
IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 3, NO. 4, OCTOBER 2018 3271

Caging Polygonal Objects Using Formationally
Similar Three-Finger Hands

Hallel A. Bunis , Elon D. Rimon , Yoav Golan , and Amir Shapiro

Abstract—Caging offers a robust strategy for grasping objects
with robot hands. This letter describes an efficient caging-to-
grasping algorithm for polygonal objects using minimalistic three-
finger robot hands. This letter describes how to cage and then grasp
polygonal objects, using single actuator triangular three-finger for-
mations, whose shape is determined by any desired immobilizing
grasp of the polygonal object. While the hand’s configuration space
is four-dimensional, the algorithm uses the hand’s two-dimensional
contact space, which represents all two- and three-finger contacts
along the grasped object boundary. This letter describes how the
problem of computing the critical cage formation that allows the
object to escape the hand is reduced to a search along a caging
graph constructed in the hand’s contact space. Starting from a
desired immobilizing grasp, the graph is searched for the criti-
cal cage formation, which is used to determine the caging regions
surrounding the immobilizing grasp. Any three-finger placement
within these regions guarantees robust object grasping. The tech-
nique is demonstrated with a detailed computational example and
a video clip, which shows caging experiments with a single actuator
three-finger robot hand.

Index Terms—Caging, robot grasping, robot grasp planning.

I. INTRODUCTION

CAGING offers a robust approach to grasping objects with
multi-finger robot hands under huge uncertainty of the

finger positions relative to the grasped object. To securely grasp
an object, the fingers are first placed in caging regions surround-
ing a desired immobilizing grasp. This prevents the object from
escaping the hand. The hand is then closed while maintaining a
cage formation, until the desired immobilizing grasp is reached.
This letter focuses on caging polygonal objects using three-
finger robot hands. Our focus on three-finger hands is motivated
by practical hand mechanism designs.

As discussed by Dollar et al. [1], [2], roboticists seek general
purpose minimalistic hand designs that will posses the smallest

Manuscript received February 23, 2018; accepted June 21, 2018. Date of
publication June 29, 2018; date of current version July 19, 2018. This letter
was recommended for publication by Associate Editor M. A. Roa and Editor
H. Ding upon evaluation of the reviewers’ comments. This work was supported
by the Israel Science Foundation under Grant 1253/14. (Corresponding author:
Hallel A. Bunis.)

H. A. Bunis and E. D. Rimon are with the Department of Mechanical
Engineering, Technion—Israel Institute of Technology, Haifa 3200003, Israel
(e-mail:,hallelb@technion.ac.il; rimon@technion.ac.il).

Y. Golan and A. Shapiro are with the Department of Mechanical Engineer-
ing, Ben-Gurion University of the Negev, Beersheba 8410501, Israel (e-mail:,
yoavgolan1@gmail.com; ashapiro@bgu.ac.il).

This letter has supplementary downloadable material available at http://
ieeexplore.ieee.org, provided by the authors. The Supplementary Materials con-
tain a video file demonstrating how the I-CAGE Algorithm presented in the paper
was used to cage and then grasp a saw. The caging experiment was performed
with a specially designed three-finger robot hand to validate the algorithm. This
material is 9.6 MB in size.

Digital Object Identifier 10.1109/LRA.2018.2851754

Fig. 1. (a) A specially designed three-finger robot hand. (b) The hand’s con-
figuration is specified by the palm frame FP , the formation scale σ, and the
hand shape defined by φ=(φ1 , φ2).

number of fingers as well as the smallest number of actuators.
Three-finger hands form an attractive minimalistic design, since
three point or disc fingers can immobilize every polygonal ob-
ject which does not possess opposing parallel edges [3]. More-
over, by limiting the three-finger hand to a particular family of
formations such as similar triangles, a single actuator can si-
multaneously close the three fingers, thus allowing extremely
simple hand designs (Fig. 1).

Since robotic caging was introduced by Rimon and Blake
[4], caging theory has advanced considerably. Work on caging
includes an examination of the relationship between caging and
grasping [5], the inclusion of gravity in partial cage forma-
tions [6], and the application of computer vision tools for caging
based on topological characteristics of the caged objects [7].
Caging has also been considered for robust object manipula-
tion [8], [9], as well as robust transfer of warehouse objects by
mobile robots [10]–[12]. Caging holds much potential in other
tasks, such as space debris removal [13] and microscopic object
manipulation [14].

A number of caging algorithms for polygonal objects have
been proposed in the literature. In the case of two-finger hands,
the prevailing caging algorithms involve computing all cage
formations directly in the hand’s four-dimensional configura-
tion space [15], [16]. However, two-finger cage formations can
be alternatively computed in the hand’s two-dimensional con-
tact space [17], which offers implementation simplicity and
geometric verifiability along the grasped object boundary.

In the case of three-finger hands, the existing caging algo-
rithms impose some constraint on the finger formations. Er-
ickson et al. [18] attempted to generate small caging regions
localized around three particular edges of the grasped polygon.
Subsequent work by Vahedi and van der Stappen [15] was able
to compute all three-finger caging grasps, provided that two fin-
gers are held fixed as base fingers. Wan [19], [20] considered
efficient numerical computation of three-finger cage formations
with fixed base fingers. Wan [21] also proposed the topolog-
ical enumeration of the hand’s configuration-space boundary
components, in order to efficiently report when a candidate fin-
ger formation forms a cage about a given object. Having three
as well as higher number of fingers in mind, Pipattanasom-

2377-3766 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Ben-Gurion University of the Negev. Downloaded on December 03,2023 at 08:15:41 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-2914-1889
https://orcid.org/0000-0002-8270-6167
https://orcid.org/0000-0002-0850-7637
https://orcid.org/0000-0001-9557-301X
mailto:hallelb@technion.ac.il
mailto:rimon@technion.ac.il
mailto:yoavgolan1@gmail.com
mailto:ashapiro@bgu.ac.il

3272 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 3, NO. 4, OCTOBER 2018

Fig. 2. An equilateral triangle formation allows only four discrete immobiliz-
ing grasps of the object B (blue triangles). This letter considers arbitrary triangle
finger formations, which allow a vast choice of immobilizing grasps.

porn et al. [22] recently proposed to use dispersion functions to
compute cage formations as a convex optimization problem.
While their method is highly useful for the general caging prob-
lem, it is less suited for reaching a specific target immobilizing
grasp, since it unnecessarily computes all possible caging re-
gions surrounding a given object.

