

RTO Code: 52786

Portfolio of evidence

UEEEL0020 Part A

Solve problems in low voltage a.c. circuits

UEE Training Package Support Material

Based on: National Electrotechnology Industry Standards

> North Metropolitan TAFE V1 July 2022

Qualification national code and title	UEE30820 Certificate III in Electrotechnology Electrician
Unit/s national code/s and title/s	UEEEL0020 - Solve problems in low voltage a.c. circuits

Student Name Asso		Assessment Type		Questioning (Oral / Written)
Student ID				Portfolio
Lecturer Name		Student Result (S/NYS)		
By completing and submitting this signed form to my lecturer, I am stating that:				
a. The attached subr	a. The attached submission is completely my own work			
b. I have correctly cited all sources of information used in this work (if required)				
c. I understand a cop	c. I understand a copy of my assessment will be kept by the NMTAFE for their records			
d. I understand my a ensure student as	 I understand my assessment may be selected for use in the NMTAFE's validation and audit process to ensure student assessment meets requirements 			

Student Signature

Date

Assessment type (☑):

- □ Questioning (Oral/Written)
- □ Practical Demonstration
- □ 3rd Party Report
- ☑ Other Project/Portfolio (please specify)

Assessment Resources:

Resources the assessor is to provide:

- Classroom setting as the venue.
- Test paper
- Graph paper

Resources the candidate is to provide:

- Black or Blue pen
- Pencil and eraser
- Scientific calculator (non-programmable)
- Maths drawing set
- AS/NZS 3000: current edition
- AS/NZS 3008.1.1 current edition
- WA Electrical Requirements current edition

Assessment Instructions:

RTO Code 52786 CRICOS Code: 00020G

Qualification national code and title	UEE30820 Certificate III in Electrotechnology Electrician
Unit/s national code/s and title/s	UEEEL0020 - Solve problems in low voltage a.c. circuits

Task description:

The following Portfolio Assessment relates to the knowledge requirements and performance evidence of the unit. Make sure you complete all questions and practical activities

- To be deemed Satisfactory you are required to achieve a mark of 100%
- The following **Knowledge Assessment** is an open book assessment and does not need to be completed under supervision
- The following **Practical Activities** must be completed under supervision in a simulated workplace environment
- If *Not Yet Satisfactory* you will be required to re-attempt the **Knowledge Questions** that are marked *not satisfactory* and/or any **Practical Activity** marked as **Not Yet Satisfactory**

Student Instructions:

Ensure you have access to all the resources required for this assessment as described below.

- 1. Read the **Questions** section. If you are not clear about a question, ask your assessor for further information.
- 2. You may be able to complete the questions verbally. This would need to be negotiated with your assessor.
- 3. Your assessor will provide feedback on your answers, including any questions that may require a further response.
- 4. If you have specific needs that you would like considered during this assessment, please discuss this with your assessor to identify any possible reasonable adjustments **prior** to commencing the assessment.
- 5. All diagrams must be neat, labelled and in pencil.
- 6. All calculations and numerical answers must be shown correct to two decimal places and include both the unit of measurement and metric prefix if applicable.

Qualification national code and title	UEE30820 Certificate III in Electrotechnology Electrician
Unit/s national code/s and title/s	UEEEL0020 - Solve problems in low voltage a.c. circuits

Complete all Knowledge Questions.

Question 1	Find the frequency of a waveform with a periodic time of			
	A. 0.1 Second B. 40 ms C. 2ms D.1μs		B . 40 ms	
			D.1µs	
Answor				
AllSwei	В			
	С			
	D			
Feedback				SatisfactoryNot satisfactory

Question 2	A sinewave has a maximum value of 400 V. Determine its: a peak-to-peak voltage b RMS voltage c average half cycle voltage		
	a ir A	d instantaneous voltage at 50°	
Answer	В		
C			
	D		
Foodbook			Satisfactory
reeuback			Not satisfactory

Qualification national code and title	UEE30820 Certificate III in Electrotechnology Electrician
Unit/s national code/s and title/s	UEEEL0020 - Solve problems in low voltage a.c. circuits

Question 3	A sinewave has an instantaneous voltage of 120 V at 30° into its cycle. Determine its: a maximum voltage b RMS voltage		
Answer	Α		
Answer	В		
Feedback			SatisfactoryNot satisfactory

Question 4	Two sinewaves are in phase with each other. One has an RMS value of 230 V, the other has a maximum voltage of 25 V. What is the combined RMS voltage?	
Answer		
Feedback		SatisfactoryNot satisfactory

Question 5	If the sinewaves in Question 4 are 180° out of phase, what is the combined RMS voltage?	
Answer		
Feedback		SatisfactoryNot satisfactory

RTO Code 52786 CRICOS Code: 00020G

Qualification national code and title	UEE30820 Certificate III in Electrotechnology Electrician
Unit/s national code/s and title/s	UEEEL0020 - Solve problems in low voltage a.c. circuits

Question 6	In a series AC circuit with two components, the voltage drop across one component (V ₁) is 40 V/30° and the voltage drop across the other component (V ₂) is 100 V - \angle 60°. Use a phasor diagram to find the applied voltage and its phase angle.	
Answer		
Feedback		SatisfactoryNot satisfactory

Question 7	If an angle has a cosine of 0.5, determine the sine and the tangent of that angle.	
Answer		
Feedback		SatisfactoryNot satisfactory

Qualification national code and title	UEE30820 Certificate III in Electrotechnology Electrician
Unit/s national code/s and title/s	UEEEL0020 - Solve problems in low voltage a.c. circuits

