) is the expected rate of return that those paying for the energy losses (home or building owner) could earn for a similar risk in financial markets. In this example it has been set to 7% (expressed as 0.07, not 1.07).
- 3 Value of annual energy savings from reduced I^2R loss—unit cost of electricity is assumed to be constant for the time period.
- 4 The Microsoft Excel® spreadsheet *NPV* function is not used as it does not allow for constant cash flows over a set period of time. The Excel *NPV* function requires each year's cash flow to be worked out and entered separately into the function.

Equation A9.2 can be solved to determine the NPV_{total} of selecting the next larger cable size to 120 mm²—

$$NPV_{\text{total}} = \frac{465(1 - (1 + 0.07)^{-20})}{0.07} - 905 = \$4013 \qquad \dots \text{ A9.3(5)}$$

NOTE: The way the intermediate results are rounded may influence the NPV_{total} . For example, if the rounded values of 465 and 905 are used NPV_{total} is \$4021. When unrounded numbers are used the NPV_{total} is \$4013.

Step 5 Calculation of the payback period

The payback period (*N*) represents the number of years that the accumulated savings of reduced losses equals the additional cost of installing a larger cable size. The payback period is determined when the NPV_{total} is equal to 0. By using Equation A9.3(3) and making PV_{total} equals zero:

$$NPV_{\text{total}} = NPV_{\text{savings}} - cc$$

0 = $\frac{Y(1-(1+r)^{-N})}{r} - cc$... A9.3(6)

The above can be written as:

$$N = \frac{-\log\left(1 - \frac{r \times cc}{Y}\right)}{\log\left(1 + r\right)} \qquad \dots \quad A9.3(7)$$

where

N = payback period, in years.

As a result of moving one cable size up to 120 mm^2 :

$$Y = 2271 - 1806 = $465$$

$$cc = 4416 - 3511 = $905$$

The payback period (*N*) in this example is therefore:

$$N = \frac{-\log\left(1 - \frac{0.07 \times 905}{465}\right)}{\log(1 + 0.07)} = 2.2 \text{ years} \qquad \dots \text{ A9.3(8)}$$

The benefit to cost (B/C) ratio for moving one cable size up to 120 mm²:

=
$$NPV_{total}/cc$$

= $4013/905 = 4.4$

NOTE: The B/C ratio is used as both a ranking indicator and a decision threshold. The B/C ratio should be significantly greater than one for the selection of a larger cable size to be worthwhile.

Step 6 Calculation of the properties of increasingly larger cables

Repeat the calculations in Steps 2 to 5 for available cable sizes as shown in the table below or until the NPV_{total} starts to decrease.

137

TABLEA9.3

Phase conductor size	Upfront cost* (3-phase plus earth)	Increase in upfront cost over cost of 95 mm ² cable (cc)	<i>I</i> ² <i>R</i> loss of cable (3-phase)	Cost of I ² R loss	I ² R loss savings† (Y)	NPV _{savings} over 20 years (NPV _{savings})	NPV _{total} over 20 years (NPV _{total})	Payback period (N)	Benefit to cost ratio
mm ²	\$	\$	kW	\$/year	\$/year	\$	\$	year	year
95	3 511		1.728	2 271					_
120	4 416	905	1.375	1 806	465	4 918	4 013	2.2	4.4
150	5 490	1 979	1.114	1 463	808	8 553	6 574	2.8	3.3
185	6 874	3 363	0.899	1 1 2 0	1 090	11 546	8 183	3.6	2.4
240	8 996	5 485	0.662	870	1 401	14 839	9 354	4.7	1.7
300	11 260	7 749	0.540	709	1 562	16 539	8 790	6.3	1.1
400	13 854	10 343	0.437	574	1 697	17 972	7 629	8.2	0.7
500	17 513	14 002	0.359	471	1 800	19 062	5 060	11.6	0.4
630	22 278	18 767	0.299	393	1 878	19 896	1 129	17.8	0.1

SUMMARY OF ALL CALCULATIONS

* The nonlinear step-like movements in upfront cost price are due to selection of the earth conductor size relative to the phase conductor size.

 \dagger Savings are based on the difference from the 95 mm² case (see Step 1).

Step 7 Selection of economically optimal cable size

All cables with conductor cross-sectional areas from 120 mm² to 300 mm² have a B/C ratio that is greater than unity and their installation would offer lifetime benefits to the owner when compared to the 95 mm² cable. The largest positive value of NPV_{total} is \$9354 for the cable with 240 mm² conductor size and therefore is the economically optimal cable size for this example with the assumptions made.