Motivated by the need to formulate caging algorithms that
will lead to pre-specified grasps [5], we recently showed how
the contact space approach can be extended to three-finger hands
that maintain equilateral triangle finger formations. In [23] we
laid the theoretical groundwork, while in [24] we validated our
work with a real robot hand and added significant computational
improvements. However, equilateral formations require finger
placement at very specific grasp points, which greatly restricts
the usefulness of such three-finger formations (see Fig. 2). To
overcome this limitation, this letter extends the contact space
approach to three-finger hands which maintain completely gen-
eral triangular formations during the caging-to-grasping pro-
cess. This introduces great flexibility by allowing selection
of the finger formation according to any desired immobiliz-
ing grasp, which forms an arbitrary triangle, while enforcing
a structured hand closing process well suited for minimalistic
robot hands. Based on convex decomposition techniques in-
troduced by [15] and [22], we describe an O(n3 log n) caging
algorithm, where n is the number of edges of the object to be
grasped by the robot hand.

The letter introduces in Section II the three-finger caging
problem. Section III provides background on the representa-
tion of cage formations in the hand’s 4D configuration space.
Section IV describes the three-finger hand’s contact space.
Section V describes the caging graph which is constructed in
the hand’s contact space. Section VI presents the caging graph
search algorithm. Section VII provides a detailed example of
how the caging graph can be used for grasping real objects
with three disc fingers. The conclusion discusses extension of
the caging algorithm to four-finger hands for grasping objects
with parallel edges, as well as future extension to 3D grasps.
The letter is accompanied by a video clip demonstrating caging
experiments with the hand of Fig. 1, as well as a MATLAB
implementation of the algorithm [25].

II. THE THREE-FINGER CAGING PROBLEM

Consider the caging of a polygonal object B using a robot
hand comprised of a rigid palm, and three finger mechanisms
attached to the palm (Fig. 1(a)). The hand is modeled by a palm
frame, FP , that can freely translate and rotate in R2, whose
configuration is specified by q = (d, θ)∈R2×S (Fig. 1(b)). The
three point fingers are modeled as the vertices of a variable size
triangle which is fixed to the palm frame. The hand’s configura-
tion is thus specified by the palm’s position and orientation, the
hand’s triangular shape, and the hand’s size, as next described.

The fingers are labeled in counterclockwise order. Finger 1
coincides with the origin of FP , while Finger 2 is located along
the positive x-axis of FP (Fig. 1(b)). The distance between
Fingers 1 and 2 is specified by a scalar parameter, σ≥0, which
will serve as the scale or size of the three-finger formation. The
position of Finger 3 relative to Fingers 1 and 2 determines the
hand’s shape. In order to specify the hand’s shape regardless of
the hand’s size, the following shape parameters are used.

Definition 1: The inter-finger shape parameters are the an-
gles, φ=(φ1 , φ2), of the palm frame unit vectors that start at
Fingers 1 and 2 and point toward Finger 3 (Fig. 1(b)).

The hand’s shape parameters, φ = (φ1 , φ2), are initially de-
termined from a user specified target immobilizing grasp, and
remain fixed throughout the grasping process. Hence, the ensu-
ing description of contact space will assume that φ = (φ1 , φ2) is
fixed. To ensure that the fingers are always arranged in counter-
clockwise order, the inter-finger shape parameters are defined
for 0< φ1 , φ2 <π. The pair (q, σ)∈R4 is allowed to change
during the grasping process, thus enabling the hand to open and
close monotonically according to the scalar parameter σ. Note
that σ was chosen as the distance between Fingers 1 and 2 for
convenience. Any other convex function of the finger place-
ments could have been chosen instead.

The object B is assumed to be a rigid polygon that can freely
translate and rotate in R2. The fingers are assumed to interact
with B through frictionless contacts. When B is held by either
two or three fingers such that it cannot move relative to the
fingers, it is said to be immobilized by the fingers. This letter fo-
cuses on squeezing grasps, where the fingers press toward each
other in order to immobilize the object B. When B has some
bounded mobility between the stationary fingers but cannot es-
cape to infinity, it is said to be caged by the fingers.

Every immobilizing grasp of B is surrounded by caging re-
gions. When the fingers are placed in these regions such that the
formation scale is kept below some critical value, σ≤σmax, the
object will be caged by the fingers. Starting at such a cage and
monotonically decreasing σ will lead to an immobilizing grasp
of B, while the object remains caged throughout this process.
The three-finger caging problem considered here is to compute
the critical caging grasp which allows the object to escape the
hand, while maintaining the specified hand shape. The critical
finger opening at this grasp, σmax, is then used to determine the
caging regions which form the output of the three-finger caging
problem.

III. REPRESENTATION OF CAGES IN THE HAND’S

CONFIGURATION SPACE

A. The Free C-Space Boundary

The configuration space or c-space of a three-finger hand
is the tuple (q, σ, φ)∈R6 . A fixed-φ finger formation corre-
sponds to the four-dimensional slice in the hand’s c-space,
Cφ = (q, σ)∈R4 . When the object B lies stationary in R2, it
forms an obstacle from the hand’s perspective. The object in-
duces a c-space obstacle in Cφ for each of the three fingers. The
union of the c-space obstacles is denoted CBφ . The hand’s free
c-space, Fφ , is the complement of CBφ ’s interior. The boundary
of Fφ , denoted bdy(CBφ), consists of all hand configurations at
which one or more fingers contact B’s boundary. It consists of
single-finger, two-finger and three-finger contact submanifolds.
Of particular interest are the two-finger contact submanifolds,
together with their intersection curves along the three-finger
contact submanifolds, defined next.

Authorized licensed use limited to: Ben-Gurion University of the Negev. Downloaded on December 03,2023 at 08:15:41 UTC from IEEE Xplore. Restrictions apply.

BUNIS et al.: CAGING POLYGONAL OBJECTS USING FORMATIONALLY SIMILAR THREE-FINGER HANDS 3273

Definition 2: The three-finger hand’s contact submanifold,
denoted Sφ , is the union of the submanifolds of bdy(CBφ)
associated with all hand configurations, (q, σ), at which at least
two fingers contact the stationary object B.

B. C-Space Representation of Cage Formations

At an immobilizing grasp of B, (q0 , σ0)∈Sφ , the point q0 is
completely surrounded by the c-obstacles in the σ0-slice of Cφ .
A small increase of σ above σ0 causes the c-obstacles to move
away from each other, forming a bounded free c-space cavity
in the corresponding fixed-σ slice in Cφ . This cavity allows the
fixed-σ hand to locally move in a bounded neighborhood of the
immobilizing grasp, while B is kept stationary.

