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Abstract
This study investigated the effect of fermentation conditions (time and temperature) of sorghum

on the composition of ting, using the Doehlert design of response surface methodology (RSM).

Fermentation temperature and time were optimized and pH, titratable acidity (TTA), total viable

bacteria count (TBC), total lactic acid bacteria count (TLABC), total fungal and yeast count (TFYC),

tannin content (TNC), total phenolic content (TPC), total flavonoid content (TFC), and antioxidant

activities (AA) were determined. Experimental and predicted values obtained were similar, with

statistical indices indicating the validity of the models generated (R2 between 93.45 and 99.71%,

AAD values close to 0, Bf and Af values close to 1). Numerical multi-response optimization of

parameters suggested optimal fermentation conditions to be 34 8C for 24 hr. Physicochemical

characterization of ting samples using scanning electron microscopy (SEM), X-ray diffraction (XRD),

and Fourier Transform Infrared Spectroscopy (FTIR) showed slight changes in morphology, similar-

ity in diffraction patterns and presence of different functional groups, respectively. Results of this

study could provide information for the commercialization of quality ting.

Practical applications
Response surface methodology was used to study the influence of fermentation conditions on the

quality of ting and optimal fermentation conditions were obtained at 34 8C for 24 hr. The findings

in this study will be useful for ting processors to obtain a product with maximal beneficial composi-

tion and traits.

1 | INTRODUCTION

Sorghum is an important cereal crop and major source of food for mil-

lions of people. Sorghum like other cereals is transformed into edible

forms using fermentation, known to enhance nutritional qualities, shelf

life, bioavailability of nutrients, palatability, beneficial health promoting

components, and consumer appeal (Adebiyi, Obadina, Adebo, & Kayi-

tesi, in press; Taylor & Duodu, 2015).

Ting, is a fermented sorghum product commonly consumed in

Botswana, South Africa, and other neighboring countries. It is known

for its sour taste and unique flavor and it is used as a weaning food for

infants as well as consumed during ceremonies (Sekwati-Monang &

Gänzle, 2011). Different fermentation conditions for the preparation of

ting have been reported in the literature (Madoroba et al., 2009;

Sekwati-Monang & Gänzle, 2011), with variations in their fermentation

process, which have no available standardized or optimized conditions.

A widely accepted optimization procedure is response surface

methodology (RSM), which is a collection of statistical and mathemati-

cal methods for obtaining the optimum conditions of factors for

desirable responses. The Doehlert design of RSM are easily applied to
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optimize variables more effectively as they have the ability to explore

the whole of an experimental domain (Ferreira, dos Santos, Quintella,

Neto, & Bosque-Sendra, 2004).

Scanning electron microscopy (SEM), X-ray diffraction (XRD), and

Fourier transform infrared spectroscopy (FTIR) are techniques that can

be used to study and understand the morphology, composition and

possible structural changes during food processing. The use of such

techniques can provide substantial information and have been used for

fermented foods (Adebiyi, Obadina, Mulaba-Bafubiandi, Adebo, & Kayi-

tesi, 2016; Amadou, Gounga, Shi, & Le, 2014). Few studies have been

presented in the literature on characterizing the microbiota and selected

chemical properties of ting (Madoroba et al., 2009, 2011; Sekwati-

Monang & Gänzle, 2011). To our knowledge, none of these studies

have optimized fermentation variables and subsequently investigated

their effects on the composition and physicochemical properties of ting.

Hence, this study focused on optimizing fermentation parameters (time

and temperature) of ting and evaluating their physicochemical proper-

ties and microstructure.

2 | MATERIALS AND METHODS

2.1 | Raw material and sample preparation

Sorghum (Sorghum bicolor L.) grain cultivar (Titan) was purchased from

Agricol (Pty) Ltd., Potchefstroom, South Africa. The sorghum grains

were milled using a Perten Laboratory Mill 3600 (Perten Instruments,

Sweden) and passed through a 2 mm aperture size sieve (Analysette 3

Spartan, Fritsch, Germany) to obtain the flour.

2.2 | Fermentation of ting

Sorghum flour was processed into ting by mixing sterile distilled water

(40 8C) and the sorghum flour (1:1, w/v). The mixture was subsequently

allowed to spontaneously ferment by endogenous microflora. For each

experimental run, the fermentation process was done in triplicate.

