CARAVAN PARK INSTALLATION SITE PLAN

Q19. Complete the following summary of planning detail. Show the calculations, assumptions and any other detail in a logical sequence on a separate sheet of paper so that it can be checked by others. Remember, when you need to perform this task on the job it needs to be thoroughly checked to see that it complies with the relevant requirements.

Consumer's Mains
Maximum demand: <u>124A</u>
Minimum permissible size (copper): 95mm ²
Type of cable: V75, 4C+E, Circular, Orange Sheath, TPS.
Calculations:
413V at Main Switchboard V _D = 415 – 413 = 2V
C.C.C. T13, C25 Buried in enclosure, 50mm ² , C23, Buried direct, 35mm ²
$V_C = 1000V_D / L \times I$, $V_C = 1000 \times 2V / 30m \times 124A = 0.5376$
T42, C6 – 95mm ²
Site Distribution Board Submains:
Maximum demand: 72A
Minimum permissible size (copper): 35mm ²
Type of cable: V75, 4C+E, Circular, Orange Sheath, TPS
Installation conditions: Buried in enclosure, or Buried direct
Calculated maximum voltage drop: 1%, - 4.13V
Calculations:
Voltage at Site Distribution Board Submains V = 413 – 4.13 = 408.87V
C.C.C. T13, C25 Buried in enclosure, 16mm² (25mm²), C23, Buried direct, 16mm²
$V_C = 1000V_D / L \times I$, $V_C = 1000 \times 4.13V / 39m \times 72A = 1.470$
T42, C6 – 35mm ²

Maximum demand: 47A

Minimum permissible size (copper): 16mm²

Type of cable: V75, 4C+E, Circular, Orange Sheath, TPS

Installation conditions: Buried in enclosure, or Buried direct

Calculated maximum voltage drop: 1% - 4.08V

Calculations:

Voltage at Site Distribution Board Submains V = 413 - 4.13 = 408.87V

C.C.C. T13, C25 Buried in enclosure, 10mm², C23, Buried direct, 10mm²

 $V_C = 1000V_D / L \times I$, $V_C = 1000 \times 4.13V / 35m \times 47A = 2.511$

T42, C6 – 16mm²

Site Distribution Pillar (Number 6):

Maximum demand: 40A – 3001 Clause A2.2(b)(i)

Minimum permissible size (copper): 25mm²

Type of cable: V75, 2C+E, Circular, Orange Sheath, TPS

Installation conditions: Single Circuit Buried in Separate enclosures, enclosures separated

Calculated maximum voltage drop: 3% of 236.06V =

Calculations:

Voltage at Site Distribution Pillar (Number 6) = 408.87/1.73 = 236.06 ie 3% of 236.06 = 7.08V

Deration Tables T26 (2) C3 = 0.82,

T22 C4 = 0.57

New C.C.C. =40 / 0.82 = 48.78A, New C.C.C = 40 / 0.57 = 70.17A

C.C.C. T10, C25, Buried in enclosure, 10mm2, C23, Buried direct, 10mm2

 $VC = 1000VD / L \times I$, $VC = 1000 \times 7.08V / 64m \times 40A = 2.765 \times 0.866 (1Ø - 3Ø)$

New VC = 2.39

T42, C6 - 25mm2

Taking into account Voltage Drop

 $230V \times 5\% = 11.5V,$

230V - 11.5V = 218.5V

Voltage at Service Pillar 6 = $408.87V / \sqrt{3}$

= 236.71V - 7.08V = 228.97V

Installation is compliant