Further increasing σ causes the cavity to expand until eventu-
ally a puncture point appears on its boundary. At this instant, the
puncture point might connect the cavity to an adjacent cavity
associated with a different immobilizing grasp of B, thus being
an intermediate puncture point, or can connect the cavity to in-
finity, in which case it represents the escape puncture point with
critical value σmax. The latter puncture point will be denoted
(q1 , σ1)∈Sφ , where σ1 = σmax. Note that both immobilizing
and puncture grasps are feasible equilibrium grasps of B. At
these grasps the finger forces directed along B’s inward contact
normals apply zero net wrench on B.

Starting at an immobilizing grasp (q0 , σ0) and increasing σ up
to σ1 allows the fixed shape hand to move in the largest bounded
area in R2, while maintaining a cage around B. The three fingers
move accordingly in three bounded regions which form the
caging regions in R2. To complete the picture in terms of caging
theory, the union of the fixed-σ cavities inFφ for σ0 ≤ σ ≤ σ1 is
termed the caging set inFφ . Given a user specified immobilizing
grasp (q0 , σ0 , φ0) of the objectB, our objective is to compute the
critical hand size σ1 = σmax for the fixed hand shape φ = φ0 ,
then use it to determine the caging regions that surround the
immobilizing grasp of B.

IV. THE THREE-FINGER HAND CONTACT SPACE

The hand’s contact space parametrizes the contact subman-
ifold, Sφ , in terms of the finger contacts along the object
boundary. Contact space will be used to find an escape path
along which σ≤σmax, that starts at (q0 , σ0), passes through
(q1 , σ1), and ends at a three-finger pinching-grasp at which
σ = 0, thus reducing the caging problem from a search in R4 to
a search in contact space.

A. The Two-Finger Contact Spaces

The object boundary is parameterized by arclength in counter-
clockwise direction using the scalar parameter s∈[0, L] (see
Fig. 3(a)). Let fingers i and i + 1 contact the object boundary at
points p(si) and p(si+1), where i = 1, 2, 3 mod 3 (Fig. 3(a)). A
two-finger contact space is defined as follows.

Definition 3: Let a polygonal object B be contacted by fin-
gers i and i + 1 at p(si) and p(si+1). A two-finger contact space
is the parameterization of all two-finger contacts along the ob-
ject’s outer boundary, given by the set Ui,i+1 = [0, L]×[0, L] in
the (si, si+1) plane, where L is the perimeter of B.

A three-finger hand has three two-finger contact spaces:
U12 , U23 , and U31 . Each two-finger contact space Ui,i+1
is partitioned into rectangles, denoted Rjk , each represent-
ing all pairs of points along edges j and k of B, con-
tacted by fingers i and i + 1 respectively. The diagonal

Fig. 3. (a) The s-parameterization of the object boundary. When Fingers 1
and 2 contact the object at p(s1) and p(s2), the position of Finger 3 is uniquely
determined by the hand shape. (b) The two-finger contact space U12 , overlaid
with the contours of σ(s1 , s2) induced by the object B. Note the partition of
U12 into rectangles according to the object edge pairs.

Δi,i+1 = {(si, si+1)∈Ui,i+1 : si = si+1} represents all two-
finger pinching configurations along the object boundary.

The inter-finger distance function is defined in Ui,i+1 as
di,i+1 =‖p(si)−p(si+1)‖. The three inter-finger distances are
related to each other by the law of sines:

d12

sin φ3
=

d23

sinφ1
=

d31

sinφ2
(1)

where φ3 = φ2 − φ1 . Since the formation scale σ is equal to d12
(see Fig. 1), it can be computed as a function of the contact points
of any two fingers along the edges of B using Eq. (1) and the
inter-finger distance function, as defined next in the individual
two-finger contact spaces.

Definition 4: Let Ui,i+1 be the two-finger contact space as-
sociated with fingers i and i + 1. The formation scale function
is the scalar valued function σ : Ui,i+1→R given by

σ(si, si+1) =
sin φ3

sinφi+2
‖p(si)−p(si+1)‖

The contours of the formation scale function in Ui,i+1 are
depicted in Fig. 3(b). Note that σ(si, si+1) is non-negative and
continuous on Ui,i+1 , and attains a global minimum of zero
along the diagonal Δi,i+1 . Moreover, σ(si, si+1) forms a convex
function in the individual contact space rectangles (Fig. 3(b)).
Also note that the contours of σ(si, si+1) have identical layouts
in U12 , U23 and U31 .

B. The Third-Finger Contact Space Obstacles

When fingers i and i + 1 move along the stationary object
boundary, the third finger moves accordingly so that the chosen
hand shape, φ = φ0 , is maintained. Since the third finger may
not penetrate the stationary object B during this motion, contact
space obstacles are induced in Ui,i+1 . A graphical procedure
for constructing these obstacles is next described. The position
of finger i along an edge of B is given by:

p(si) = p0
i +

(
si−s0

i

)
tisi∈

[
s0

i , s
0
i + Li

]
(2)

where p0
i = p(s0

i) is the edge’s initial vertex, ti is the edge unit
tangent, and Li is the edge length. The position of finger i + 1
along some other edge of B is described by p (si+1). The third
finger position, denoted Xi+2 , is computed by rotating the vector
p(si+1)−p(si) about p(si), and using Eq. (1):

Xi+2(si, si+1) = p(si) + Ri,i+1
(
p(si+1)−p(si)

)

Authorized licensed use limited to: Ben-Gurion University of the Negev. Downloaded on December 03,2023 at 08:15:41 UTC from IEEE Xplore. Restrictions apply.

3274 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 3, NO. 4, OCTOBER 2018

Fig. 4. (a) The third-finger parallelogram, with non-feasible third finger po-
sitions marked by a red region inside B. (b) Applying T −1 on the red region
gives the contact space obstacle in the rectangle R1 ,4 . The contact space U31
is overlaid with all contact space obstacles induced by Finger 2.

where Ri,i+1 = sin φi + 1
sin φi + 2

Rφi
, and Rφi

is a counterclockwise
2 × 2 rotation matrix by φi radians for i = 1, 3, and by
π−φ2 radians for i = 2. Substituting for p(si) and p(si+1)
and defining �u = p0

i + Ri,i+1(p0
i+1−p0

i), �v = (I−Ri,i+1)ti ,
�w = Ri,i+1ti+1 gives:

Xi+2(si, si+1) = �u +
(
si−s0

i

)
�v +

(
si+1−s0

i+1
)

�w (3)

which is a parametrization of a parallelogram, with vertices at
�u, �u + Li�v, �u + Li+1 �w and �u + Li�v + Li+1 �w. Each parallel-
ogram is associated with a particular contact space rectangle,
Rjk , and a particular pair of fingers. The parallelograms are
next used to determine the following contact space obstacles.