2.3 | Optimization of ting production process

A response surface methodology (RSM) using the Doehlert design was

used to model and optimize the effect of fermentation parameters on

the parameters investigated. The independent variables were fermen-

tation time (X1) and fermentation temperature (X2), with intervals of

24–72 hr and 20–34 8C respectively. The selection of the parameter

levels was based on other studies in the literature on the production of

ting (Madoroba et al., 2009; Sekwati-Monang & Gänzle, 2011). The

two-factor Doehlert design gave a total of eight experimental runs

(Supporting Information Table 1). Nine parameters including pH (Y1),

total titratable acidity (TTA, Y2), total bacteria count (TBC, Y3), total lac-

tic acid bacteria count (TLABC, Y4), total fungal and yeast count (TFYC,

Y5), tannin content (TNC, Y6), total phenolic content (TPC, Y7), total

flavonoid content (TFC, Y8), and antioxidant activity (AA, Y9) were

investigated.

Mathematical models describing the relationship between the pro-

cess variables in terms of their linear, quadratic and interactive effects

used were described by a second-order polynomial equation presented

in Equation (1).
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where Y is the response, xi and xj are factors, b0 the constant, bi, bii,

and bij the coefficients of linear, quadratic and interaction terms,

respectively. The response surfaces were subsequently represented

with model equations and respective coefficients obtained using Mini-

tab 16 statistical software (Minitab Lt. Coventry, UK).

2.4 | Model validation

The different statistical parameters utilized in validating the adequacy

of the models generated, were average absolute deviation (AAD), bias

factor (Bf), and accuracy factor (Af) (Equations (2)–(4)), respectively, as

well as the coefficient of determination (R2).
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2.5 | pH and TTA

At the end of each fermentation process, pH of the ting was measured

using a pH meter (pH 510, Eutech Pte Ltd, Singapore). Titratable acidity

was determined by titrating a mixture of 2 g of ting sample and 20 ml

distilled water against 0.1 N NaOH, using phenolphthalein as an indica-

tor, the TTA was expressed in g of tartaric acid/kg sample.

2.6 | Estimation of viable microbial counts

For viable microbial counts, 1 g of the respective ting sample was

added to 9 ml sterile distilled water and vortexed. Counts were deter-

mined by surface plating tenfold serial dilutions of ting sample on plate

count agar (Oxoid, South Africa), potato dextrose agar (Merck, South

Africa), and MRS agar (Sigma Aldrich, Germany) in petri dishes for bac-

terial (TBC), fungal and yeast (TFYC) and lactic acid bacteria (LAB)

counts, respectively (Madoroba et al., 2011; Njobeh et al., 2009;

Nyambane, Thari, Wangoh, & Njage, 2014). Plates were incubated

(IncoShake, Labotec, South Africa) at 30 8C for 72 hr for TBC, 25 8C for

120 hr for TFYC, and anaerobically at 35 8C for 72 hr for TLABC.

2.7 | Tannin content, total phenolic content, total

flavonoid content, and antioxidant activity assay

2.7.1 | Extraction

To a 0.3 g of freeze-dried milled ting sample, 10 ml of acidified metha-

nol (1% HCl in methanol) was added in a centrifuge tube (Kayitesi, de

Kock, Minnaar, & Duodu, 2012). The content was sealed with an
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aluminum foil, stirred for 2 hr and centrifuged at 3,500 rpm for 10 min

(Eppendorf 5702R, Merck South Africa). The supernatant was decanted

and kept while the residue was re-extracted using 10 ml acidified

methanol as earlier described. The extraction process was repeated

until a total of 30 ml acidified methanol (1% HCl in methanol) was

used. After extraction, the supernatants were pooled together and

stored at 24 8C prior to analysis.

2.7.2 | Analytical procedure

Tannin content

Using the methods of Price, Van Scoyoc, and Butler (1978), 1 ml of

extract was added to a test tube containing 5 ml of an equal volume of

8% HCl in methanol and 1% vanillin (Merck, South Africa). The result-

ing mixture was vortexed and incubated in a water bath (30 8C) for 20

min. A blank was also done repeating the earlier step but this time

using 5 ml of 4% HCl. The absorbance of the mixture was read at

500 nm using a spectrophotometer (Biomate, Thermo Spectronic,

Rochester). Catechin (Sigma Aldrich, Germany) was used as a standard

and results obtained expressed in mg catechin equivalents (CE)/g.

