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Abstract—Grasping objects with robotic grippers is still
a difficult task. Grippers often sacrifice either flexibility or
reliability to gain the other. This technical report introduces
a robot hand design that attempts to balance reliability and
flexibility with a novel concept. The hand uses the environment
to adjust itself prior to grasping an object. This adjustment
allows flexibility in the grippers application. The hand has only
a single motor, that drives a deterministic actuation medium.
This contributes to the hand’s reliability. The hand’s adjustment
prior to grasping is the unique part of the design and operation
of the gripper. In this work, the basic design principles of the
hand are presented. The majority of the report, however, is
focused on the motion planning principles behind the hand
reconfiguration. Specifically, each finger in the hand can be
changes in angle and fingertip distance form the hand’s center.
This allows full-freedom of the fingertip placement, but poses
a challenge in reconfiguration. The tasks of angle adjustment
and fingertip distance adjustment are both elaborated on in this
report, providing analytic, time efficient solutions for both and
their combination.

I. INTRODUCTION

Robotic grippers are practical only when they are extremely
reliable. Grippers that can manipulate a wide variety of
objects generally have to sacrifice reliability to gain flexi-
bility. Conversely, reliable grippers tend to be very limited
in the objects they can grasp. The quintessential gripper
would be able to grasp a wide variety of objects reliably.
Towards this end, we introduce a single-actuator robot hand
that can be adapted to grasp a wide variety of objects. The
gripper is deterministic (not soft), allowing predictability in
its operation. This predictability increases grasp reliability.
The hand can be adjusted to match an object’s shape prior to
grasping. Simplicity is maintained by having only a single
actuator. The adjustment flexibility is grated by a novel
concept of using the environment. By performing a series
of actions with the hand against the environment, the hand’s
configuration can be changed sequentially. In other words,
by investing some time in configuring the hand prior to
grasping, a tailored, reliable gripping device is synthesized
for a specific object. This planar hand is an important step
towards a combination of flexibility and reliability in robotic
grippers.

Modern robot hand research focuses on the generalization
of gripping. Some researchers have focused on “classic”
grippers and sophisticated means of decision making to

securely grasp items. For instance, Mahler et al. [1] use
a vacuum gripper or parallel-jaw gripper to perform bin
picking tasks. Machine learning is used to generalize object
grasps from a training set, allowing the system to select
the correct gripper, item, and approach point to perform a
picking operation. Other researchers have elected to develop
underactuated hands that can adapt to an object, such as
Backus [2] and Dollar [3]. The emerging field of soft robotics
[4] has produced many interesting grippers designed to grip a
variety of objects, e.g. [5], [6], [7], [8]. While underactuated
and soft robotics are making significant progress towards
industrial use, they still cannot compare with the reliability
and robustness of classic industrial grippers.

This report describes a planar, minimalistic planar-acting
robot hand that uses the environment to change its configura-
tion. The hand uses a single degree of freedom (DOF), driven
by a single actuator. The hand is not soft, underactuated or
shape conforming. Rather, it is rigid and predictable in its
operation, similar to classical industrial grippers. Adaptability
is achieved by reshaping the hand’s configuration before
grasping. In other words, the hand is tailored to the object
it is meant to grasp, before attempting to grasp the object.
In contrast to specialized hands designed to grasp specific
objects, there is no need to redesign and manufacture a new
hand whenever a new object is given. Instead, our hand can
be adjusted using the environment prior to its use.

The concept described in this report works as follows.
The robot arm observes an object and determines the desired
grasp, without being constrained by the hand configuration.
The robot arm then performs a series of adjustments to the
hand configuration, to suit it to the best grasp of the given
object. This is the exact opposite of works like Mahler’s [1]
that dedicate their effort to selecting the best possible grasp
of an object using the available fixed-structure grippers. The
main caveat of our approach is the time needed to perform
the physical alteration of the hand prior to grasping. However,
this extra reconfiguration time is only needed when grasping
new disparate objects, and is not necessary when grasping
multiple identical items sequentially. Therefore, we expect
that such a hand could save time and costs in robotic tasks
where a gripper must grasp multiple items of one kind,
and later grasp multiple items of another kind. Furthermore,
when two different items are to be grasped with enough time



Fig. 1. A picture of the hand prior to grasping an object.

Fig. 2. A rendering of the hand with two fingers and a thumb.

between them to re-arrange the hand, our system will improve
the robot hand’s flexibility without wasting system operation
time.

This technical report will detail the basic mechanical
principle of the robot hand in Section II. In Section III the
method for selecting the grasp configurations is detailed.
The main focus of this report, however, is in the motion
planning behind the hand’s reconfiguration. When changing
from one configuration to another, the hand changes both the
relative angle, and distance of each fingertip. This overall
change is performed by sequential steps, that are non-trivial
to obtain. Therefore, Section IV focuses on the synthesis
of the adjustment procedure. Section V shows experiments
performed with a real hand and robot system, and Section
?? concludes the report.

II. DESIGN AND METHOD OF OPERATION

In this section we present the design of a variable configura-
tion robotic hand. The novel mechanisms used in the hand al-
low is to be deterministic, while maintaining flexibility. This
is done through adjustments made using the environment.

A. Design Overview

The robotic hand is comprised of a single motor, a central
body, and digits. One of the digits is unique, and is termed
the “thumb”, but only as a titular distinction from the
other digits– the “fingers”. There are between 0-7 fingers

in addition to the thumb, for a total of 1-8 digits in the hand.
Adding or removing a finger requires partial disassembly
of the hand; therefore, changing the number of fingers is
normally a pre-determined choice, and not part of normal
operation. The number of digits is selected according to the
expected type of grasping tasks. Most single actuator grippers
use two to four digits, therefore most of our analyses, figures
and demonstrations use these numbers of digits.