Definition 5: When fingers i and i + 1 contact the stationary
object B, the contact space obstacle, denoted CBi,i+1 , con-
sists of all points (si, si+1)∈Ui,i+1 at which the third finger,
Xi+2 (si, si+1), lies within the object B.

The 2 × 2 matrix T = [�v �w] maps the rectangle Rjk to a par-
allelogram in R2 , according to Eq. (3). The contact space ob-
stacles can be computed by mapping the intersection of B and
the area enclosed by the parallelogram back to Rjk (Fig. 4):

(
si

si+1

)
=

(
s0

i

s0
i+1

)
+ T−1(Xi+2 − �u) ∈ Rjk (4)

where the point Xi+2 varies in the parallelogram in R2 . Fig. 4(b)
shows the entire collection of contact space obstacles, depicted
as black regions in U31 . Note that the obstacle layout is different
in each of the three two-finger contact spaces, and depends on
the hand shape, φ = φ0 .

Since T−1 maps lines to lines, we obtain the following prop-
erty which is the basis for the contact space approach to forma-
tionally similar three-finger hands.

Lemma 4.1: The contact space obstacles of a fixed-φ three
finger hand form polygonal regions in the two-finger contact
spaces Ui,i+1 , where i = 1, 2, 3 mod 3.

Finally consider how the two-finger contact spaces relate to
each other. The boundary curves of the contact space obstacles
consist of configurations at which all three fingers contact the
object B. These curves can be regarded as gluing seams, which
connect the two-finger contact spaces to each other. A formal
definition of the hand’s contact space follows.

Definition 6: The three-finger hand contact space, de-
noted U , is the union of the individual two-finger contact
spaces U12 , U23 and U31 , glued together along the contact
space obstacle boundaries:

U = U12 ∪ U23 ∪ U31/bdy (CBi,i+1)∼bdy (CBi+1,i+2)

Fig. 5. Equilibrium grasps of B: (a) A grasp at a vertex and an opposing edge.
(b) A grasp at two opposing vertices. (c) A grasp at parallel edges. (d) A 3-finger
immobilizing grasp at interior edge points. (e) A 3-finger immobilizing grasp at
a vertex and two edge points. (f) A 3-finger puncture grasp.

where bdy (CBi,i+1) is the contact space obstacle boundary,
and the quotient identifies the corresponding point triplets on
bdy (CB12), bdy (CB23) and bdy(CB31).

Contact space U thus consists of three two-finger contact
spaces, such that each point on a contact space obstacle bound-
ary is common to the three two-finger contact spaces. It can be
verified that contact space U is topologically equivalent (home-
omorphic) to the contact submanifold, Sφ , in the hand’s free
c-space Fφ . Hence, a search for an escape path in Sφ can be
performed in the hand’s contact space U . Note that rendering
the full contact space as in Fig. 4(b) is done only for visualiza-
tion purposes, and is not required for constructing the ensuing
caging graph.

C. Contact Space Representation of Immobilizing, Puncture
and Pinching Grasps

The points in U that correspond to immobilizing, puncture,
and pinching grasps will become nodes of the caging graph.
The following proposition characterizes the immobilizing and
puncture grasps in contact space.

Proposition 4.2 ([4]): The immobilizing and puncture
grasps of B appear respectively as local minima and saddle
points of the formation scale function σ(si, si+1) in contact
space U .

Recall from Section II that immobilizing and puncture grasps
are equilibrium grasps of B. The two-finger equilibrium grasps
of a polygonB are of three types: (1) One finger contacts a vertex
and the other contacts an opposing edge of B (Fig. 5(a)). (2) The
two fingers contact opposing vertices of B (Fig. 5(b)). (3) The
two fingers contact opposing parallel edges of B (Fig. 5(c)).
This leads to the following lemma.

Lemma 4.3 ([17]): The two-finger equilibrium grasps of B
are extremum points of σ(si, si+1), which lie at a corner point
of Rjk , or at an interior point of a bounding line of Rjk in U .

The three-finger equilibrium grasps correspond to extremum
points of σ(si, si+1), located on the boundary of the contact
space obstacles. Since σ(si, si+1) is convex in each contact
space rectangle, Rjk , it can have at most one extremum point in
the interior of each line segment along a contact space obstacle
boundary, leading to the following lemma.

Lemma 4.4: The three-finger equilibrium grasps of B are
extremum points of σ(si, si+1), which lie at a corner point of a
contact space obstacle, or at a single interior point of a bounding
line segment of a contact space obstacle in U .

Authorized licensed use limited to: Ben-Gurion University of the Negev. Downloaded on December 03,2023 at 08:15:41 UTC from IEEE Xplore. Restrictions apply.

BUNIS et al.: CAGING POLYGONAL OBJECTS USING FORMATIONALLY SIMILAR THREE-FINGER HANDS 3275

Fig. 6. (a) Part of the convex partitioning of the area surrounding the polygonal
objectB, which lies inside a third-finger parallelogram. (b) All polygonal shapes
inside the parallelogram are mapped under T −1 to polygonal shapes in the
corresponding contact space rectangle R5 ,6 . (c) The caging graph nodes in
each convex region are connected with graph edges.

The three types of three-finger equilibrium grasps are illus-
trated in Fig. 5(d)–(f). The local minimum and saddle point
of σ(si, si+1) in contact space corresponding to the grasps in
Fig. 5(d) and (f) are respectively marked by a blue circle and
a green square in Fig. 6(b). All of these extremum points will
become nodes of the caging graph.

Finally consider the pinching configurations in U . When the
hand maintains a fixed triangular shape, φ = φ0 , and the distance
between any two fingers approaches zero, the hand forms a
three-finger pinching configuration. The caging graph escape
nodes will be located on the two-finger diagonals, Δi,i+1 , which
form part of the boundary of the c-obstacle CBi,i+1 (Fig. 4(b)).
At these nodes the three fingers are pinched together, and the
hand can escape to infinity.