Total phenolic content

The TPC of the ting sample was determined according to Folin–Ciocal-

teu method as described by Ainsworth and Gillespie (2007). To 500 ml

of distilled water, 10 ml of the extract was added and reacted with 50

ml of the Folin–Ciocalteu phenol reagent (Sigma Aldrich, Germany).

This was allowed to stand in the dark for 3 min followed by the addi-

tion of 200 ml of 20% Na2CO3 (g/v) and finally 245 ml of distilled water

and mixed. The mixture (300 ml) was accurately pipetted into a 96-well

microplate, wrapped in aluminum foil and further incubated in the dark

for 30 min and absorbance read at 750 nm wavelength on a microplate

reader (iMark, Biorad, South Africa). Gallic acid (Sigma Aldrich, Ger-

many) was used as a standard and results obtained expressed in mg

gallic acid equivalents (GAE)/g.

Total flavonoid content

Using the method of Ar-Farsi and Lee (2008), TFC was determined by

mixing 30 ml of the extract with 20 ml of 36 mM NaNO2 followed by

incubation in the dark for 5 min. Thereafter, 20 ml of 94 mM AlCl3 was

added and after incubation for another 5 min (in the dark), 100 ml of

NaOH was added. The absorbance of the mixture was read at 450 nm

on a microplate reader (iMark, Biorad, South Africa). Catechin (Sigma

Aldrich, Germany) was used as a standard and data obtained were

expressed as mg CE/g.

Antioxidant activity

The free radical scavenging potential of ting sample was determined

using the ABTS modified methods of Awika, Rooney, Wu, Prior, and

Zevallos (2003) and Kayitesi et al. (2012). To 20 ml of the extract, 180

ml of ABTS free radical cation solution (equal volumes of 7 mM ABTS

and 2.45 mM K2S2O8 previously incubated for 12 hr) was added and

incubated for 5 min in the dark. Absorbance of the solution was meas-

ured at 750 nm on a microplate reader (iMark, Biorad, South Africa).

Trolox (Sigma Aldrich, Germany) was used as a standard solution and

results obtained expressed as mM trolox equivalents (TE)/g sample).

2.8 | Physicochemical characterization

For both SEM and XRD, representative samples were obtained by vigo-

rously homogenizing the freeze-dried ting samples obtained from each

experimental run prior to analysis.

2.8.1 | SEM analysis of the ting samples

The ting samples were mounted on an aluminum stub and sprayed-

coated in a carbon coater (Quorum Q150TE, Quorum Technologies,

UK). The samples were then transferred to SEM specimen chamber,

subjected to electron beam and viewed under a scanning electron

microscope under vacuum.

2.8.2 | XRD analysis of the ting samples

The ting samples were loaded into the XRD sample holder and pressed

down using a stainless steel weight. The XRD pattern of the samples

were examined using an X-ray diffractometer (Rigaku-UltimaIV, Japan)

equipped with a divergence slit, operating at 40 kV and 40 mA at a

scan speed of 18/min.

2.9 | FTIR spectroscopy and chemometric analysis

For analysis on FTIR, spectra of each triplicate fermented ting sample

were obtained in duplicates giving six spectra for each ting sample. This

was done using a FTIR spectrophotometer [Thermo Scientific Smart

iTR, (Attenuated Total Reflectance), Thermo Fisher Scientific Inc.,

United States]. Respective spectra with characteristic peaks in wave

numbers from 400 to 4,000 cm21 at 32 runs per scan were subse-

quently recorded. All the FTIR spectra were respectively pre-treated

using the following transformation techniques (i) baseline correction, (ii)

normalization, (iii) standard normal variate (SNV), (iv) smoothing using

Gaussian filter, (v) smoothing using Savitzky–Golay, and (vi) derivation

using Savitzky–Golay first derivative on Unscrambler X statistical soft-

ware version 10.4.2 (Camo software, Oslo, Norway). Principal Compo-

nent Analysis (PCA) and Cluster Analysis (CA) were subsequently done

on the same chemometric software.

2.10 | Statistical analysis

Except for FTIR, all other analyses were done in triplicate. To deter-

mine the significance of the generated models, an analysis of variance

(ANOVA) was conducted on Minitab 16 (Minitab Lt. Coventry, UK) and

differences were considered statistically significant if p� .05. Response

surface plots were obtained using Sigmaplot 12.5 (Systat Software Inc.,

California).