The central body acts as a hub, connecting the digits and
the motor. Two opposing face gears are centered in the body,
and are powered by the motor. Each digit interacts with the
gear system on the central body, transferring power from the
motor to the digits. In addition, the central body acts as a
circular rail system, allowing the fingers to move angularly
about the central axis, providing that other conditions allow
the movement. The thumb is rigidly attached to the central
body, so that it cannot move angularly about the central axis.
This is one of the unique attributes of the thumb, relative
to the fingers. Each digit assumes a 45◦ wedge within the
circular central body, therefore at most eight digits can be
used, and the minimal angle between any two digits is 45◦.
The more digits are used, the less angular freedom the system
has, to a point where eight digits allows no angular movement
of any digit.

Each finger is a detachable module that contains several
parts. A specialized spur gear is mounted on a lead screw, and
is designed to mesh with the face gears of the central body. A
knob and spring are mounted on the opposite side of the lead
spring, and are used to apply force to it from the environment.
A fingertip is mounted on the lead screw and two linear rails,
so that when the lead screw turns, the fingertip moves radially
(towards or away from the center of the hand). At either end
of the finger module is a block that houses the linear rails and
the lead screw. The distal block houses the spring, and the
proximal block houses the gear. The proximal block also has
two male circular rail inserts, that interact with the female
rails on the central body. Each block also has a simple button
that is pressed when the fingertip reaches either extrema of its
motion. When the knob is pressed, the lead screw, fingertip
and gear all displace radially, relative to the blocks and linear
rails. A rendering of the finger module is depicted in Fig. 3.

The thumb module is similar to the finger module, with
a few exceptions. Instead of a knob and spring, an optical
encoder is mounted on the lead screw at the distal end of the
thumb. The encoder measures the rotation of the lead screw.
Additionally, the proximal block is bolted to the central body,
to rigidly attach the two. Unlike the finger, the lead screw,
fingertip and gear cannot be displaced radially.

The robotic hand attaches to a robotic arm at the central
body, or by the motor. In our implementation, a stepper motor
us used, and the robotic arm is directly attached to the motor.
An object is intended to be grasped by the fingertips. These
fingertips can be of any type; in our implementation simply
cylinders are used. However, more complex fingertips, such
as dual-friction fingertips, could be used without issue [9].



B. Mechanical Principle

The motor directly powers the upper face gear. The thumb
spur gear is permanently meshed with both face gears, and
therefore the bottom face gear always rotates in the opposite
direction of the top face gear, at the same angular velocity.
When a finger spur gear is meshed with the face gears, a
transfer of power is enabled. If the motor rotates, the face
gears rotate in turn. The face gears turn the finger spur
gear, turning the finger lead screw, and moving the fingertip
radially, towards or away from the hand’s center, depending
of the motor’s rotation. In this way, turning the motor leads to
the radial change of all the fingertips meshed with the gears.
The gears of all the digits are identical, therefore a single
turn of the motor will result in an identical linear movement
of each of the fingertips, relative to the hand’s center.

The thumb is not free to rotate about the central body
because it is rigidly attached to it. When a finger’s gear is
meshed with the face gears, the finger is not free to rotate
about the central body, because the face gears will prohibit
the motion. Since the gear ratio for the face gears is always
1:-1, a spur gear cannot force angular motion within the the
gear system. In other words, while a finger is meshed with
the face gears, it cannot move angularly. When the face gears
rotate, they keep the finger module in place angularly, while
moving the fingertip radially.

The mechanical principle that allows adjustment of the
hand is as follows. When the knob of a finger is pressed
against the spring, the lead screw, fingertip and gear are
all displaced radially. This displacement is not large, but it
is enough to disengage the spur gear from the face gears.
When a finger is disengaged, two adjustment possibilities
emerge. Firstly, when the spur gear is disengaged, and the
motor turns– the fingertip does not move radially. More
importantly, the fingertips of the other digits continue to move
undisturbed. This means that when a finger is disengaged,
rotation of the motor results in a change in the relative
distance between the disengaged fingertip and the other
fingertips. Secondly, when the finger is disengaged, it can be
rotated about the central body freely (the meshing of the gears
previously prevented the rotation). This means that when a
finger is disengaged, the angle of the finger can be changed
relative to the other digits.

Once the pressure on the knob is released, the spring
forces the spur gear to mesh back with the face gears. Once
re-engaged, the finger can no longer rotate freely, and the
fingertip will resume its radial motion when the motor turns.
A series of disengagements, motor turns, finger rotations and
re-engagements can change the angles between the fingertips
and the relative distances between them, within the physical
limitations of the hand. Note that the application of force on
a fingertip by a grasped object does not disengage the finger,
because the disengagement happens in the opposite direction.
After each adjustment, the hand is essentially a rigid robotic
hand with a single closing parameter, easily controlled and
operated.

Fig. 3. A CAD rendering of the Finger module, with two points of view.

III. SELECTING THE BEST GRASP

This section details a novel approach of selecting a grasp
configuration for an object. When using a non-configurable
robot hand, any grasp configuration must conform to the
hand shape. For instance, if an equidistant, three-fingered
parallel-jaw hand (e.g. [10]) is used, only grasp configura-
tions that constitute equilateral triangles may be considered.
Our approach utilizes the reconfiguration ability of the hand
to maximize grasp quality by relaxing the finger positioning
constraints. A grasp configuration is defined as the fingertip
placements on the object’s perimeter. A hand configuration
is defined as a combination of the grasp configuration and
the location of the hand’s center. Although our hand allows
total freedom in grasp configuration selection, physical con-
straints still exist, so not every hand configuration is possible.
Firstly though, let us examine the decision process for finger
placement– the grasp configuration.