Qualification national code and title	UEE30820 Certificate III in Electrotechnology Electrician
Unit/s national code/s and title/s	UEEEL0020 - Solve problems in low voltage a.c. circuits

Question 9	A capacitor attached to a motor has a marked value of 100 μ F, but when its capacitance is measured, the value shows as 36 μ F. Calculate its capacitive reactance at 50 Hz for both capacitance values.	
Answer		
Feedback		SatisfactoryNot satisfactory

	Calculate the current that would flow in a circuit containing a capacitor of the following			
	values, when each is connected to a 230 V 50 Hz supply:			
Question 10	a 2	.2 μF		
	b 5	b 56 µE		
	CU			
	Δ			
	~			
	-			
Answer	в			
	С			
Feedback		□ Satisfactory		
		□ Not satisfactory		

Qualification national code and title	UEE30820 Certificate III in Electrotechnology Electrician
Unit/s national code/s and title/s	UEEEL0020 - Solve problems in low voltage a.c. circuits

Question 11	What value of capacitance is needed to give a current of 0.2 A when it is connected to a 230 V 50 Hz supply?	
Answer		
Feedback	 Satisfactory Not satisfactory 	

Question 12	At what frequency does a 3 nF capacitor have a capacitive reactance of 500 Ω ?	
Answer		
Feedback		SatisfactoryNot satisfactory

Question 13	If the total capacitance of an AC circuit is increased, how does this affect the capacitive reactance of the circuit and the current flowing in the circuit?	
Answer		
Feedback		SatisfactoryNot satisfactory

Question 14	Determine the inductive reactance of a coil with an inductance of 620 mH at a frequency of 400 Hz.	
Answer		
Feedback		SatisfactoryNot satisfactory

RTO Code 52786 CRICOS Code: 00020G

Qualification national code and title	UEE30820 Certificate III in Electrotechnology Electrician
Unit/s national code/s and title/s	UEEEL0020 - Solve problems in low voltage a.c. circuits

Question 15	What value of inductance has an inductive reactance of 60 Ω at a frequency of 1 kHz?	
Answer		
Feedback		SatisfactoryNot satisfactory

Question 16	At what frequency does a 100 mH coil have an inductive reactance of 100 Ω ?	
Answer		
Feedback	 Satisfactory Not satisfactory 	

Qualification national code and title	UEE30820 Certificate III in Electrotechnology Electrician
Unit/s national code/s and title/s	UEEEL0020 - Solve problems in low voltage a.c. circuits

Qualification national code and title	UEE30820 Certificate III in Electrotechnology Electrician
Unit/s national code/s and title/s	UEEEL0020 - Solve problems in low voltage a.c. circuits

A. Draw a phasor diagram showing the relationship between the applied v current in a purely resistive AC circuit.		applied voltage and	
Question 18	B . Draw a phasor diagram showing the relationship between the applied voltage and current in a purely Inductive AC circuit.		applied voltage and
	C. Draw a phasor diagram showing the relationship between the applied voltage and current in a purely capacitive AC circuit.		
	A		
Answer	В		
	с		
Feedback			SatisfactoryNot satisfactory

Qualification national code and title	UEE30820 Certificate III in Electrotechnology Electrician
Unit/s national code/s and title/s	UEEEL0020 - Solve problems in low voltage a.c. circuits

Question 19	A large electrical contractor has a coil with an inductance of 0.3 H and a resistance of 20 ohms. It is connected to 230 V AC 50 Hz. Calculate the coil's: a inductive reactance b impedance c current d true consumption (Note the inductance and resistance are represented in series in practical	
	indu	ictors)
	Α	
Answer	В	
	С	
	D	
Feedback		 Satisfactory Not satisfactory

Question 20	Calculate the phase angle (also identify if lead or lag) between the applied voltage and the current flowing in the coil of Question 19.	
Answer		
Feedback		SatisfactoryNot satisfactory

Qualification national code and title	UEE30820 Certificate III in Electrotechnology Electrician
Unit/s national code/s and title/s	UEEEL0020 - Solve problems in low voltage a.c. circuits

Question 21	An old fluorescent light fitting has a ballast (coil) with an inductance of 1.1 H and a resistance of 36 ohms. Calculate its impedance at 50 Hz.	
Answer		
Feedback		SatisfactoryNot satisfactory

Question 22	 An AC circuit has three coils in series. Each coil has an inductance of 80 mH and a resistance of 10 Ω. Calculate: a the total inductance b the impedance of the circuit at 50 Hz. 		
	A		
Answer	В		
Feedback		 Satisfactory Not satisfactory 	

Question 23	A relay coil has an inductance of 160 mH and a resistance of 80 ohms. Calculate the: a coil's impedance at 50Hz	
	b ph supp	ase angle between current and voltage when the coil is connected to a 50 Hz
Answer	Α	
AllSwei	В	
Feedback		 Satisfactory Not satisfactory

RTO Code 52786 CRICOS Code: 00020G

Qualification national code and title	UEE30820 Certificate III in Electrotechnology Electrician
Unit/s national code/s and title/s	UEEEL0020 - Solve problems in low voltage a.c. circuits

Question 24	A 3.3 μ F capacitor is in series with a 1 k Ω resistor. Determine the impedance of the circuit at: a 50 Hz b 1 kHz.		
Answer	Α		
Answer	В		
Feedback			SatisfactoryNot satisfactory

Question 25	Calculate the phase angle between applied voltage and current in the circuit in Question 24. Do this for both frequencies. (include leading or lagging)		
Answer			
Feedback		SatisfactoryNot satisfactory	

Qualification national code and title	UEE30820 Certificate III in Electrotechnology Electrician	
Unit/s national code/s and title/s	UEEEL0020 - Solve problems in low voltage a.c. circuits	