APPENDIX B

LIST OF TABLES

(Informative)

Table	Title	Page
1	Limiting temperatures for insulated cables	14
2	Reduction factors for harmonic currents in 4- and 5-core cables	28
3(1)	Schedule of installation methods for cables deemed to have the same current-carrying capacity and cross-references to applicable derating tables—Unenclosed in air	29
3(2)	Schedule of installation methods for cables deemed to have the same current-carrying capacity and cross-references to applicable derating tables—Enclosed	31
3(3)	Schedule of installation methods for cables deemed to have the same current-carrying capacity and cross-references to applicable derating tables—Buried direct in the ground	33
3(4)	Schedule of installation methods for cables deemed to have the same current-carrying capacity and cross-references to applicable derating tables—Underground wiring enclosures	34
4	Current-carrying capacities Cable type: Two single-core Insulation type: Thermoplastic	35
5	Current-carrying capacities Cable type: Two single-core Insulation types: X-90, X-HF-90, R-EP-90, R-CPE-90, R-HF-90 or R-CSP-90	38
6	Current-carrying capacities Cable type: Two single-core Insulation types: R-HF-110, R-E-110 or X-HF-110	41
7	Current-carrying capacities Cable type: Three single-core Insulation type: Thermoplastic	44
8	Current-carrying capacities Cable type: Three single-core Insulation types: X-90, X-HF-90, R-EP-90, R-CPE-90, R-HF-90 or R-CSP-90	47
9	Current-carrying capacities Cable type: Three single-core Insulation types: R-HF-110, R-E-110 or X-HF-110	50
10	Current-carrying capacities Cable type: Two-core sheathed Insulation type: Thermoplastic	53
11	Current-carrying capacities Cable type: Two-core sheathed Insulation types: X-90, X-HF-90, R-EP-90, R-CPE-90, R-HF-90 or R-CSP-90	56
12	Current-carrying capacities Cable type: Two-core sheathed Insulation types: R-HF-110, R-E-110 or X-HF-110	59

Table	Title	Page
13	Current-carrying capacities Cable types: Three-core and four-core Insulation type: Thermoplastic	62
14	Current-carrying capacities Cable types: Three-core and four-core Insulation types: X-90, X-HF-90, R-EP-90, R-CPE-9, R-HF-90or R-CSP-90	65
15	Current-carrying capacities Cable types: Three-core and four-core sheathed Insulation types: R-HF-110, R-E-110 or X-HF-110	68
16	Current-carrying capacities Cable type: Flexible cords Insulation types: Thermoplastic or cross-linked	71
17	Current-carrying capacities Cable types: Cables and flexible cords Insulation types: R-S-150, Type 150 fibrous or 150°C rated fluoropolymer	72
18	Current-carrying capacities Cable type: Bare single-core MIMS cables with copper conductors	73
19	Current-carrying capacities Cable type: Bare multicore MIMS cables with copper conductors	74
20	Current-carrying capacities Cable types: Aerial cables with copper conductors	75
21	Current-carrying capacities Cable types: Aerial cables with aluminium conductors	77
22	Derating factors for bunched circuits Cable types: Single-core and multicore Installation conditions: In air or in wiring enclosures	79
23	Derating factors for circuits Cable type: Single-core Installation conditions: In trays, racks, cleats or other supports in air	80
24	Derating factors for circuits Cable type: Multicore Installation conditions: In trays, racks, cleats or other supports in air	82
25(1)	Derating factors for groups of circuits Cable type: Single-core Installation conditions: Buried direct in ground	84
25(2)	Derating factors for groups of circuits Cable type: Multicore Installation conditions: Buried direct in ground	85
26(1)	Derating factors for groups of circuits Cable type: Single-core Installation conditions: In underground wiring enclosures—Enclosed separately	86
26(2)	Derating factors for groups of circuits Cable types: Single-core or multicore Installation conditions: In underground wiring enclosures—Multicore cables enclosed separately or more than one single-core cable per wiring enclosure	87