The object is given as a polygon in configuration space.
I.e, the object has been represented as a polygon, and dilated
by the radius of the fingertips. This means that any point on
the boundary of the configuration-space object corresponds
to a fingertip-object contact point. The friction coefficient
between the fingertips and the object µ is known, as is the
number of fingers n. We now proceed to choose the grasp
configuration. To do this, we use Monte-Carlo simulation of
grasp configurations. We discretize the polygon perimeter as
a set of points, each with its own location and surface normal
direction. We then randomly place n fingertips at different
points on the polygon perimeter, and test the grasp quality.
There are many grasp quality measures, and it is not this
paper’s intention to advocate one or the other. Our procedure
grants the user the option to choose between wrench space
sphere radius and grasp matrix ellipsoid quality measures,
although any other quality measure can be used. These



Fig. 4. An example of the angular geometric constraints of finger placement.
The object (black outline) is grasped by three fingertips (red dots). The angle
between two digits must be at least γ = 45◦. For each pair of fingers, the
union of two circles bounds the permitted area. In this instance, fingers 1
and 2 only allow the placement of the hand center within the double-circle
magenta shape F1,2. The intersection of all the pairs results in the allowed
area (red border).

quality measures and others can be found in [11, pp. 321-
348].

The grasp is evaluated, and its quality is marked according
to the guidelines of the quality measure. If viable, the grasp
configuration enters a list of possible grasp configurations.
After exhausting the user-defined number of grasp attempts,
the list is sorted by grasp quality. We now have a list of
n feasible grasp configurations, sorted by their quality. Not
all of these grasp configurations are actually possible, since
the robotic hand we use has physical limitations. A hand
configuration is possible if a possible hand center exists,
given the grasp configuration. Therefore, we can examine
each grasp configuration to analyze its potential as a hand
configuration.

Starting from the best grasp configuration in the list, we
test to see if a hand configuration can be synthesized. I.e,
we test to see if a point P exists that is the center of a
hand with its fingers at the grasp configuration. This test
is performed by converting the physical hand limitations to
geometric constraints. Consider the point P representing the
center of the hand. P must be within a circle of Lmax radius
from each fingertip placement, where Lmax is the maximal
extension of a fingertip. This means that the center must lie
inside the intersection of n circles centered at the finger
placement points, each with radius Lmax. Mathematically
put, the center must be within the area A1:

A1 =

k⋂
i=1

Di (1)

where Di is a circle of radius Lmax centered at the ith
fingertip placement. This can be seen in Fig. 5, as magenta
circles surrounding the fingertip placements.

Fig. 5. An continuation of the example from Fig. 4. We add geometric
constraints pertaining to the distance of fingertips from the hand center. The
object (black outline) is grasped by three fingertips (red dots). The hand
center must lie inside Lmax from each fingertip (magenta circles). The
hand center cannot lie within Lmin from any fingertip (red circles). To
conform with angle restrictions, the hand center must lie inside the area
depicted in Fig. 4, seen here as a dashed line. The blue area is the result of
these restrictions, where a hand center can be placed.

Similarly, the hand center cannot lie too near to a fingertip
placement, since there is a minimum extension Lmin. There-
fore the center cannot lie within A2, defined as:

A2 =

k⋃
i=1

Ei (2)

where Ei is a circle of radius Lmin centered at the ith
fingertip placement. This can be seen in Fig. 5, as red circles
surrounding the fingertip placements.

The final physical limitation is the angular one. Two
neighboring digits cannot be at angles less than γ apart. This
limitation can be described geometrically as circles as well.
Let us take two fingertip placements, fi and fj . The hand
center P must be located such that the digit vectors are no
more than γ degrees apart, or:

∠(
−−−−→
fi − P ,

−−−−→
fj − P ) ≥ γ. (3)

The set of points P that conform to this rule lie within either
of two overlapping circles. Each circle is bounded by fi and
fj . Each point on the perimeter of either circle is such that
∠(
−−−−→
fi − P ,

−−−−→
fj − P ) = γ. If the distance between fi and fj is

di,j , than the radii of the two circles are:

ri,j =
di,j

2 sin(γ)
. (4)

The center of the hand, therefore, must lie within the area:



Fi,j = F1
i,j ∪ F2

i,j (5)

where F1
i,j and F2

i,j are the two circles with radius ri,j
that have fi and fj lying on their perimeters. The hand’s
center must be inside this area for every pair of fingers fi,fj .
Therefore, the hand’s center must lie within:

A3 =
⋂
Fi,j for 1 ≤ i, j ≤ n, i 6= j . (6)

This constraint can be seen in Fig. 4 for a three-finger hand,
as three unions of circle pairs.

Finally, we combine the geometric constraints to obtain
the valid area. Any point in this area is a physically feasible
placement for the hand center:

A = A1 ∩ Ā2 ∩ A3 . (7)

This area is illustrated in the example in Fig, 5.
Any point in A that allows a penetrating grasp is valid,

and as far as grasp quality they are identical. However, some
hand center positions are better in other regards. We can
identify special centers that have certain advantages, and try
them before moving on to other considerations. For instance,
a special center for three-fingered hands is the center of
the circle defined by the three fingertip placements. This
center has two advantages: 1) Each of the three fingertips
is equidistant from the center. If the previous grasp configu-
ration was also equidistant, the distance adjustment procedure
is exceedingly short. 2) If we define a triangle by the three
fingertip placements, we note that extending or retracting the
fingertips creates a similar triangle. Similar triangles can be
used to define caging regions on polygons [12], potentially
increasing grasp reliability and robustness.