3 | RESULTS AND DISCUSSION

3.1 | Statistical models and validation

This study investigated the effects of independent process variables

[fermentation time (X1) and fermentation temperature (X2)] of sorghum

on the production of ting. Parameters determined were pH (Y1), TTA

(Y2), TBC (Y3), TLABC (Y4), TFYC (Y5), TNC (Y6), TPC (Y7), TFC (Y8), and
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AA (Y9) and the different models representing each provided in

Equations (5)–(13).

Y156:1820:45x120:67552x220:07500x1220:14834x22

20:24249x1x2
(5)

Y250:56510:27833x110:43014x210:34x1210:36335x22

20:04042x1x2
(6)

Y352;240;00011;150;000x112;881;062x211;110;000x12

13;190;187x221438;799x1x2
(7)

Y451;415;00011;017;000x112;083;141x21450;000x12

11;391;415x2211;557;737x1x2
(8)

Y55706;0002268;333x11680;716x21126;500x12216;168x22

1138;568x1x2

(9)

Y659:965021:9917x125:5745x220:5450x1222:7552x22

21:0335x1x2
(10)

Y7516:0624:44x127:1132x211:12x1210:7467x2210:4157x1x2

(11)

Y858:69521:1967x121:9977x211:2500x1210:9567x2210:5658x1x2

(12)

Y951:14520:035x120:05485x220:02x1210:01x2220:00577x1x2

(13)

All calculated R2 values in this study were above 90 (93.45–

99.71%) (Table 1). R2 values should be at least 80% to have a good fit

of the model and the closer it is to 100%, the better the empirical

model fits the actual data (Filli, Nkama, Jideani, & Abubakar, 2011;

Sobowale, Adebiyi, & Adebo, in press). Other parameters of predictive

models in biological systems that measure the relative deviation from

the observed (experimental) and predicted (calculated) parameters

were determined and results presented in Table 1. As observed, the

closeness of the Bf and Af to unity Equation (1)) and that of AAD to

zero indicates reasonable agreements between the predicted and

observed parameters (Desobgo, Stafford, & Metcalfe, 2015; Sobowale

et al., in press).

3.2 | pH and TTA

The pH and TTA are important biochemical parameters peculiar to fer-

mented foods. With increasing time and temperature, pH decreased

(increased acidity) with a corresponding increase in TTA (Figure 1a,b).

pH values obtained in this study were relatively higher compared with

those reported by Sekwati-Monang and Gänzle (2011). This may thus

be attributed to difference in sample sources, fermentation conditions,

and the use of nondecorticated sorghum grains in this study. A

decrease in TTA indicates an accumulation of organic acids with

increase in microbial activity and metabolism of the fermenting organ-

isms. The regression model describing the effect of fermentation time

and temperature on pH and TTA is given in Equations (5) and (6),

respectively, with their corresponding regression coefficient of deter-

mination values provided in Table 1. The values of AAD (0.01 and

0.12) depicted an agreement between experimental and predicted val-

ues further showing that the models adequately described the pH and

TTA values (Table 2). Results also showed that the linear factors of fer-

mentation time (X1) and temperature (X2) had a significant (p� .05)

effect on pH of ting samples, while the quadratic effects were not sig-

nificant, meanwhile these variables had no significant (p� .05) effect

on TTA. A negative correlation of 0.936 (Table 3) between these

parameters suggested that increased acidity resulted in increased

amount of organic acids. While relatively higher TTA values were

observed in other samples, lower TTA values in others suggests that

the metabolic activities of the fermenting organisms at such conditions

were relatively low.

TABLE 1 Coefficient of regression for the different mathematical models obtained

Coefficient pH TTA TBC TLABC TFYC TNC TPC TFC AA

b0 6.18 0.565 2,240,000 1,415,000 706,000 9.965 16.06 8.695 1.145

b1 –0.45* 0.27833 1,150,000 1,017,000* 268,333 –1.9917 –4.44* –1.1967* –0.03500*

b2 –0.677552* 0.43014 2,881,062* 2,083,141* 680,716* –5.5745* –7.1132* –1.9977* –0.05485*