139

Table	Title	Page
27(1)	Rating factors Variance: Air and concrete slab ambient temperatures Installation conditions: Cables in air or heated concrete slabs	88
27(2)	Rating factors Variance: Soil ambient temperatures Installation conditions: Cables buried direct in ground or in underground wiring enclosures	88
28(1)	Rating factors Cable types: Single-core or multicore Variance: Depth of laying Installation conditions: Buried direct in ground	89
28(2)	Rating factors Cable types: Single-core or multicore Variance: Depth of laying Installation conditions: In underground wiring enclosures	89
29	Rating factors Variance: Thermal resistivity of the soil (from 1.2°C.m/W) Installation conditions: Buried direct in ground and in underground wiring enclosures	90
30	Reactance at 50 Hz Cable type: All cables excluding ABC but flexible cords, flexible cables, MIMS cables and aerial cables	98
31	Reactance at 50 Hz Cable types: Flexible cords and flexible cables	99
32	Reactance at 50 Hz Cable type: MIMS	100
33	Reactance at 50 Hz Cable type: Single-core aerial with bare or insulated conductors	101
34	a.c. resistance at 50 Hz Cable type: Single-core	102
35	a.c. resistance at 50 Hz Cable type: Multicore with circular conductors	103
36	a.c. resistance at 50 Hz Cable type: Multicore with shaped conductors	104
37	a.c. resistance at 50 Hz Cable types: Flexible cords and flexible cables with copper conductors	105
38	a.c. resistance at 50 Hz Cable type: MIMS	106
39	a.c. resistance at 50 Hz Cable type: Single-core aerial with bare or insulated conductors	107
40	Three-phase voltage drop (V_c) at 50 Hz Cable types: Single-core insulated and sheathed copper conductors laid in trefoil	108
41	Three-phase voltage drop (V _c) at 50 Hz Cable types: Single-core insulated and sheathed copper conductors, laid flat touching or touching inside a common wiring enclosure	109

Table	Title	Page
42	Three-phase voltage drop (V _c) at 50 Hz Cable type: Multicore with circular copper conductors	110
43	Three-phase voltage drop (V_c) at 50 Hz Cable types: Single-core insulated and sheathed aluminium conductors, laid in trefoil	111
44	Three-phase voltage drop (V_c) at 50 Hz Cable types: Single-core insulated and sheathed aluminium conductors, laid flat touching or touching inside a common wiring enclosure	112
45	Three-phase voltage drop (V_c) at 50 Hz Cable type: Multicore cables with circular aluminium conductors	113
46	Three-phase voltage drop (V_c) at 50 Hz Cable types: Single-core flexible cords and flexible cables, laid in trefoil	114
47	Three-phase voltage drop (V_c) at 50 Hz Cable types: Single-core flexible cords and flexible cables, laid flat touching or touching inside a common wiring enclosure	115
48	Three-phase voltage drop (V _c) at 50 Hz Cable types: Multicore flexible cords and flexible cables	116
49	Three-phase voltage drop (V _c) at 50 Hz Cable types: Single-core and multicore MIMS, laid in trefoil	117
50	Three-phase voltage drop (V_c) at 50 Hz Cable type: Aerial with bare or insulated copper conductors	118
51	Three-phase voltage drop (V _c) at 50 Hz Cable type: Aerial with bare or insulated aluminium conductors	119
52	Values of constant K for determination of permissible short-circuit currents	121
53	Temperature limits for insulating materials in contact with conductors	122
54	Temperature limits for outer sheath and bedding materials	123
55	Temperature limits for conductor and metallic sheath materials and components	123

141

COPYRIGHT

APPENDIX C

EXAMPLES OF THE APPLICATION OF REDUCTION FACTORS FOR HARMONIC CURRENTS

(Informative)

Consider a three-phase circuit with a design load of 35 A to be installed using four-core PVC insulated cable clipped to a wall.

From Table 13, a 6 mm^2 cable with copper conductors has a current-carrying capacity of 37 A and hence is suitable if harmonics are not present in the circuit.

If 20% third harmonic is present then a reduction factor of 0.86 is applied and the design load becomes—

$$\frac{-35}{0.86} = 41 \,\mathrm{A} \qquad \dots C(1)$$

For this load a 10 mm² cable is suitable.

If 44% third harmonic is present the cable size selection is based on the neutral current which is—

$$35 \times 0.44 \times 3 = 46.2 \text{ A}$$
 ... C(2)

and a reduction factor of 0.86 is applied, leading to a design load of-

$$\frac{46.2}{0.86} = 53.7 \text{ A} \qquad \dots \text{ C}(3)$$

For this load, a 16 mm^2 cable is suitable.