If the preferred special center is not viable, we randomly
sample several hand center options inside the allowed area
A. Each of these options is viable, but we prefer hand
centers that require shorter reconfiguration procedures of
the hand. Each hand center Pi corresponds with a hand
configuration Ci = (~θi, ~di). Starting from the hand’s current
configuration C0, each of the configurations Ci may take a
different number of adjustments to achieve. Therefore, we
construct adjustment procedures for every configuration, as
mentioned in the following Section ??. After constructing the
adjustment procedure for each configuration, we choose the
hand center that requires the shortest procedure. A distance
adjustment protocol’s length is determined by the number
of adjustments, and not their retracting or extending values.
This is because switching from pressing one finger or another
is a more time expensive task than simply retracting or
extending the fingers. At this point, a number of valid hand
configurations have been found. In the next section, we detail
the method of constructing and executing the adjustment
procedure, which allows us to select and utilize one of these
hand configurations.

IV. ADJUSTMENT PROCEDURE

This section describes the methods proposed to adjust the
hand to a desired configuration. Given the initial configu-
ration, and desired configuration of the hand ,a series of
adjustments need to be carried out. These adjustments are
easily divisible into two problems– the adjustment of digit
orientation, and the adjustment of digit extension. Each of
these problems is addressed and solved separately, and the
integration of the two is discussed.

For convenience, we will explain the adjustments methods
in terms of planning. I.e., we describe the adjustments as a
series of actions, each of which has a set of prerequisites and
results, changing the state of the system. The formulation of
the problem as a planning problem is helpful to gain intuition,
however we do not use planning algorithms to solve the
problem. We use an analytic approach to reach the goal state
from the initial state, resulting in a time-efficient solution.

Assume a hand with n digits, f0, . . . , fn−1, where f0 is the
thumb, and the digit numbers are arranged counter-clockwise
starting from the thumb (top view). Each digit’s fingertip has
two parameters that define its configuration– di and θi. di
is the distance, or extensions, between the fingertip and the
center of the hand, and θi is the angle between the digit and
the hand. Since the thumb is rigidly attached to the hand, we
assign θ0 = 0◦ for convenience. Thus, the configuration of
the hand can be defined as:

~Q =
(
~θ, ~d
)

= (0, θ1, . . . , θn−1, d0, d1, . . . , dn−1) (8)

The problem is formulated as follows: we wish to find a
series of adjustments that will change the congiguration from
a starting configuration ~QS to a target configuration ~QT .
Assuming there are j steps, a valid plan P will be of the
form:

P = ~QS → ~Q1 → ~Q2 → · · · → ~Qj−1 → ~QT (9)

Each step of the plan involves an action of some sort. The
possible actions are: a) rotating the motor in either direction
by some amount, b) disengaging a finger, c) rotating a finger
about the hand, d) engaging a finger. Each adjustment has
perquisites; for instance, adjustments c) and d) require a
finger to be disengaged. Note that changing the orientations ~θ
has no effect on the extensions ~d, and vice versa. Therefore,
we can solve each of the two problems separately without
affecting the other. Firstly, we will find a plan to solve the
orientations:

~θ S → ~θ 1 → · · · → ~θ T (10)

Then, we will find a plan to solve the extensions:

~d S → ~d 1 → · · · → ~d T (11)

Lastly, we will show how the two can be integrated to form
a complete plan (Plan (9)).



A. Adjustment of Digit Orientation

In order to change the orientation of a single finger θki →
θk+1
i , the following actions must be taken. Firstly, the ith

finger must be disengaged. Next, the finger must be rotated
about the hand by some angle β, changing the orientation.
Lastly, the ith finger must be re-engaged. These three actions,
in this order, result in a change of orientation of the ith finger
by β, so that θk+1

i = θki + β. Note that the fingertips are all
identical, therefore the target configuration can always be re-
ordered by ascending values: θTi < θTi+1.

Given that each of these three actions is necessary and ir-
replaceable, we will group the three actions as a single action
called a “rotation step”. A rotation step can only be performed
if there is no other digit that would physically collide with
the rotated finger. For instance, let us assume there are three
digits at a starting orientation ~θ S = (0◦, 60◦, 110◦) and a
target orientation ~θ T = (0◦, 180◦, 270◦). Finger f1 cannot
move from its starting position of 60◦ to its target position
180◦, because it would have to pass through f2 at its starting
position 110◦). However, f2 can be moved from its starting
position 110◦) to its target position 270◦) without collision.

The absolute lowest number of rotation steps necessary to
achieve the target orientation configuration, assuming θ S

i 6=
θ T
i , i ≥ 1, is n − 1, where n is the number of digits, and
n− 1 is the number of fingers. In other words, provided that
no finger starts at its target position, each finger needs to be
rotated at least once. We will now show that, in fact, each
finger needs to be rotated exactly once.

Theorem 1. Given a start and target orientation configura-
tion, each finger of the hand needs to be rotated at most one
time.

Proof. Let us assume a hand has n fingers at an initial
orientation ~θ S =

(
0, θS1 , . . . , θ

S
n

)
, and a target orientation

~θ T =
(
0, θT1 , . . . , θ

T
n

)
. Starting from n, we will examine

each finger to check if it can be re-oriented to its target
position without interruption. Let us assume that fn cannot be
re-orientated due to collision. By definition, this means that
θSn−1+45◦ > θTn . Let us move on to fn−1, and again assume
that it cannot be re-oriented directly to its target position.
Similarly, this means: θSn−2 + 45◦ > θTn−1. Continuing this
way, assuming each finger cannot be directly re-oriented, we
eventually reach f1. the only way f1 cannot be directly be re-
oriented is if θS0 + 45◦ > θT1 . Since θ0 = 0 by definition, the
collision condition can be re-written as 45◦ > θT1 . A valid
target position for the first finger is θT1 ≥ 45◦, therefore
the collision condition cannot be met and f1 can be directly
oriented to its target position.