Qualification national code and title	UEE30820 Certificate III in Electrotechnology Electrician
Unit/s national code/s and title/s	UEEEL0020 - Solve problems in low voltage a.c. circuits

Qualification national code and title	UEE30820 Certificate III in Electrotechnology Electrician	
Unit/s national code/s and title/s	UEEEL0020 - Solve problems in low voltage a.c. circuits	

Question 28	 A series RLC circuit has a capacitance of 1.8 μF, inductance of 80 mH and a total resistance of 16 Ω. Calculate the: a circuit's resonant frequency b impedance of the circuit at resonance 		
Answer	A		
	в		
Feedback		 Satisfactory Not satisfactory 	

Question 29	A 230V AC 50Hz parallel circuit with many branches that have reactive components takes a total current of 36 A \ge -22°(lag).What is the impedance of the circuit, and is it inductive or capacitive?		
Answer			
Feedback		SatisfactoryNot satisfactory	

Qualification national code and title	UEE30820 Certificate III in Electrotechnology Electrician
Unit/s national code/s and title/s	UEEEL0020 - Solve problems in low voltage a.c. circuits

	A 0.3	35 H inductor with zero resistance and a 150 Ω resistor are in parallel with a		
	100 V 50 Hz supply. Calculate the:			
Question 30 a. branch currents				
	b. total current and its phase angle (Φ) to the applied voltage			
	c . im	pedance of the circuit.		
	Α			
Answer	В			
	С			
Feedback		 Satisfactory Not satisfactory 		

Question 31	 Using a phasor diagram solve the following; A 230 V electrical circuit has two branches, one carrying a current of 12 A at 25°lag, the other a current of 10 A at 50°lead. Determine the: a. total circuit current and its phase angle to the applied voltage b. Impedance of the circuit. 		
Answer	A		
	в		
Feedback		 Satisfactory Not satisfactory 	

RTO Code 52786 CRICOS Code: 00020G

Qualification national code and title	UEE30820 Certificate III in Electrotechnology Electrician
Unit/s national code/s and title/s	UEEEL0020 - Solve problems in low voltage a.c. circuits

	A 10 μF capacitor and a 500 Ω resistor are in parallel with a 100 V 50 Hz supply. Calculate the:					
Question 32	 32 a. branch currents b. total current and its phase difference to the applied voltage c. Impedance of the circuit 					
	Α					
Answer	В					
	С					
Feedback			Satisfactory Not satisfactory			
	For the c	sireuit in Figure 19.22, coloulate the				
	ror the t	alue and phase angle of each branch current				
	b. To	otal circuit current and its phase angle to the applied voltage				
	c. In	npedance of the circuit.				
	FIGU	RE 18.23				
Question 33	120 50	$\frac{1}{Hz} \xrightarrow{B} 0 \Omega \xrightarrow{R} 0.2 H \xrightarrow{L} 15 \mu F$				
	A					
Answer	В					
	С					
Feedback			□ Satisfactory			
			Not satisfactory			

RTO Code 52786 CRICOS Code: 00020G

Folder location: Click here to enter text.

Qualification national code and title	UEE30820 Certificate III in Electrotechnology Electrician
Unit/s national code/s and title/s	UEEEL0020 - Solve problems in low voltage a.c. circuits

Question 34	Calculate the resonant frequency of the circuit in Figure 18.23. (Assume the inductor and capacitor are ideal components.)	
Answer		
Feedback		SatisfactoryNot satisfactory

Question 35	If the circuit in Figure 18.23 is operating at its resonant frequency, how much current is taken from the supply, and what is its phase angle?	
Answer		
Feedback		SatisfactoryNot satisfactory

END OF ASSESSMENT

RTO Code 52786 CRICOS Code: 00020G

Qualification national code and title	UEE30820 Certificate III in Electrotechnology Electrician
Unit/s national code/s and title/s	UEEEL0020 - Solve problems in low voltage a.c. circuits

RTO Code 52786 CRICOS Code: 00020G

Current Template Version: February 2020 Assessment task last updated: Page 21 of 55

Folder location: Click here to enter text.

Qualification national code and title	UEE30820 Certificate III in Electrotechnology Electrician
Unit/s national code/s and title/s	UEEEL0020 - Solve problems in low voltage a.c. circuits

RTO Code 52786 CRICOS Code: 00020G

Folder location: Click here to enter text.

Qualification national code and title	UEE30820 Certificate III in Electrotechnology Electrician
Unit/s national code/s and title/s	UEEEL0020 - Solve problems in low voltage a.c. circuits

Risk assessment

		1	2	3	4	5
Consequence		Rare The event may occur in exceptional circumstances	Unlikely The event could occur sometimes	Moderate The event should occur sometimes	Likely The event will probably occur in most circumstances	Almost Certain The event is expected to occur in most circumstances
1	Insignificant No injuries or health issues	LOW	LOW	LOW	LOW	MODERATE
2	Minor First aid treatment	LOW	LOW	MODERATE	MODERATE	HIGH
3	Moderate Medical treatment, potential LTI	LOW	MODERATE	HIGH	HIGH	CRITICAL
4	Major Permanent disability or disease	LOW	MODERATE	HIGH	CRITICAL	CATASTROPHIC
5	Extreme Death	MODERATE	HIGH	CRITICAL	CATASTROPHIC	CATASTROPHIC

- 1. Eliminate if it is possible, the hazard should be removed completely. For example, get rid of dangerous machines.
- 2. **Substitute** replace something that produces the hazard with something that does not produce a hazard. For example, replacing solvent based paint with water based paint. Risk assessment on the substitution must be conducted to ensure that it will not pose another hazard.
- 3. Engineering control isolate a person from the hazard by creating physical barrier or making changes to process, equipment or plant to reduce the hazard. For example, install ventilation systems.
- Administrative control change the way a person works by establishing policies and procedures to minimise the risks. For example, job scheduling to limit exposure and posting hazard signs.
- 5. Use **personal protective equipment** (PPE) protect a person from the hazard by wearing PPE. For example, wearing gloves, safety glasses, hard hats and high-visibility clothing. PPE must be correctly fitted, used and maintained to provide protection.