V. THE CAGING GRAPH OF A THREE-FINGER HAND

This section describes the caging graph, used for finding an
escape path in the hand’s contact space U . The construction of
the graph will be described in two stages: (1) the nodes and edges
which are embedded inU , and (2) the tunnel edges which ensure
equivalence between the graph and the hand’s free c-space Fφ .

A. The Contact Space Caging Graph

The caging graph will be computed incrementally according
to the contact space rectangles explored during the search for
the escape path. For computational efficiency, the complement
of the contact space obstacles in each rectangle Rjk will be
partitioned into convex regions. To this end, the workspace sur-
rounding the object B within a large enough rectangle is first
partitioned into convex regions (Fig. 6(a)). We achieve this with
an O(n log n) constrained Delaunay triangulation [26], which
gives n + 4 triangles, where n is the number of object edges.
The inverse mapping T−1 is then applied to the induced convex
partition of the area enclosed by the parallelogram correspond-
ing to each Rjk , as was done for the contact space obstacles, to
obtain the convex regions in Rjk (Fig. 6(a) and (b)). Note that if
a contact space rectangle contains no obstacle, there is no need
to partition it into convex regions, since the rectangle already
forms a convex region. The caging graph, denoted G(V,E), is
defined as follows.

Definition 7: The nodes of G(V,E) are (1) the vertices of
each convex region in an explored contact space rectangle Rjk ,
and (2) the extremum points of σ(si, si+1) along the edges of
these convex regions. The edges of G are linear segments that
connect all node pairs in each of the convex regions of Rjk .

By construction, all the extremum points of the formation
scale function σ(si, si+1) in each Rjk are nodes of G. Such

extremum points represent equilibrium grasps of B. The nodes
of G also include escape nodes located at corners of Rjk when
j = k, as well as single nodes along the common edges of neigh-
boring convex regions in Rjk (Fig. 6(b)). Computation of the
caging graph nodes: Consider a contact space rectangle Rjk

in a two-finger contact space Ui,i+1 . To compute the nodes at
the vertices of the convex regions in Rjk , the intersection of the
Delaunay triangulation with the parallelogram corresponding
to Rjk in R2 is first computed. The area of intersection of a
triangle and a parallelogram can be computed in constant time,
and has at most seven vertices and edges [27]. Hence, the in-
tersection of all O(n) triangles with the parallelogram requires
O(n) steps. The vertices of the areas of intersection are then
mapped to Rjk using Eq. (4), to serve as nodes marked as red
dots in Fig. 6(b).

Next consider the computation of the single extremum point
of σ(si, si+1) in the interior of each edge of a convex region in
Rjk . Let �s1 and �s2 be the endpoints of a convex region edge
in Rjk . The edge is parameterized as l(λ) = �s1 + λ(�s2−�s1)
= �s1 + λΔ�s for λ∈[0, 1]. Let l(λcrit) denote the extremum
point of σ(si, si+1) along l. Since σ(si, si+1) is a convex func-
tion in each Rjk , its extremum points are the same as the ex-
tremum points of σ2(si, si+1). Using Eq. (2), we can write the
formation scale function as: σ(si, si+1) = ρ‖A�s +�b‖, where
ρ = sin φ3

sin φi + 2
, A = [ti −ti+1], and �b = p0

i −p0
i+1−A�s0 , where

�s0 = (s0
i , s

0
i+1). The gradient ∇σ2(si, si+1) = 2ρ2AT (A�s +

�b) at l(λcrit) must be perpendicular to the edge. Hence
∇σ2(si, si+1)|�s= l(λc r i t) · Δ�s = 0, or equivalently:

λcrit = −
Δ�sT AT

(
A�s1 +�b

)

Δ�sT AT AΔ�s
(5)

If λcrit∈(0, 1), then l(λcrit) is an extremum point within the
edge, and it serves as a node (see green dots in Fig. 6(b)).
Note that each node of the caging graph belongs to at least two
neighboring convex regions in U . Note too that nodes on the
boundary of the contact space obstacles are three-finger nodes.
The value of si+2 at these nodes can be computed using Eqs. (2)
and (3) to obtain: si+2 = s0

i+2 + ti+2 · (�u−p0
i+2 + T (�s−�s0)).

Once the nodes of a convex region are computed, all node pairs
are connected with graph edges (Fig. 6(c)). Each convex region
contains up to 14 nodes, and therefore a constant number of
edges. Since eachRjk contains O(n) convex regions, it contains
O(n) graph nodes as well as O(n) graph edges. Hence, the
caging graph might contain O(n3) nodes and O(n3) edges.

The relation of the caging graph to the sublevel structure of
the formation scale function σ(si, si+1) in U is next examined.
The notation σ(v) will denote the formation scale value at the
point in U represented by the node v.

Definition 8: Let G(V,E) be the caging graph over contact
space U . For each c ≥ 0, a c-sublevel subgraph of G, denoted
Gc(Vc, Ec), is the subgraph of G whose nodes are given by
Vc = {v∈V : σ(v) ≤ c}.

The following theorem asserts that the caging graph captures
the σ(si, si+1) sublevel structure of contact space U .

Theorem 1: The caging graph G(V,E) captures the sublevel
structure of U : there exists a contact space path in U between
two nodes of G, v1 and v2 , lying entirely in a c-sublevel set of
σ(si, si+1) in U iff there exists a caging graph path between v1
and v2 which lies entirely in a c-sublevel subgraph of G(V,E).

Authorized licensed use limited to: Ben-Gurion University of the Negev. Downloaded on December 03,2023 at 08:15:41 UTC from IEEE Xplore. Restrictions apply.

3276 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 3, NO. 4, OCTOBER 2018

Fig. 7. Caging graph augmentation procedure. (a) The hand configuration is
represented by the non-feasible local minimum node v1 in U , with σ(v1). (b)
While Finger 1 maintains contact and the hand orientation remains fixed, σ is
decreased until Finger 3 contacts the object. This hand configuration corresponds
to a point u in a convex region of a contact space rectangle. (c) A node v2 that
satisfies σ(v2) ≤ σ(v1) and is in the same convex region is found, and the
tunnel edge (v1 , v2) is added to E .

Proof: Given a contact space path between two nodes of
G, the path can be partitioned into segments according to the
convex regions it passes through in each contact space rectangle
Rjk . Both endpoints of each path segment are first extended
along the convex region’s bounding lines they intersect, in the
directions along which σ(si, si+1) decreases, until graph nodes
are reached. The extended path segment is then replaced by a
graph edge, which by convexity of σ(si, si+1) in eachRjk is not
higher than its two endpoints. The contact space path can thus
be replaced by a piecewise linear path, which passes between
nodes of G and lies in the same sublevel set of σ(si, si+1) in U .
Conversely, any caging graph path between two nodes of G is
also a contact space path, which lies in the same sublevel set of
σ(si, si+1) in U .