B. Adjustment of Digit Extension

Unlike the adjustment of the digit orientation, the adjustment
of digit extension does not have a simple, straightforward
solution. To change the extension of a single finger relative
to the other digits, one must first disengage he finger, rotate
the motor, and then re-engage the finger. This will cause every
digit to extend/retract except the finger that was disengaged.
This group of actions effectively changes the relative distance

of the disengaged finger, but practically changes the extension
of every other digit to do so. This makes it difficult to
intuitively select a series of actions that will end in the target
configuration ~d T . For example, let us examine a four-digit
hand at the 17th step of it’s plan. The current extension
vector is ~d 17 =

(
d170 , d

17
1 , d

17
2 , d

17
3

)
. If we disengage f2,

rotate the motor so that the other fingertips extend be δ,
and re-engage f2, the resulting extension vector will be
~d 18 =

(
d170 + δ, d171 + δ, d172 , d

17
3 + δ

)
.

Let us define two action sequences and their results. We
will hereby refer to the these sequences as “moves”. The
first move is a rotation of the motor when no fingers are
disengaged. This results in an extension of all the digits by
an equal amount: ~d k+1 = ~d k + δ. The second move is the
following action sequence: disengagement of the jth finger
fj , rotation of the motor, and re-engagement of fj . This
results in an extension of all the digits by δ except for fj .

Adjusting the extensions of the fingers in this way would
not be difficult if there were no physical limitations to the
system. However, a fingertip cannot be extended to any ar-
bitrary distance, and there are physical limitations of the fin-
gertip movement in the fingers: di ∈ (dmin,f , dmax,f ) , i ≥.
The thumb has a similar limitation with slightly different
extrema: d0 ∈ (dmin,t, dmax,t). It is fairly easy to see that
a target extension may not be achievable within a single
“move”. As an example, let us assume a three digit hand
has an initial extension vector ~d S = (80, 160, 120) and a
goal extension vector ~d T = (190, 40, 150). Let us further
assume the physical limitations dmin,f = dmin,t = 0, and
dmax,f = dmax,t = 200. There are three possible moves.
Firstly, we could rotate the motor without any disengagement:
~d S = ~d S ± (δ, δ, δ). Secondly, we could disengage f1 and
rotate the motor. This would result in: ~d S = ~d S ± (δ, 0, δ).
Thirdly, we could disengage f2 and rotate the motor. This
would result in: ~d S = ~d S ± (δ, δ, 0). It is clear that
with of these moves, there is no δ that would result in the
goal extension of a digit without exceeding the limits of
another. Furthermore, there is no real benefit in a single digit
reaching its goal extension, given that the following move
will immediately displace it.

To understand the analytic solution, let us start with a sim-
ple two digit hand. The hand has a starting extension vector
~d S = (50, 150) and a target extension vector ~d T = (80, 60).
The physical limits of the digits are: d0 ∈ (0, 200), d1 ∈
(20, 180). We can plot the start and target extensions as
points in a 2D configuration space, as shown in Fig. 6. The
configuration space is bounded by a rectangle that represents
the physical limits of the digits. The basis movement vectors
are m1 = 〈1, 1〉,m2 = 〈1, 0〉. The first is achieved by
rotating the motor without disengagement, and the second
is achieved by disengaging f1 and rotating the motor. We
plot the movement vectors in the 2D configuration space
to indicate the space of possible configurations that can be
achieved in a single move.

It is extremely unlikely that one of the movement vectors
will intersect the target point. Therefore, uninformed place-
ment of the next configuration step is ill-advised. Instead,



realize that one move before the target is reached, the con-
figuration will lie on one of the movement vectors extending
from ~d T . Therefore, we extend the two movement vectors
from the target, knowing that any configuration that lies on
these lines will be one move away from reaching the target
configuration. While it may be exceedingly unlikely for a
line to intersect a point in 2D space, it is guaranteed that two
lines will intersect in 2D space, unless parallel. Therefore,
we search for the intersection between the movement vectors
emanating from the start configuration and the movement
vectors emanating from the target configuration. If there is
an intersection within the physical constraint box, a solution
is found. Observe Fig. 6. two movement vectors emanate
from the starting configuration ~d S = (50, 150), and two
movement vectors emanate from the target configuration
~d T = (80, 60). These four lines have two intersection points,
at (170, 150) and (−40, 60). The second intersection is out-
side of the physical limits, marked by a black border in Fig.
6, therefore is not a valid move. We can now see a valid path
from start to target, marked by a blue line in Fig. 6. The path
from start to target is: (50, 150) → (170, 150) → (80, 60).
Physically, this path requires two moves, and the follow-
ing series of actions: Starting at the target configuration,
disengage f1, and rotate the motor to cause an extension
of δ1 = 120 mm. This first move will result in a new
configuration ~d 1 = (50, 150) + (120, 0) = (170, 150). Next,
re-engage f1, and rotate the motor to cause an extension of
δ2 = −90 mm. This move will result in a new configuration
~d 2 = (170, 150) + (−90,−90) = (80, 60) = ~d T . Thus, we
have found a valid path between the start configuration and
target configuration, with two steps.

Next, let us observe a more difficult 2D problem, where
the starting configuration is still ~d S = (50, 150), but the
target is ~d T = (190, 40). If we follow the same procedure
as before, we will quickly find that the movement lines
emanating from the start and target configurations inter-
sect at two points that are both outside of the physical
boundaries. Therefore, there is no two-step solution for our
problem. To solve this, we add several intermediate con-
figurations to our configuration space. Specifically, we add
the intersections between the movement vectors emanating
from the starting configuration, and the physical bounding
box. These intersections add four configurations to explore,
(80, 180), (0, 100), (0, 150), (200, 150). Each of these con-
figurations is termed a node. Each node can be expanded,
by emanating movement lines from its configuration. When
expanding a node, we first check if there exists a valid
intersection with the movement vectors emanating from the
target (a valid intersection is within the physical boundaries).
If so, there is no need to continue the expanse, because a
valid path has been found. Otherwise, the expanse creates
new nodes at the intersections between the movement vectors
and the physical boundaries.