b11 –0.075 0.34 1,110,000 450,000 126,500 –0.5450 1.12 1.2500 –0.02

b22 –0.14834 0.36335 3,190,187* 1,391,415* –16,168 –2.7552 0.7467 0.9567 0.01

b12 –0.24249 –0.04042 438,799 1,557,737* 138,568 –1.0335 0.4157 0.5658 –0.00577

R2 (%) 98.77 93.45 97.95 99.11 98.28 98.58 99.71 96.80 99.63

AAD 0.01 0.12 0.01 0.11 0.19 0.12 0.02 0.12 0.01

Bf 1.00 1.00 1.01 0.98 0.96 1.04 1.00 1.07 1.00

Af 1.01 1.13 1.10 1.12 1.23 1.11 1.02 1.10 1.00

b represents the coefficients of equations of the different models with b0 representing the constant term, b1 and b2 the linear effects of fermentation
time and temperature, respectively, b11 and b22 their quadratic effects and b12 their interactions. TTA5 titratable acidity; TBC5 total bacteria count;
TLABC5 total lactic acid bacteria; TFYC5 total fungal and yeast count; TNC5 tannin content; TPC5 total phenolic content; TFC5 total flavonoid
content; AA5 antioxidant activity. *Significant at p� .05.
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3.3 | Microbial load

Counts obtained on the different selective media used in this study

(Table 2), suggested a diverse microbial flora on ting samples. LABs

dominated the fermentation microbiota (Madoroba et al., 2011;

Sekwati-Monang & Gänzle, 2011), while the relatively low counts of

yeasts and fungi suggests that cereal fermentation favors the growth

of LABs as compared with other group of microorganisms (Meroth,

Hammes, & Hertel, 2003). As indicated by Adebiyi et al. (in press) spon-

taneous fermentation of cereals involves the competitive action of

FIGURE 1 Response surface plots showing the effects of fermentation time and temperature on: (a) pH, (b) TTA, (c) TBC, (d) TLABC,
(e) TFYC, (f) TNC, (g) TPC, (h) TFC, (i) AA of the ting samples

TABLE 2 Experimental and predicted values obtained for the parameters investigated

Variables pH

TTA
(g/kg)

TBC
(3106 cfu/g)

TLABC
(3105 cfu/g)

TFYC
(3105 cfu/g)

TNC
(mg CE/g)

TPC
(mg GAE/g)

TFC
(mg CE/g)

AA
(mM TE/g)

X1 X2 Exp Pre Exp Pre Exp Pre Exp Pre Exp Pre Exp Pre Exp Pre Exp Pre Exp Pre

48 27 6.18 6.18 0.56 0.57 2.25 2.24 14.3 14.2 7.07 7.06 9.96 9.97 16.07 16.06 8.71 8.70 1.15 1.15

48 27 6.18 6.18 0.57 0.57 2.23 2.24 14.0 14.2 7.09 7.06 9.97 9.97 16.05 16.06 8.68 8.70 1.14 1.15

72 27 5.59 5.66 1.29 1.18 4.87 4.50 27.1 28.8 11.7 11.0 7.95 7.43 12.42 12.74 8.43 8.74 1.09 1.09

60 34 5.20 5.14 1.31 1.42 7.80 8.17 57.3 55.6 14.4 15.1 0.97 1.49 9.02 8.70 7.96 7.64 1.08 1.08

24 27 6.62 6.56 0.52 0.63 1.83 2.20 10.2 8.48 4.95 5.64 10.89 11.41 21.94 21.62 11.46 11.14 1.16 1.16

36 20 6.69 6.76 0.50 0.39 2.40 2.03 7.61 9.33 1.31 0.62 13.66 13.14 25.14 25.46 11.98 12.30 1.21 1.21

60 20 6.58 6.52 0.60 0.71 2.43 2.80 7.73 6.01 1.41 2.10 11.52 12.04 20.98 20.66 10.93 10.61 1.18 1.17

36 34 5.73 5.79 1.28 1.17 7.01 6.64 30.2 31.9 11.9 11.2 4.90 4.38 12.46 12.78 8.03 13.18 1.12 1.11

X15 fermentation time (h); X25 fermentation temperature ( 8C). TTA5 titratable acidity; TBC5 total bacteria count; TLABC5 total lactic acid bacteria;
TFYC5 total fungal and yeast count; TNC5 tannin content; TPC5 total phenolic content; TFC5 total flavonoid content; AA5 antioxidant activity;
Exp5 Experimental value; Pre5Predicted value.
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endogenous microorganisms with LABs dominating. The presence of

nutrients, organic acids and the acidic environment of the ting micro-

biota could have also supported the growth of other microorganisms.