If 50% third harmonic is present the cable size is again selected on the basis of the neutral current, which is—

$$35 \times 0.5 \times 3 = 52.5 \text{ A}$$
 ... C(4)

In this case, the reduction factor is 1 and a 16 mm^2 cable is suitable.

All the above cable selections are based on the current-carrying capacity of the cable only. Voltage drop and other aspects of design have not been considered.

APPENDIX D

143

RECOMMENDED CIRCUIT CONFIGURATIONS FOR THE INSTALLATION OF SINGLE-CORE CABLES IN PARALLEL

(Informative)

TABLE D1

Mode	Two-phase	Three-phase
Two conductors per phase		A B C C B A
		or A B C
		CBA
		or (A) (A) (B) (C) (B)
Three conductors per phase	Not recommended	$ \begin{array}{cccc} $
Four conductors	ABBAABBA	A B C C B A
per phase	or	ABC CBA
	A B B A	or
	A B B A	$ \begin{array}{c} (A) \\ (B) \\ (C) \\ (C) \\ (C) \\ (C) \\ (C) \\ (B) \\ (C) $

LOAD CURRENT SHARING CONFIGURATIONS

NOTES:

- 1 Neutral conductors are to be located so as to not disturb the symmetry of the groups as illustrated.
- 2 Non-symmetrical configuration may cause unequal distribution of current between conductors. Provision should be made to maintain the recommended configurations to avoid these problems.

Mode	Three-phase
Two conductors per phase	A B C C B A
	or (C) (B) (A) (A) (B) (C) (A) (B) (C) (B) (B) (B) (B) (B) (B) (B) (B) (B) (B
	or BC CA
Three conductors per phase	A C A B C A B
Four conductors per phase	
	CBA ABC
	or
	A B C C A C A C A C A C A C A C A C A C

TABLE D2LOW MAGNETIC FIELD CONFIGURATIONS

NOTES:

- 1 The magnetic field generated by parallel groups of single-core cables is complex and its reduction is dependent on a number of factors, the most significant of which are—
 - (a) the load current in each parallel cable group is assumed to be equal, at least 95% should be maintained; and
 - (b) the spacing between each parallel cable group is assumed to be small, consistent with the spacings in Figure 1, a spacing of one to two cable diameters should be maintained.
- 2 Neutral conductors are to be positioned close to phase conductors taking into account symmetry and effect of air circulation.
- 3 Other group configurations may also achieve relatively low levels of magnetic fields that may be suitable for the specific requirements of the installation.

Standards Australia

Standards Australia is an independent company, limited by guarantee, which prepares and publishes most of the voluntary technical and commercial standards used in Australia. These standards are developed through an open process of consultation and consensus, in which all interested parties are invited to participate. Through a Memorandum of Understanding with the Commonwealth government, Standards Australia is recognized as Australia's peak national standards body.

Standards New Zealand

The first national Standards organization was created in New Zealand in 1932. The New Zealand Standards Executive is established under the Standards and Accreditation Act 2015 and is the national body responsible for the production of Standards.

Australian/New Zealand Standards

Under a Memorandum of Understanding between Standards Australia and Standards New Zealand, Australian/New Zealand Standards are prepared by committees of experts from industry, governments, consumers and other sectors. The requirements or recommendations contained in published Standards are a consensus of the views of representative interests and also take account of comments received from other sources. They reflect the latest scientific and industry experience. Australian/New Zealand Standards are kept under continuous review after publication and are updated regularly to take account of changing technology.

International Involvement

Standards Australia and Standards New Zealand are responsible for ensuring that the Australian and New Zealand viewpoints are considered in the formulation of international Standards and that the latest international experience is incorporated in national and Joint Standards. This role is vital in assisting local industry to compete in international markets. Both organizations are the national members of ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission).

Visit our web sites

www.standards.org.au

www.standards.govt.nz

GPO Box 476 Sydney NSW 2001 Phone (02) 9237 6000 Fax (02) 9237 6010 Email mail@standards.org.au Internet www.standards.org.au SAI Global Customer Service Phone 13 12 42 Fax 1300 65 49 49 Email sales@saiglobal.com

15 Stout Street Wellington 6011 (PO Box 1473 Wellington 6011) Freephone 0800 782 632 Phone (04) 498 5990 Fax (04) 498 5994 Email enquiries@standards.govt.nz Website www.standards.govt.nz

ISBN 978 1 76035 658 3

Printed in Australia

This page has been left intentionally blank.