B. The Augmented Caging Graph

A search for an escape path in G is valid only if it yields the
same result as a search in the hand’s full free c-space Fφ . The
caging graph G is sublevel equivalent to U , and U is homeomor-
phic to the contact submanifold Sφ . Hence, to ensure the same
result, sublevel equivalence between Sφ and the ambient space
Fφ in terms of connectivity must be established. For each c ≥ 0,
let Fc = {(q, σ)∈Fφ : σ ≤ c} be the sublevel set of free con-
figurations in the hand’s free c-space Fφ . Sublevel equivalence
between Sφ and Fφ is defined next.

Definition 9: The contact submanifold Sφ and the ambient
free c-space Fφ are said to be sublevel equivalent in terms of
connectivity if for each c ≥ 0, in each connected component of
Fc the subset Fc ∩ Sφ is also connected.

Consider the projection function π(q, σ) = σ, which maps
the fixed-φ hand’s configuration (q, σ) to the formation scale
σ. Sublevel equivalence between Sφ and the ambient space Fφ

breaks when local minima of the restriction of π(q, σ) to Sφ

are not local minima of π(q, σ) in the ambient space Fφ . These
local minima correspond to grasps at which the hand can close
without penetrating the object, termed non-feasible equilibrium
grasps (Fig. 7(a)). Since Sφ and U are homeomorphic, such
configurations correspond to non-feasible minima of σ(si , si+1)
in U . To ensure sublevel equivalence of Sφ with Fφ , a graph
node at a non-feasible local minimum of σ(si, si+1) in U must
be connected to a node in a lower c-sublevel subgraph of G
by a tunnel edge, which represents a σ-decreasing path in the
ambient free c-space Fφ . The caging graph G augmented with
tunnel edges is denoted G(V,E). The augmentation procedure
is illustrated in Fig. 7.

Each contact space rectangle contains at most one non-
feasible minimum of σ(si, si+1), which generically occurs at

a two-finger grasp. Identifying a node at such a minimum
and augmenting G with the corresponding tunnel edge in-
volves: checking which of the two contacting fingers can be
detached from the object, performing two ray shootings equiv-
alent to closing the hand to find the first contact point of the
contracted fingers with the object, then locally expanding the
caging graph, and finally connecting the non-feasible mini-
mum of σ(si, si+1) with a node located in the same convex
region as the point that is reached in contact space when the
hand closes. This requires O(n) steps per contact space rect-
angle, and might require a total of O(n3) steps for all tunnel
edges in U .

VI. THE CAGING GRAPH SEARCH ALGORITHM

The augmented caging graph G(V,E) is sublevel equivalent
to the free c-space Fφ . Hence, a search for an escape path along
the edges of G(V,E) will give the same result as a search in
Fφ . The caging problem, i.e., the search for an escape path,
is thus reduced to a simple graph search. The search is based
on the following intuitive notion. The formation scale function
σ(si, si+1) can be considered as a potential energy function.
Opening the hand while at least two fingers maintain contact
with the object requires an increase of energy. The caging algo-
rithm can therefore be considered as a search for a path which
connects one of the potential energy function’s local minima (the
initial immobilizing grasp) to its global minimum set Δ (com-
prised of all pinching configurations), while passing through
the saddle point which requires the least increase in energy (the
escape puncture grasp).

The search procedure, summarized below as the I-CAGE al-
gorithm, requires as input the n vertices of the polygonal object
B and the target immobilizing grasp (q0 , σ0 , φ0), which serves
as the initial hand configuration in the search. The algorithm uses
two node lists: the open list O which holds the explored nodes,
and the closed list C which holds the escape path nodes. The
procedure starts by initializing the data structures with the target
immobilizin grasp. Then, each search iteration is comprised of
two stages: (1) Locally expanding the caging graph. This stage
is performed only if the current node lies in a contact space rect-
angle which was not explored, and requires O(n) computation
steps. (2) Searching the caging graph for the next escape path
node. This stage is performed at each search iteration, and in-
volves adding the unexplored neighbor nodes of the current node
to the open list, and finding the node with minimal σ-value in the
updated list. Since contact space is partitioned into convex re-
gions, each graph node can have at most Vmax neighboring nodes,
where Vmax is a constant. If contact space is fully explored, the
caging algorithm requires O(n3) search iterations for the O(n3)
graph nodes, while sorting the open list requires O(n3 log n)
steps. The I-CAGE algorithm thus requires O(n3 log n)
computation steps.

Once the search ends, the local maxima of the plot of σ(v)
for v∈C versus the search iteration number correspond to all
intermediate and escape puncture grasps of B, where the es-
cape grasp has the maximal value of σmax. The local minima
correspond to neighboring immobilizing grasps along the ob-
ject boundary. Beyond σmax, the cage surrounding the object is
broken and the object can escape the hand to infinity. Once the
escape puncture grasp has been computed, the caging regions
can be rendered as 2D regions [23], as next illustrated with an
execution example.

Authorized licensed use limited to: Ben-Gurion University of the Negev. Downloaded on December 03,2023 at 08:15:41 UTC from IEEE Xplore. Restrictions apply.

BUNIS et al.: CAGING POLYGONAL OBJECTS USING FORMATIONALLY SIMILAR THREE-FINGER HANDS 3277

Fig. 8. Execution example of the I-CAGE algorithm on the three-finger caging example (see text). Magnification by zooming is recommended for viewing.