Qualification national code and title	UEE30820 Certificate III in Electrotechnology Electrician
Unit/s national code/s and title/s	UEEEL0020 - Solve problems in low voltage a.c. circuits

Safe Work Method Statement

Revised Risk Rating				
Hazard Control Measures				
Risk Rating				
Hazards				
Task Steps				
Task Step #				

RTO Code 52786 CRICOS Code: 00020G

Folder location: Click here to enter text.

Qualification national code and title	UEE30820 Certificate III in Electrotechnology Electrician
Unit/s national code/s and title/s	UEEEL0020 - Solve problems in low voltage a.c. circuits

Danger Tag Procedure

Use of Danger Tags

If you have a practical task to do and there is a possibility that you could be injured if someone turns on the electricity, then you **MUST** fasten a red danger tag to the machine main isolation switch, circuit-breaker or the equipment plug top. Each danger tag you use must clearly show; your name, your section (class) and the date.

Nobody must operate the danger tagged switch or control point until the job is made safe and the danger tag has been removed. Your lecturer will check your task before you are allowed to remove your danger tag.

Only the person, who is named on the tag and attached the tag, is allowed to remove it.

Points to Watch

Make absolutely sure the switch/circuit-breaker/plug top is the correct one to tag. If you have any doubts, ask your lecturer.

Make sure that you have switched the isolator to **OFF** position before you attach your danger tag.

Fasten the danger tag securely.

The purpose of using Danger Tags is to prevent electrical accidents from happening. Failure to follow Danger Tag Procedures when working on practical activities and practical assessments will result in a **not yet competent** comment recorded for this Unit of Competency – UEENEEG102A

Student's Signature _____

Date: _____

Practical Activity 1

RTO Code 52786 CRICOS Code: 00020G

Qualification national code and title	UEE30820 Certificate III in Electrotechnology Electrician
Unit/s national code/s and title/s	UEEEL0020 - Solve problems in low voltage a.c. circuits

	Volts per Div: 100 V/DIV
	Sweep time per Div: 100 μs / DIV
Question 1	From the information supplied, determine: (a)the peak value (b)the peak to peak value (c)the RMS value (d)the average value (e)the period of the wave (f)the frequency g)the instantaneous value after 40°
С	

Practical Activity 2

RTO Code 52786 CRICOS Code: 00020G

Folder location: Click here to enter text.

Assessment	Task 3	Portfolio of	Evidence
------------	--------	--------------	-----------------

Qualification national code and title	UEE30820 Certificate III in Electrotechnology Electrician
Unit/s national code/s and title/s	UEEEL0020 - Solve problems in low voltage a.c. circuits

Objective

To verify the relationship between the peak value and the rms value of a sinusoidal a.c. waveform.

Equipment

RMS measurement project board ELV a.c. power supply (24 volts or similar) Oscilloscope (CRO) Connecting leads Multimeter

Circuit Diagram

Procedure

- 1. Connect the circuit according to the circuit diagram above.
- 2. Check for short circuits with a multimeter set on the ohms x 1 range. Switch the multimeter off after the check.
- 3. Have your connections checked by your Lecturer.
- 4. Energise the circuit, and determine the peak value and frequency of the waveform using the CRO. Accurately sketch the CRO display in the space provided below.
- 5. Measure the voltage across the load resistor with a multimeter and record the result.
- 6. Switch the circuit off and remove the plug from the outlet.
- 7. Have your results checked by your Lecturer.
- 8. Disconnect your wiring and return all of the equipment to its proper place.

Results

CRO Display

Qualification national code and title	UEE30820 Certificate III in Electrotechnology Electrician
Unit/s national code/s and title/s	UEEEL0020 - Solve problems in low voltage a.c. circuits

		-	-		
			-	 	
		-	-		
	1111			 	
		-	-		
		-			
		-			

Time/div Setting:

Volts/div Setting:	-
Peak Voltage:	
Peak to Peak Voltage:	
Instantaneous Voltage at 30°:	_
Calculated Frequency:	_Hz
Multimeter	
Voltage Range:	
Voltmeter Reading:	

	Assessment	Task 3	Portfolio	of	Evidence
--	------------	--------	------------------	----	-----------------

Qualification national code and title	UEE30820 Certificate III in Electrotechnology Electrician
Unit/s national code/s and title/s	UEEEL0020 - Solve problems in low voltage a.c. circuits

Questions

- 1. Was the peak value indicated on the CRO the same as the value indicated on the multimeter? If not, explain why.
- 2. What is the theoretical rms value of a sinusoidal a.c. waveform which has a peak value of 100V?

_____volts

3. What is the theoretical peak value of a sinusoidal a.c. waveform which has an rms value of 100V?

_____volts

- 4. What peak value of a.c. has the same heating effect as $100V_{dc}$?
- 5. If a typical multimeter indicated 240V_{ac} across the supply terminals of single phase single insulated appliance, what is the minimum voltage the appliance insulation must be able to withstand to earth in the circuit?

Practical Activity 3

Qualification national code and title	UEE30820 Certificate III in Electrotechnology Electrician
Unit/s national code/s and title/s	UEEEL0020 - Solve problems in low voltage a.c. circuits

Oscilloscope Displays

TRACE 7

7.