Time is the most important factor in our search for a
path. Rotating the motor to change the extension values is
much faster than disengaging, and then re-engaging a finger.
Therefore, the fastest path will typically be the one with the

fewest number of nodes, and not the path with the shortest eu-
clidean distance. The number of nodes represent the number
of disengagements and re-engagements that will need to be
performed, while the euclidean distance roughly represents
the number of motor turns. More precisely, the total distance
traveled in the f0 direction represents the number of motor
turns, multiplied by the gear ratio. Understanding this, it
follows that the fastest path will be found by performing a
Breadth First Search (BFS) in our configuration space, with
the first node being the starting configuration. The target
is not well defined, because it can be any point on the
movement vectors emanating from the target, but it is easy
to determine when such a point is found, ending the search.
This breadth-first search ensures that every two-step path
possibility will be exhausted before searching for a three-
step path, every three-step path will be exhausted before
searching for a four-step path, and so on. In our second
example depicted in Fig. 7, A three-step path has been found:
(50, 150) → (200, 150) → (90, 40) → (190, 40). Note that
there may be more than one valid path with the same number
of steps. In this case, it is slightly beneficial to select the path
with the least euclidean distance traveled in the f0 direction.
In most cases, however, there will be no significant time
difference between paths, and so selecting the first found
path arbitrarily is a reasonable choice.

Let us now extend this procedure to three digits. Now,
we have a three dimensional configuration space, with three
movement vectors: ~m1 = 〈1, 1, 1〉, ~m2 = 〈1, 1, 0〉, ~m3 =
〈1, 0, 1〉. The physical boundaries are now represented as a
cuboid. Again, we sill begin by drawing the movement vec-
tors emanating from the target configuration. Unfortunately,
just as it was extremely unlikely to intersect a line with a
point in 2D space, it is extremely unlikely to intersect a line
with a line in 3D space. This means that we cannot simply
expand nodes in the same way as before, hoping to intersect
the movement vectors emanating from the target. We do,
however, know that if a path does exist, its last step must lie
on one of the three movement vectors emanating from the
target. Furthermore, to reach a movement vector, the second-
to-last configuration must lie in a plane that coincides with a
movement vector emanating from the target, and a different
movement vector. This means that we can extend a 2D plane
in 3D space, describing all configurations that are two steps
away from the target, disregarding physical limitations. For
instance, take the movement vector ~m3 = 〈1, 0, 1〉, emanating
from the target configuration ~d T = (dT0 , d

T
1 , d

T
2 ). Let us now

span two planes. We find the first plane’s normal by vector
multiplication of ~m3 and the first remaining movement vector
~m1:

~n1 = ~m3 × ~m1 = 〈1, 0, 1〉 × 〈1, 1, 1〉 = 〈−1, 0, 1〉 (12)

we use the target configuration as a reference point, giving
us a fully defined 2D plane P1:

0 =
−−−→
P1d

T · 〈−1, 0, 1〉 (13)

Similarly, we can define the second plane:



0 =
−−−→
P2d

T · ~m3 × ~m2 = 0 =
−−−→
P2d

T · 〈−1, 1, 1〉 (14)

While it may be extremely unlikely for a 1D line to intersect
another 1D line in 3D space, a 1D line is guaranteed to inter-
sect a 2D plane (unless parallel). Our path search algorithm is
now reformed accordingly. First, we emanate three movement
vectors from the target configuration. Next, we emanate two
planes from each of the three aforementioned movement
vectors. These six planes represent the locations from which
the system is two moves away from the target configuration.
A search is now initiated by expanding the start configuration
node. Just as in the 2D case, if a movement vector emanating
from the node intersects a physical constraint (in this case,
any of the six 2D planes bounding the cuboid), it creates
a new node. If a movement vector intersects one of the six
planes within the cuboid, the search is paused in order to
test the possibility of a path. Starting from the line-plane
intersection point, a movement vector is extended within the
plane, and the intersection point between this new movement
vector and the movement vector emanating from the target
is computed. If the point is within the cuboid, the search
is terminated, because a valid path is found. If the line-line
intersection point is outside the cuboid, the path is discarded
and the search continues. Fig. 8 depicts the path found using
this method, starting from ~d S = (139, 71.5, 172) and ending
at the target ~d T = (6, 90, 81). The path has four steps:
(139, 71.5, 172) → (0, 71.5, 33) → (60.5, 132, 93.5) →
(48, 132, 81)→ (6, 90, 81)

In the 3D case, we searched for the intersection of a 1D
line with a 2D plane, which is relatively easy to find. Then,
we searched for the intersection of a 1D line with a 1D
line in the 2D plane, which is also easy to find. Lastly,
we searched for the intersection betwen a 1D line with a
0D point, along a 1D line. It becomes obvious that the
search is always performed between a 1D line and a N − 1
hyperplane in N−D space. We can thus expand our method
to any number of digits. To do this, we must make several
generalizations. Assuming there are n digits in our hand, the
physical boundaries of the digits can be represented in nD
configuration space as an nD hypercuboid. The hypercuboid
has 2n facets, each of which can be represented as a n − 1
hyperplane. In 3D space we are accustomed to use the cross
product to find normal vectors, however in higher or lower
dimensions we are compelled to use a more general approach.
Specifically, the n − 1 hyperplane defined as normal to
two n − 2 hyperplanes is the null space of the two n − 2
hyperplanes. We always start with the target configuration.
We then extend movement vectors, planes etc. according to
the dimension. For n dimensions, we extend the target n− 1
times. For example, for n = 5 we take the 0D target and
emanate 1D movement vectors from it. We then emanate 2D
planes from the 1D vectors. Next, we emanate 3D spaces
from the 2D planes, and finally emanate 4D hyperspaces
from the 3D spaces. in 5D space, it is guaranteed that a
1D vector will intersect a 4D hyperspace (unless parallel).
The search procedure is then exacted, as always using the

Fig. 6. A path search in 2D. The starting configuration is (50, 150) and
the target configuration is (80, 60). The search suggests a two-step solution
(blue), that passes through (170, 150).

start configuration as the first node. The generalized search
method is described in Algorithm 1.