I-CAGE: Incremental Caging Graph Search Algorithm.
Input: n vertices of B, target immobilizing grasp
(q0 , σ0 , φ0).
Data Structures: open list O, closed list C, node set V ,
edge set E, boolean matrix of explored contact space
rectangles Mn×n×3 .
Initialization: O = ∅, C = ∅, V = ∅, E = ∅, M = 0.
Partition the area surrounding B in R2 into convex regions.
Identify a contact space rectangle Rjk in a two-finger
contact space Ui,i+1 that contains the point p
corresponding to (q0 , σ0).
Function: ExploreRectangle([j, k],Ui,i+1) {

Compute all graph nodes and edges in Rjk , add them
to V and E, and set M(j, k,Ui,i+1) = 1 }

Set the node at p as the current node v, and mark v as
explored.
Search procedure:
while σ(v)>0 do /* while no pinching grasp was reached */

Stage I – Contact space exploration:
Find the unexplored rectangles Rjk containing v.
for each Rjk do

ExploreRectangle ([j, k],Ui,i+1)
end for
if v is a non-feasible local minimum of σ(si, si+1) in U
then:

Compute the point u in U that the fingers will reach
when the hand closes.
Identify a contact space rectangle Rjk in a
two-finger contact space Ui,i+1 which contains u.
ExploreRectangle([j, k],Ui,i+1)
Identify a node w with σ(w) ≤ σ(v) in the convex
region containing u, and add the tunnel edge (v,w)
to E.

end if
Stage II - Local caging graph search:
Add the unexplored neighboring nodes of v to O,
sorted by σ values, and mark these nodes as explored.
Transfer v to the end of C.
Select the node with minimal σ-value in O as the
current node v.

end while /* v is now an escape node */
Transfer v to the end of C.
Return: closed list C containing the escape path nodes.

VII. THREE-FINGER CAGING-TO-GRASPING EXAMPLE

Consider grasping the pliers depicted in Fig. 8(a), using three
identical disc fingers. We demonstrate how the I-CAGE algo-
rithm, which is available as a MATLAB implementation [25],
is used for this purpose.

A. Target Immobilizing Grasp Selection

The I-CAGE algorithm requires as input the vertices of a
polygonal object and a target immobilizing grasp. The vertices
of B are obtained by computing the Minkowski sum of the pli-
ers’ outline with a disc whose diameter is equal to the fingers’
radius. The resulting object is then approximated by a poly-
gon, B, and the center of each disc finger serves as a point
finger (Fig. 8(a)). Increasing the number of edges used for the
polygonal approximation will yield a more accurate result of
the algorithm, with increased computational cost.

We next describe a graphical method to determine all three-
finger immobilizing grasps of B. Recall that any immobilizing
grasp must form a feasible equilibrium grasp of B: the inward
pointing contact normals must positively span R2 , and the lines
underlying the normals must intersect at a common point. More-
over, if only edges and concave vertices of B are contacted, such
equilibrium grasps are immobilizing grasps [3]. Let each polyg-
onal edge or vertex and its corresponding (generalized) con-
tact normal define a semi-infinite sector. Feasible three-finger
equilibrium grasps exist when three semi-infinite sectors have
a common area of intersection, and the three contact normals
positively span R2 . If no two of the three contact normals are
anti-parallel (the generic case), the orthogonal projection of any
point in the area of intersection onto the three edges or vertices
automatically defines the three contact points of a feasible three-
finger equilibrium grasp of B. Otherwise, the lines underlying
the contact normals that support a two-finger equilibrium grasp
partition the area of intersection into subsets. Each subset can
be sampled at a single point to check whether the contact nor-
mals positively span R2 . If they do, any point within the subset
defines a feasible three-finger equilibrium grasp of B. Hence,
there exists a huge selection of three-finger immobilizing grasps
of the polygon B.

B. Search Algorithm Execution

The immobilizing grasp in Fig. 8(a), with φ0≈(33◦, 130◦),
was selected as the target grasp. Fig. 8(c)–(e) show the three
two-finger contact spaces associated with B, and the hand shape
φ0≈(33◦, 130◦). The initial node corresponding to the target
three-finger immobilizing grasp is marked as a blue point in
each of the three contact spaces. The I-CAGE algorithm was
used to compute the corresponding escape puncture grasp. Af-
ter the I-CAGE algorithm was executed, the caging graph edges
in the explored contact space rectangles were marked in red, the
nodes that remained in the open list O were marked in cyan,
and the escape path nodes in the closed list C were marked
in magenta. The node corresponding to the escape puncture
grasp, which forms a three-finger equilibrium grasp, is marked
as a green box in each of the three contact spaces (please zoom).
Note that the caging graph includes one tunnel edge, marked

Authorized licensed use limited to: Ben-Gurion University of the Negev. Downloaded on December 03,2023 at 08:15:41 UTC from IEEE Xplore. Restrictions apply.

3278 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 3, NO. 4, OCTOBER 2018

in green in Fig. 8(e). The resulting escape puncture grasp, and
the corresponding three caging regions, are shown in Fig. 8(b).
The pliers are caged when each finger remains in its caging
region, such that σ < σmax. Starting from any caging configura-
tion and decreasing σ to σ0 while φ = φ0 will lead to the target
immobilizing grasp, under huge uncertainty in the initial finger
placements.

VIII. CONCLUSION

The letter considered caging polygonal objects using three-
finger hands which maintain similar triangle formations. While
the hand’s configuration space is four dimensional for a given
hand shape (i.e., fixed φ = (φ1 , φ2)), the letter presented a
caging algorithm that can be implemented in the hand’s two-
dimensional contact space U . Contact space contains obsta-
cles which represent forbidden third-finger positions when two
fingers contact the grasped object’s boundary. After partition-
ing the obstacles’ complement into convex regions in contact
space, the letter defined a caging graph, G, whose nodes include
all extremum points of the formation scale function σ(si,si+1)
along the bounding lines of the convex regions, as well as all
corner points of these regions. The caging graph edges con-
sist of line segments that connect all node pairs in each convex
region, as well as tunnel edges which connect local minima
of σ(si,si+1) that represent non-feasible equilibrium grasps.
The caging graph is sublevel equivalent to the hand’s free c-
space Fφ . Hence, starting from any immobilizing grasp (which
forms a triangle), the caging graph is incrementally searched for
the intermediate puncture grasps as well as the final puncture
grasp through which the object can escape to infinity. Moreover,
the search process can be intuitively observed as motion of the
fingers along the grasped object boundary. Finally, the escape
grasp computed by the search algorithm determines the caging
regions surrounding the desired immobilizing grasp.

The following extensions are currently under investigation.
While three disc fingers can immobilize all polygonal objects
without parallel edges, they cannot safely immobilize objects
such as rectangles. To immobilize such common objects, a
fourth finger must be used, or one of the fingers must be con-
cave at the contact point. The contact space approach can be
easily extended to four-finger hands which maintain similar
quadrilateral formations, by constructing the caging graph in
six two-finger contact spaces of all finger pairs. Alternatively,
we are considering variable curvature fingertip designs, that will
be able to safely immobilize objects with parallel edges using
three-finger hands. A more important challenge concerns 3D
caging-to-grasping. We are currently adapting the contact space
approach to four-finger hands, that will be able to cage and then
grasp 3D objects using tetrahedral finger formations.