The Oscilloscope **Refer to CRO Trace 1** 1. What PEAK VOLTAGE is indicated

Refer to CRO Trace 7 What is the FREQUENCY of the square

RTO Code 52786 CRICOS Code: 00020G

Folder location: Click here to enter text.

Current Template Version: February 2020

F122A12 Uncontrolled Copy When Printed Assessment task last updated: Page 30 of 55

Qualification national code and title	UEE3082	0 Certificate III in Electrotechnology Electrician
Unit/s national code/s and title/s	UEEELOO	20 - Solve problems in low voltage a.c. circuits
on the oscilloscope display (in volts)?		wave on the CRO display (in Hz)?
Volts per Division: 100V Time per Division: 100µs		Volts per Division: 100mV Time per Division: 1ms
2. Refer to CRO Trace 2	8.	Refer to CRO Trace 8
What PEAK VOLTAGE is indicated on the oscilloscope display (in volts)?		What is the FREQUENCY of the sine wave displayed on the CRO (in Hz)?
Volts per Division: 10mV Time per Division: 10ms		Volts per Division: 1V Time per Division: 100µs
3. Refer to CRO Trace 3	9.	Refer to CRO Trace 9
What is the FREQUENCY of the larger sine curve (in Hz)?		What is the PERIODIC TIME for the sine wave displayed on the CRO (in seconds)?
Volts per Division: 100V Time per Division: 10ms		Volts per Division: 1V Time per Division: 100ms
4. Refer to CRO Trace 4	10.	Refer to CRO Trace 1
What PEAK VOLTAGE is indicated on the oscilloscope display?		What RMS VOLTAGE is indicated on the oscilloscope display?
Volts per Division: 10V Time per Division: 100µs		Volts per Division: 1V Time per Division: 1ms
5. Refer to CRO Trace 5	11.	Refer to CRO Trace 3
What RMS VOLTAGE is indicated on the oscilloscope display?		What is the phase difference between the two sine curves?
Volts per Division: 10mV Time per Division: 100ms		Volts per Division: 1V Time per Division: 100µs
6. Refer to CRO Trace 6	12.	Refer to CRO Trace 1
What PEAK TO PEAK VOLTAGE is indicated on the CRO display (in volts)?		What PEAK TO PEAK VOLTAGE is indicated on the CRO display (in volts)?
Volts per Division: 10mV Time per Division: 10ms		Volts per Division: 100V Time per Division: 100ms
Answers to Oscilloscope Questions		

Qualification national code and title	UEE30820 Certificate III in Electrotechnology Electrician
Unit/s national code/s and title/s	UEEEL0020 - Solve problems in low voltage a.c. circuits

Resistance in an A.C. Circuit

Objective

To verify the relationship between the values in a resistive a.c. circuit

Equipment

Resistive a.c. project board with 2 power resistors

RTO Code 52786 CRICOS Code: 00020G

Folder location: Click here to enter text.

Qualification national code and title	UEE30820 Certificate III in Electrotechnology Electrician
Unit/s national code/s and title/s	UEEEL0020 - Solve problems in low voltage a.c. circuits

1 ohm wire wound series resistor 0 – 1 KW single phase analogue wattmeter Dual Trace Oscilloscope (CRO) Bridge Megger Ammeters and voltmeters as required Multimeter ELV a.c. power supply – 24 volts or similar (double wound transformer) Connecting leads

Circuit Diagram

Procedure

- 1. Measure the resistance of R1 using the Bridge Megger. Record the resistance in Results Table 1.
- 2. Determine the nominal voltage of the extra-low voltage a.c. power supply by inspection of the nameplate.
- 3. Calculate the expected values of current and power in the circuit, and record your results in Table 1.
- 4. Connect the components as shown in the circuit diagram above. Make sure that the ranges of the instruments selected are appropriate for the expected circuit values.
- 5. Connect one channel of the CRO across the output from the ELV supply, and the other in parallel with the 1Ω series resistor. Make sure that the common terminal is connected as shown in the circuit diagram.
- 6. Have your connections checked by your Lecturer.
- 7. Energise the circuit and adjust the CRO to display at least one cycle on each channel. Record all readings in the Results Table; the readings need to be as accurate as possible.
- 8. Determine the peak voltage indicated on the CRO. Accurately sketch the CRO display in the space provided below.

Qualification national code and title	UEE30820 Certificate III in Electrotechnology Electrician
Unit/s national code/s and title/s	UEEEL0020 - Solve problems in low voltage a.c. circuits

- 9. Compare the readings obtained with the values previously calculated.
- 10. Switch the circuit off, and remove the plug from the outlet.
- 11. Have your results checked by your Lecturer.
- 12. Repeat the procedure using the other load resistor on the project board.
- 13. Disconnect your wiring and return all of the equipment to its proper place.

	Observed or Calculated	Measured	Comment
Resistance			
Applied Voltage			
Line Current			
Power			

Results Table 1 (Resistor 1)

Observed phase angle between voltage and current _______degrees Sketch of phase Relationship (1 cycle):

Results Table 2 (Resistor 2)

	Observed or Calculated	Measured	Comment
Resistance			
Applied Voltage			

RTO Code 52786 CRICOS Code: 00020G

Folder location: Click here to enter text.