C. Integration of the Adjustment Protocol

After understanding the inherent simplicity of the angle
adjustment procedure, and the analytic nature of the fingertip
distance adjustment procedure, we endeavor to combine the
two. The combination of the two procedures is centered
on time efficiency. Therefore, we seek a solution that will
minimize any wastes of time in reconfiguration. To this end,
we offer the following integration policy, that is not the
optimal solution.

We prioritize fingertip distance adjustment over angle
adjustment, given that some angular adjustments can be
performed simultaneously to finger distance adjustment, and
are likely to be possible. This is a purely statistical approach.
Given n dimensions, if we prioritize angular adjustment,
there is only a 1/n change that the finger being adjusted
angularly corresponds with the next motion vector in the
fingertip distance change path. Conversely, if we prioritize
fingertip distance change, the probability that the pressed
fingertip can also be angularly reconfigurated is at worst 1/n.
Therefore, prioritizing distance reconfiguration, and changing
finger angles as the opportunity arises is more time-efficient
than vice-versa.

The integration of the adjustment protocol is therefore
quite simple. We follow the fingertip distance adjustment
procedure as-is. When a fingertip is pressed, we check if it
can be rotated to its angular target. If so, distance and angular
reconfiguration are performed simultaneously. If not, only
fingertip distance is changed. After completing all distance
changes, we check if all angle changes have been completed.
If not, we perform the remaining angle adjustments by se-
quential first-possible first-change methodology (brute force).

In the future, we will attempt to blend the angular and
fingertip distance procedures into a singular time-domain.
In this way, we will search for a time-optimal path that
resolves both fingertip distance an finger angle problems
simultaneously.
Notes for Algorithm 1:



Algorithm 1 Distance Adjustment Procedure
1: Initialization:
2: n← number of digits
3: dS = [dS0 , . . . , d

S
n−1]← initial digit distances

4: dT = [dT0 , . . . , d
T
n−1]← target digit distances

5: L = [lmin
0 , lmax

0 , . . . , lmin
n−1, l

max
n−1 ]← physical limits

6: m = m1 . . .mn ←
CREATE MOVEMENT VECTORS(n)

7: Cuboid← CREATE CUBOID(L,m)
8: HP← EMANATE HYPERPLANES(dT ,m)
9: Execution:

10: Path← BFS(dS , dT ,m,Cuboid,HP)
11:
12: function CREATE MOVEMENT VECTORS(n)
13: Mn×n ← ones
14: M2..n×2..n ←M2..n×2..n − In−1×n−1
15: m← rows of M
16: return m
17: function CREATE CUBOID(L,m)
18: Cornermin ← [lmin

0 , lmin
1 , . . . , lmin

n−1]
19: Cornermax ← [lmax

0 , lmax
1 , . . . , lmax

n−1 ]
20: facetsmin ← null(Cornermin,m)
21: facetsmax ← null(Cornermax,m)
22: Cuboid Facets← facetsmin ∪ facetsmax

23: return Cuboid Facets
24: function EMANATE HYPERPLANES(dT ,m)
25: hp0 ← dT

26: for i in 1 . . . n− 1 do
27: hpi ← null(hpi−1,m)

28: HP← hp0 . . . hpn−1
29: return HP
30: function BFS(dS , dT ,m,Cuboid,HP)
31: Q← dS

32: m′0 ← m
33: i← 0
34: for v in Q do
35: HPP,FP← EXPAND(v,m′i,Cuboid,HP)
36: for w in HPP do
37: PathEnd← LAST STEPS SEARCH(w)
38: if PathEnd 6=null then
39: return RETRACE PATH(w)∪PathEnd
40: break
41: Q← Q ∪ FP
42: i← i+ 1

43: function EXPAND(v,m′,Cuboid,HP)
44: lines← v + m′
45: Facet Pierces← Coincidence(lines,Cuboid)
46: Pot HP Pierces← Coincidence(lines,HP.hpn−1)
47: HP Pierces← Pot HP Pierces in Cuboid
48: return HP Pierces, Facet Pierces
49: function LAST STEPS SEARCH(v,Cuboid,HP)
50: This function will provide a path from a point on a

hyperplane to the target, if one exists
51: function RETRACE PATH(v)
52: if v = dS then
53: return v
54: else
55: Path← Path ∪ RETRACE PATH(v.parent)

56: return Path

Fig. 7. Another path search in 2D. This time, the algorithm could not find
a two-step solution, but could find a three-step one.

Fig. 8. A path search in 3D. Starting from (139,71.5,172) and ending at
(6,90,81), a path with four steps was found. The red and green lines indicate
the movement vectors emanated from each vertex along the path.

• Variables in boldface are lists of similar items. For
instance, m in line 6 is a list of vectors m1,m2, . . . ,mn.
Vectors are not indicated by boldface.

• Matrices are indicated by subscripts with their dimen-
sions, such as in line 14.

• The matrix I in line 14 is the identity matrix.
• The operation null(a, b) in lines 20, 21 and 27 is the

nullspace of the matrix composed of a and b.
• The operation Coincidence(a, b) returns the vertex of

coincidence between the one-dimensional line a in n-
dimensional space with the n−1 dimensional hyperplane
b in the same space. If the line is parallel to the
hyperplane, the operation returns nothing.

• The notation m′ in the EXPAND function (line 43) indi-
cates the movement vector list, excluding the movement
vector leading to the specific vertex v. This is to prevent
retracing steps, and entering infinite loops.