REFERENCES

[1] S. B. Backus and A. M. Dollar, “An adaptive three-fingered prismatic
gripper with passive rotational joints,” IEEE Robot. Autom. Lett., vol. 1,
no. 2, pp. 668–675, Jul. 2016.

[2] R. D. Howe, A. M. Dollar, and M. Claffee, “Robots get a grip,” IEEE
Spectr., vol. 51, no. 12, pp. 42–47, Dec. 2014.

[3] E. Rimon and J. W. Burdick, “New bounds on the number of frictionless
fingers required to immobilize planar objects,” J. Robot. Syst., vol. 12,
no. 6, pp. 433–451, 1995.

[4] E. Rimon and A. Blake, “Caging planar bodies by 1-parameter two-
fingered gripping systems,” Int. J. Robot. Res., vol. 18, no. 3, pp. 299–318,
1999.

[5] A. Rodriguez, M. T. Mason, and S. Ferry, “From caging to grasping,” Int.
J. Robot. Res., vol. 31, no. 7, pp. 886–900, 2012.

[6] J. Mahler, F. T. Pokorny, Z. McCarthy, A. F. van der Stappen, and K.
Goldberg, “Energy-bounded caging: Formal definition and 2-D energy
lower bound algorithm based on weighted alpha shapes,” IEEE Robot.
Autom. Lett., vol. 1, no. 1, pp. 508–515, Jan. 2016.

[7] A. Varava, D. Kragic, and F. T. Pokorny, “Caging grasps of rigid and
partially deformable 3-D objects with double fork and neck features,”
IEEE Trans. Robot, vol. 32, no. 6, pp. 1479–1497, Dec. 2016.

[8] R. R. Ma, W. G. Bircher, and A. M. Dollar, “Toward robust, whole-hand
caging manipulation with underactuated hands,” in Proc. IEEE Int. Conf.
Robot. Autom., 2017, pp. 1336–1342.

[9] Z. Wang and V. Kumar, “Object closure and manipulation by multiple
cooperating mobile robots,” in Proc. IEEE Int. Conf. Robot. Autom., 2002,
pp. 394–399.

[10] G. Pereira, M. Campos, and V. Kumar, “Decentralized algorithms for
multi-robot manipulation via caging,” Int. J. Robot. Res., vol. 23, no. 7-8,
pp. 783–795, 2004.

[11] A. Sudsang, F. Rothganger, and J. Ponce, “Motion planning for disc-
shaped robots pushing a polygonal object in the plane,” IEEE Trans.
Robot. Autom., vol. 18, no. 4, pp. 550–562, Aug. 2002.

[12] W. Wan, B. Shi, Z. Wang, and R. Fukui, “Multirobot object transport
via robust caging,” IEEE Trans. Syst., Man, Cybern., Syst., 2017, to be
published.

[13] D. Hirano, H. Kato, and N. Tanishima, “Caging-based grasp with flexible
manipulation for robust capture of a free-floating target,” in Proc. IEEE
Int. Conf. Robot. Autom., 2017, pp. 5480–5486.

[14] Q. M. Ta and C. C. Cheah, “Coordinative optical manipulation of multiple
microscopic objects using micro-hands with multiple fingertips,” in Proc.
IEEE Int. Conf. Robot. Autom., 2017, pp. 5870–5875.

[15] M. Vahedi and A. F. van der Stappen, “Caging polygons with two and
three fingers,” Int. J. Robot. Res., vol. 27, nos. 11/12, pp. 1308–1324,
2008.

[16] P. Pipattanasomporn and A. Sudsang, “Two-finger caging of noncon-
vex polytopes,” IEEE Trans. Robot., vol. 27, no. 2, pp. 324–333,
Apr. 2011.

[17] T. F. Allen, E. Rimon, and J. W. Burdick, “Two-finger caging of polygonal
objects using contact space search,” IEEE Trans. Robot., vol. 31, no. 5,
pp. 1164–1179, Oct. 2015.

[18] J. Erickson, S. Thite, F. Rothganger, and J. Ponce, “Capturing a convex
object with three discs,” IEEE Trans. Robot., vol. 23, no. 6, pp. 1133–1140,
Dec. 2007.

[19] W. Wan, R. Fukui, M. Shimosaka, T. Sato, and Y. Kuniyoshi, “Grasping
by caging: A promising tool to deal with uncertainty,” in Proc. IEEE Int.
Conf. Robot. Autom., 2012, pp. 5142–5149.

[20] W. Wan, R. Fukui, M. Shimosaka, T. Sato, and Y. Kuniyoshi, “A new
grasping by caging solution using eigen-shapes and space mapping,” in
Proc. IEEE Int. Conf. Robot. Autom., 2013, pp. 1566–1573.

[21] W. Wan and R. Fukui, “Efficient planar caging test using space map-
ping,” IEEE Trans. Autom. Sci. Eng., vol. 15, no. 1, pp. 278–289, Jan.
2018.

[22] P. Pipattanasomporn, T. Makapunyo, and A. Sudsang, “Multifinger caging
using dispersion constraints,” IEEE Trans. Robot, vol. 32, no. 4, pp. 1033–
1041, Aug. 2016.

[23] H. A. Bunis, E. D. Rimon, T. F. Allen, and J. W. Burdick, “Equilateral
three-finger caging of polygonal objects using contact space search,” IEEE
Trans. Autom. Sci. Eng., vol. 15, no. 3, pp. 919–931, 2018.

[24] H. A. Bunis, E. D. Rimon, Y. Golan, and A. Shapiro, “Caging polygonal
objects using equilateral three-finger hands,” IEEE Robot. Autom. Lett.,
vol. 2, no. 3, pp. 1672–1679, Jul. 2017.

[25] H. A. Bunis and E. D. Rimon, “MATLAB implementation of the
caging graph search algorithm,” 2018. [Online]. Available: https://
doi.org/10.24433/CO.7de1108c-81bf-456e-ac6c-9aba7ab652eb

[26] L. P. Chew, “Constrained delaunay triangulations,” Algorithmica, vol. 4,
no. 4, pp. 97–108, 1989.

[27] M. I. Shamos, “Computational geometry,” Ph.D. dissertation, Dept. Com-
put. Sci., Yale Univ., New Haven, CT, USA, 1978.

Authorized licensed use limited to: Ben-Gurion University of the Negev. Downloaded on December 03,2023 at 08:15:41 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