Current Template Version: February 2020 Assessment task last updated: Page 34 of 55

Qualification national code and title	UEE30820 Certificate III in Electrotechnology Electrician
Unit/s national code/s and title/s	UEEEL0020 - Solve problems in low voltage a.c. circuits

Line Current		
Power		

The phase angle between voltage and current is ______degrees Sketch of phase Relationship (1 cycle):

Qualification national code and title	UEE30820 Certificate III in Electrotechnology Electrician
Unit/s national code/s and title/s	UEEEL0020 - Solve problems in low voltage a.c. circuits

Questions

- 1. Were the meter readings exactly the same as the calculated values? If not, explain why there were differences.
- 2. Was the voltmeter reading approximately equal to the peak voltage displayed on the CRO? If not, explain why they were different.

3. From your results, what was the average rate at which electrical energy was being converted to heat when the circuit was operating?

- 4. What was the phase relationship between the line voltage and the current through the resistor, as indicated on the CRO?
- 5. Was the wattmeter reading approximately equal to the product of the measured line current and line voltage in the circuit?
- 6. How much of the total circuit power was being dissipated in the resistors?

For Resistor 1:	
For Resistor 2:	

RTO Code 52786 CRICOS Code: 00020G

Qualification national code and title	UEE30820 Certificate III in Electrotechnology Electrician
Unit/s national code/s and title/s	UEEEL0020 - Solve problems in low voltage a.c. circuits

Resistance and Inductance in Parallel

Objective

To observe the effects of changing the resistance in an a.c. circuit consisting of a resistor and an inductor connected in parallel.

Equipment

240V, 50Hz a.c. supply An inductor (40W fluorescent choke or similar) 480 Ω resistor (1A or similar) 1000 Ω rheostat (1A or similar) 0 – 150W single phase analogue wattmeter or similar Three 0-1A a.c. ammeters Multimeter Single phase power board Connecting leads

Circuit Diagram

DANGER TAG PROCEDURE REQUIRED

Procedure

- 1. Connect the circuit according to the circuit diagram given above.
- 2. Set the 1000Ω rheostat to MAXIMUM resistance.
- 3. Check for short circuits with a multimeter set on the ohms x 1 range. Switch the multimeter off after the check.

RTO Code 52786 CRICOS Code: 00020G Folder location: Click here to enter text.

Qualification national code and title	UEE30820 Certificate III in Electrotechnology Electrician
Unit/s national code/s and title/s	UEEEL0020 - Solve problems in low voltage a.c. circuits

- 4. Have your connections checked by your Lecturer.
- 5. Connect the circuit to the 240V, 50Hz supply. Record the meter readings in the Results Table.
- 6. Reduce the resistance of the 1000Ω rheostat to zero in three approximately equal steps, and record the meter readings at each step. Do not allow the current in the rheostat to exceed 1A at any time.
- 7. Switch the circuit off, remove the plug from the outlet and attach your danger tag to the plug top.
- 8. Have your results checked by your Lecturer.
- 9. Disconnect your wiring and return all of the equipment to its proper place.

Measurements

Results Table - R and L in Parallel

		Meas	urement	ts		Calculations
Rheostat Setting	Ir	IL	Iz	Р	Z	Power Factor
Step 1 (Maximum R)						
Step 2						
Step 3						
Step 4 (Minimum R)						

Line voltage: _____

Phasor Diagram

RTO Code 52786 CRICOS Code: 00020G

Qualification national code and title	UEE30820 Certificate III in Electrotechnology Electrician
Unit/s national code/s and title/s	UEEEL0020 - Solve problems in low voltage a.c. circuits

Questions

- 1. Draw a phasor diagram to scale and show the relationship between I_{R} , I_{L} and I_{Z} for each setting of the rheostat (all on one phasor diagram). Use a scale of 20mm = 0.1A.
- 2. Use your scaled phasor diagram to ESTIMATE what the line current and power factor would be if the current in the resistor was increased to 1A (with the inductor current I_L remaining unchanged).
- 3. Why was there a slight difference between the calculated line current and the measured line current?
- 4. When was the power factor of this test circuit 'best' (ie. closer to 1) when the resistance was high or low?
- 5. Calculate the resistance of the resistive branch when it has 0.6A flowing through it, assuming a line voltage of 240V.
- 6. What would happen to the power factor of the circuit if the line voltage was reduced to 120V?

Qualification national code and title	UEE30820 Certificate III in Electrotechnology Electrician
Unit/s national code/s and title/s	UEEEL0020 - Solve problems in low voltage a.c. circuits

Resistance, Inductance and Capacitance in Parallel

Objective

To observe the characteristics of an a.c. circuit consisting of a resistor an inductor and a capacitor connected in parallel.

Equipment

240V, 50Hz a.c. supply 480Ω resistor (1A) An inductor (40W fluorescent ballast or similar) A 3µF paper capacitor A 0-150W single phase analogue wattmeter or similar Three 0-1A a.c. ammeters Multimeter Single phase power board Connecting leads

Circuit Diagram

DANGER TAG PROCEDURE REQUIRED

Procedure

- 1. Connect the circuit according to the circuit diagram given above.
- 2. Check for short circuits with a multimeter set on the ohms x 1 range. Switch the multimeter off after the check.

RTO Code 52786 CRICOS Code: 00020G Folder location: Click here to enter text.

Qualification national code and title	UEE30820 Certificate III in Electrotechnology Electrician
Unit/s national code/s and title/s	UEEEL0020 - Solve problems in low voltage a.c. circuits

- 3. Have your connections checked by your Lecturer.
- 4. Connect the circuit to the 240V, 50Hz supply. Record the meter readings in the Measurements Results Table.
- 5. Switch the circuit off, remove the plug from the outlet and attach your danger tag to the plug top.
- 6. Calculate the values necessary to complete the Calculations Results Table.
- 7. Have your results checked by your Lecturer.
- 8. Disconnect your wiring and return all of the equipment to its proper place.