V. EXPERIMENTS

In this section, we detail the real-world experiments per-
formed with a three-finger hand. The experimental setup, both



real and simulated, is depicted in Fig. 9. The hardware used
in our experiments is as followed:
• A configurable robot hand with 3 digits.
• A Motoman UP6 6-DOF robotic arm.
• A Logitech C310 webcam
• A PC with an Intel i7-3770 3.4 GHz processor, 32 GB

of RAM, 64 Bit system running Matlab 2019
• Assorted objects from the YCB object set [13]

In order to demonstrate the capabilities of the hand, we per-
formed a number of full and partial grasp procedures on real-
world objects. A non-physical simulation environment was
constructed in the RoboDK robotic simulator. The simulation
environment mimics the real-world environment to an extent,
containing the robotic arm, hand, and surrounding objects.
Objects from the YCB set can also be imported into the
simulation, as their 3D models are provided by the object set
creators [13].

A full grasp procedure is as such:
1) The robot hand is set at an arbitrary configuration,

usually the last configuration used.
2) An item is placed within the pickup zone on the ground

near the robot.
3) The robot photographs the object, and attains its shape

as a polygon.
4) The grasp location and adjustment procedure are found,

using the methods detailed in Section III.
5) The robot executes the hand readjustment procedure,

using either a nearby wall, or the robotic arm base
(user’s choice).

6) The hand is manipulated towards the object, and grasps
it without force feedback.

7) The object is manipulated towards a drop-off point,
where it is placed.

A full grasp procedure can be seen in the video accompa-
nying this paper. A partial grasp procedure is the same as a
full grasp procedure, but without the physical act of grasping
and manipulation (the last two items). Full grasp procedures
were performed on the following objects in the YCB object
set: Mustard bottle (object #6), Tuna fish can (object #7),
Power drill (object #35). Partial grasp procedures were per-
formed on objects #4,11,12,13,21,22,29,33,51,52,76,77. All
grasp procedures were performed using three fingers. Three
different types of fingertips were used, that differ only in
their minimal and maximal distances from the hand center
Lmin, Lmax. Fingertips were selected based on object size.

A. Representing the Object as a Polygon

In order to apply the methods of grasp selection described in
Section III, we first must convert our previously unknown
object to a polygon. To do this, the robotic arm has a
simple RGB camera (webcam) mounted on it. The webcam
is manipulated above the object. An image of the object
is taken by the camera. The image is contrast balanced
and converted to black and white. Noise is removed via
a “close” morphology operator, along with several other
standard image processing operations to clean the image. The
object is now represented as a single “blob”. The object is

Fig. 9. The experimental setup. The real-world experiments (top) mirror the
simulation environment (bottom). A “Mustard Bottle” item is in the pickup
zone.

converted to a configuration space object by using an “erode”
morphology operator. The kernel of the erode operator is a
disk with the radius of the fingertips. The blob’s perimeter
is then taken as a list of pixel locations. Since this list is
finite, the blob is inherently represented as a polygon. This
polygon is reduced in its number of edges, according to a
tolerance set by the user. A lower tolerance results in a better
approximation to the original blob, and a higher number
of edges. A low tolerance may result in undesirable “sharp
edges”, which misrepresent the object’s surface normal. A
higher tolerance results in a worse approximation of the blob,
and a lower number of edges. The remainder of our algorithm
is indifferent to the number of polygon edges, therefore the
tolerance is set by trial and error, avoiding oversimplification
one one hand, and artificial sharp edges on the other. We
apply a transformation between camera coordinates and real-
world coordinates, based on prior camera calibration. The
final polygon is then passed on to the next portion of the
procedure– grasp selection.

B. Execution of the Adjustment Procedure

Following grasp selection (Section III) and adjustment proce-
dure synthesis (Section IV), a list of instructions is provided.
This list is, in fact, the adjustment procedure. When followed,
this list of instructions transforms the hand from its initial
configuration to the target configuration suited to grasp the
object. An Arduino Nano controls the stepper motor in
the robot hand. Rotation validation is obtained by a rotary
encoder fixed to the the thumb. The instructions can be
carried out in simulation mode, or in run-on-robot mode. For
safety reasons, experiments were carried out in simulation
mode, before being replicated in run-on-robot mode.



VI. CONCLUSION

In this work, we introduced a novel robot hand, and the
motion planning algorithm used to reconfigure it. The main
contribution of this report is the introduction of the finger
distance adjustment procedure. The secondary contribution
is the proof of simplicity in the angle adjustment procedure.
The motion planning principles presented are not limited
to the robot hand presented, and can be expanded to other
hands or completely different problems. For example, the
fingertip distance function can be used for robot navigation
in a bounded space with movement constraints.

In our real world experiments, three objects were grasped
and manipulated using the full grasp procedure, and 12
additional objects were used for partial grasp procedures. In
all 15 cases, the system was able to find grasp configurations,
and synthesize the adjustment procedure. The adjustment
procedure was executed for each of the cases successfully.
Objects #11, 12 and 77 are relatively small, therefore fin-
gertips with a small minimal distance were used. Similarly,
fingertips with a large maximal distance were used for the
larger object #33. The remainder of objects were grasped
using mid-range fingertips.

In the three manipulation tasks, both the tuna can and
mustard bottle were manipulated successfully. The power
drill was grasped, but slipped from the hand during ma-
nipulation. This is because the grasp force was relatively
low by design, as part of the experimental safety measures.
The force exerted by each finger is at most 5 N, which
was insufficient to vertically manipulate the heavier power
drill without slipping. The next step in our experiments is
to relax the safety restrictions, increasing grasp force and
re-adjustment time.

This technical report serves as supplementary theoretical
background for related works. In the future, the theoretical
principles presented here will be expanded and published. At
that point this report shall be deprecated.
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