Results

Results Table – R, L and C in Parallel

Measurements							
E	Iz	Ir	Ιι	Ic	Р		

Calculations								
R	L	XL	Хс	Z	S	Q	Cos θ	

Phasor Diagram

Assessment	Task 3	Portfolio of	Evidence
------------	--------	---------------------	----------

Qualification national code and title	UEE30820 Certificate III in Electrotechnology Electrician
Unit/s national code/s and title/s	UEEEL0020 - Solve problems in low voltage a.c. circuits

Questions

1. Prove by calculation that the power dissipated by the circuit (as indicated on the wattmeter) is the power dissipated only by the resistor (disregard power losses in the ballast).

- 2. Was the power factor of the circuit 'good' or 'bad'?
- 3. What would the impedance of the circuit be if the frequency was increased to the point of resonance?
- 4. Was the line current the sum of the currents in the individual parallel branches? Why?

Qualification national code and title	UEE30820 Certificate III in Electrotechnology Electrician
Unit/s national code/s and title/s	UEEEL0020 - Solve problems in low voltage a.c. circuits

Varying Capacitance in a Parallel RLC Circuit

Objective

To observe the effect of varying the capacitance in an parallel RLC circuit.

Equipment

240V, 50Hz a.c. supply 480Ω resistor (1A) An inductor (36W fluorescent ballast or similar) A variable 240V switchable paper capacitor bank (about 2µF to 10µF) A 0-150W single phase analogue wattmeter or similar Three 0-1A a.c. ammeters One 0-2A a.c. ammeter Multimeter Single phase power board Connecting leads

Circuit Diagram

DANGER TAG PROCEDURE REQUIRED

Procedure

- 1. Connect the circuit according to the circuit diagram given above (with no capacitance in the circuit).
- 2. Check for short circuits with a multimeter set on the ohms x 1 range. Switch the multimeter off after the check.

RTO Code 52786 CRICOS Code: 00020G Folder location: Click here to enter text.

Qualification national code and title	UEE30820 Certificate III in Electrotechnology Electrician
Unit/s national code/s and title/s	UEEEL0020 - Solve problems in low voltage a.c. circuits

- 3. Have your connections checked by your Lecturer.
- 4. Connect the circuit to the 240V, 50Hz supply. Record the meter readings in the Measurements Results Table.
- 5. Alter the value of capacitance to about 2µF by operating the switches on the capacitor bank. Record the meter readings in the Measurements Results Table.
- 6. Alter the value of the capacitance to about 6µF and 10µF by operating the switches on the capacitor bank. Record the meter readings in the Measurements Results Table.
- 7. Switch the circuit off and remove the plug from the outlet. Attach your danger tag to the plug top.
- 8. Calculate the values necessary to complete the Calculations Results Table, and draw a phasor diagram of each condition (using the same scale for each).
- 9. Have your results checked by your Lecturer.
- 10. Disconnect your wiring and return all of the equipment to its proper place.

Results

	Measurements					
	E	Iz	Ir	IL	Ic	Р
R & L Only						
2 µF						
6 µF						
10 µF						

Results Tables- RLC in Parallel with Variable Capacitance

			Ca	lculations			
R	L	XL	Хс	Z	S	Q	Cos Ø

RTO Code 52786 CRICOS Code: 00020G

Current Template Version: February 2020 Assessment task last updated: Page 44 of

Folder location: Click here to enter text.

Qualification national code and title			UEE3	UEE30820 Certificate III in Electrotechnology Electrician					
Unit/s national code/s and title/s			UEEE	L0020 - S	olve proble	ms in low v	oltage a.c.	. circuits	
					•	•	-	•	
R & L Only									
2 µF									
6 µF									

Phasor Diagrams:

10 µF

Questions

- 1. At what value of capacitance was the line current (I_z) least.
- 2. Did the line current fall each time capacitance was connected into the circuit? Give a reason for your answer.
- 3. At what value of capacitance was the power factor of the circuit 'best' (closest to a unity power factor)?

Qualification national code and title	UEE30820 Certificate III in Electrotechnology Electrician
Unit/s national code/s and title/s	UEEEL0020 - Solve problems in low voltage a.c. circuits

- 4. Did the reading on the wattmeter change significantly, as more capacitance was connected into the circuit?
- 5. Calculate the cost of operating the circuit for 10 hours in each condition, assuming that electrical energy costs 25 cents for every kilowatt hour (Cost = kW x hr x cost per kWh)
- 6. Based on your results, does an a.c. circuit cost more to operate if the power factor is 'low'?
- 7. Calculate the resonant frequency for each value of capacitance in the circuit.

Qualification national code and title	UEE30820 Certificate III in Electrotechnology Electrician
Unit/s national code/s and title/s	UEEEL0020 - Solve problems in low voltage a.c. circuits

An Inductor on A.C.

Objective

To verify the relationships between the values in an a.c. circuit consisting of an inductor with internal d.c. resistance.

Equipment

240V, 50Hz a.c. supply An inductor (40W fluorescent choke or similar) 0-100W single phase analogue wattmeter or similar 0-1A a.c. ammeter Multimeter Single phase power board Connecting leads

Circuit Diagram

Procedure

DANGER TAG PROCEDURE REQUIRED

- 1. Zero the multimeter on the ohms x 1 range, then measure the d.c. resistance of the inductor. Record the resistance in the Results Table.
- 2. Connect the circuit according to the circuit diagram given above (note that the resistor shown simulates the internal d.c. resistance of the inductor).

RTO Code 52786 CRICOS Code: 00020G Folder location: Click here to enter text.

Qualification national code and title	UEE30820 Certificate III in Electrotechnology Electrician
Unit/s national code/s and title/s	UEEEL0020 - Solve problems in low voltage a.c. circuits

- 3. Check for short circuits with a multimeter set on the ohms x 1 range. Switch the multimeter off after the check.
- 4. Have your connections checked by your Lecturer.
- 5. Connect the circuit to the 240V, 50Hz supply. Measure line voltage, line current and power, and record your results in the Table.
- 6. Switch the circuit off, remove the plug from the outlet, attach your danger tag to the plug top.
- 7. Draw a phasor diagram showing the relationship between the resistance, inductive reactance and impedance in the circuit.

- 8. Calculate the values necessary to complete the table headed 'Calculations' (show all working on a separate sheet).
- 9. Have your results and calculations checked by your Lecturer.
- 10. Disconnect your wiring and return all of the equipment to its proper place.

Measurements

Results Table	
Resistance of inductor	
Line voltage	
Line current	
Power	

RTO Code 52786 CRICOS Code: 00020G

Folder location: Click here to enter text.

Phasor Diagram

Qualification national code and title	UEE30820 Certificate III in Electrotechnology Electrician
Unit/s national code/s and title/s	UEEEL0020 - Solve problems in low voltage a.c. circuits

Calculations

Impedance	
Inductive reactance	
Inductance	
True Power	
Power Factor	
Apparent Power	
Reactive Power	
Angle of lag	
Current on d.c.	

Questions

1. Why was the current drawn on a.c. different from the current which would be drawn by the same inductor on d.c.?

2. List four factors which govern the current drawn by an inductor if it is supplied from a constant voltage a.c. supply

Qualification national code and title	UEE30820 Certificate III in Electrotechnology Electrician
Unit/s national code/s and title/s	UEEEL0020 - Solve problems in low voltage a.c. circuits

- 3. Does the d.c. resistance of the inductor have a significant effect on the current drawn by the inductor on a.c.?
- 4. How much of the line current is doing useful work in the circuit?
- 5. What is the resonant frequency of the test circuit?

Qualification national code and title	UEE30820 Certificate III in Electrotechnology Electrician
Unit/s national code/s and title/s	UEEEL0020 - Solve problems in low voltage a.c. circuits

Resistance, Inductance and Capacitance in Series

Objective

To observe the effects of connecting resistance, inductance and capacitance in series in an a.c. circuit.

Equipment

240V, 50Hz a.c. supply 480Ω resistor (1A) 3µF paper capacitor or similar An inductor (36W fluorescent ballast or similar) A 0-150W single phase analogue wattmeter or similar One 0-1A a.c. ammeter Multimeter Single phase power board Connecting leads

Circuit Diagram

Procedure

DANGER TAG PROCEDURE REQUIRED

- 1. Connect the circuit according to the circuit diagram given above.
- 2. Check for short circuits with a multimeter set on the ohms x 1 range. Switch the multimeter off after the check.
- 3. Have your connections checked by your Lecturer.

RTO Code 52786 CRICOS Code: 00020G Folder location: Click here to enter text.

Qualification national code and title	UEE30820 Certificate III in Electrotechnology Electrician
Unit/s national code/s and title/s	UEEEL0020 - Solve problems in low voltage a.c. circuits

- 4. Connect the circuit to the 240V, 50Hz supply. Measure the voltage across each component with a multimeter, and record the reading in the Measurements Results Table. For each voltage reading, set the multimeter on the highest available a.c. range first.
- 5. Switch the circuit off, remove the plug from the outlet and attach your danger tag to the plug top.
- 6. Calculate the values necessary to complete the Calculations Results Table, and draw a phasor diagram of the circuit. Disregard the internal resistance of the inductor.
- 7. Have your results checked by your Lecturer.
- 8. Disconnect your wiring and return all of the equipment to its proper place.

Results

Results Tables - RLC in Series

Measurements					
Iz	Vz	Vr	VL	Vc	Р

Calculations							
R	L	XL	Хс	Z	S	Q	Cos Φ

Qualification national code and title	UEE30820 Certificate III in Electrotechnology Electrician
Unit/s national code/s and title/s	UEEEL0020 - Solve problems in low voltage a.c. circuits

Phasor Diagram

Questions

- 1. Did the sum of the voltages across the components in this circuit add up to the line voltages? Explain your answer.
- 2. What dangerous condition could exist if the inductive reactance and the capacitive reactance were equal in a series a.c. circuit? What is the name of this condition?
- 3. Use your results to show that the only power dissipated in this circuit is the power dissipated by the resistor.
- 4. Use your results to determine whether the power factor of the circuit was lagging or leading. What is the value of the angle of lag or lead in this circuit?
- 5. What is the minimum value of power factor according to the WA Distributions Connections Manual?

Qualification national code and title	UEE30820 Certificate III in Electrotechnology Electrician
Unit/s national code/s and title/s	UEEEL0020 - Solve problems in low voltage a.c. circuits

Reasonable Adjustment			
Adjustment Required	Yes	No	
Describe the adjustments that have been made to the assessment:			

Assessor name and signature	Date	
Student name and signature	Date	

RTO Code 52786 CRICOS Code: 00020G

Qualification national code and title	UEE30820 Certificate III in Electrotechnology Electrician
Unit/s national code/s and title/s	UEEEL0020 - Solve problems in low voltage a.c. circuits

Assessment Outcome Knowledge Questions	□ Satisfactory	□ Not Satisfactory	
Assessment Outcome Practical Activities	☐ Satisfactory	□ Not Satisfactory	
Knowledge Questions / Practical Activity Feedback:			
Actions Required if Not Satisfactory:			
Assessor name and signature		Date	
Student name and signature		Date	

RTO Code 52786 CRICOS Code: 00020G