R2 values (close to 100%) as observed on Table 1 indicate that the pro-

posed mathematical models of the microbial colony count (Equations

(7)–(9)) can explain more than 90% experimental observations as a

function of the fermentation time and temperature. Using p values to

establish the significance of each coefficient and interaction strength

of each parameter, the linear factors of fermentation temperature (X2)

had a significant (p� .05) effect on TBC, TLABC, and TFYC of the ting

samples (Table 1), while X1 had a significant effect (p� .05) on only

TLABC. The quadratic effect of both variables (X2
1 and X2

2) were signifi-

cant (p� .05) on the TLABC of ting samples, whereas only X2
2 had a sig-

nificant effect (p� .05) on TBC. It can be observed from Figure 1c,d

that the microbial counts increased with increasing fermentation tem-

perature, but do not strongly depend on fermentation time (X1). Never-

theless, the linear, quadratic, and interactive effect of fermentation

temperature on microbial count was positive.

3.4 | TNC, TPC, TFC, and AA

Sorghum grains and subsequent products from them are known to be

rich in tannins, flavonoids, phenolic compounds, and antioxidants and

thus considered health promoting foods (Awika & Rooney, 2004;

Taylor & Duodu, 2015). Experimental and predicted values of TNC,

TPC, TFC and AA of ting samples are presented in Table 2 and their

respective mathematical models presented in Equation (10)–(13).

Figure 1f–i depicts the effect of fermentation time and temperature on

these parameters. As observed, the effect of fermentation time (X1)

was significantly (p� .05) negative on all health promoting properties

analyzed with the exception of TNC (Table 1). Similarly, the linear

effect of fermentation temperature (X2) had a significant (p� .05) effect

on all the health beneficial properties. This thus, indicates that at

increased temperature and sufficiently longer time, the concentrations

and amounts of these parameters will decrease. Since the negative lin-

ear effect of X1 and X2 were significant (p� .05) on the health promot-

ing parameters, while their corresponding quadratic factors were not, it

can be suggested that both variables had a cumulative negative effect

on the TNC, TPC, TFC and AA of ting. A general decrease of the inves-

tigated properties with increase in fermentation time and temperature

could be attributed to reduced extractability of the phenolic com-

pounds due to self-polymerization and/or interaction of these com-

pounds with other macromolecules (Beta, Rooney, Marovatsanga, &

Taylor, 2000; Taylor & Duodu, 2015). Such reduction and degradation

of phenolic compounds in ting have also been reported by Svensson,

Sekwati-Monang, Lutz, Schieber, and Gänzle (2010) and attributed to

the actions decarboxylases, reductases, esterases, and the ability of

LABs in fermented sorghum to metabolize phenolic compounds. A

strong positive correlation between the AA and TPC (Table 3) strongly

suggests that the phenolic contents of the ting samples, largely contrib-

uted to the antioxidant activities.

3.5 | Multiresponse numerical optimization

The surface plots (Figure 1a–i) shows the effect of different process

variables (fermentation time and temperature) on the investigated

parameters. A numerical optimization approach was adopted to deter-

mine the best experimental conditions for maximum release of phyto-

chemicals accompanied by a good microbial growth, reduced pH, and

high organic acid production. The numerical optimization of the pro-

cess variables was done on Minitab 16 (Minitab Lt. Coventry, UK) and

all parameters were investigated. The optimum derived conditions

were fermentation time and temperature of 24 hr and 34 8C, respec-

tively. The corresponding predicted parameters at this condition were

pH (6.09), TTA (1.31 g/kg), TBC, (6.71 3 106 cfu/g), TLABC (2.35 3

106 cfu/g), TFYC (1.02 3 106 cfu/g), TNC (5.41 mg CE/g), TPC

(15.66 mg GAE/g), TFC (9.64 mg CE/g), and AA (1.13 mg TE/g). To

confirm the predicted values, the theoretical value was tested in tripli-

cate using the optimal fermentation conditions obtained. Subsequent

analysis gave the following results; pH (6.00), TTA (1.34), TBC (6.19 3

TABLE 3 Pearson correlation between the investigated parameters

pH TTA TBC TLABC TFYC TNC TPC TFC AA

pH –0.914** –0.889** –0.934** –0.966** 0.930** 0.968** 0.880** 0.950**

TTA –0.914** 0.940** 0.849** 0.886** –0.857* –0.846** –0.723* –0.860**

TBC –0.889** 0.940** 0.921** 0.852** –0.928** –0.812* –0.682 –0.770*

TLABC –0.934** 0.849** 0.921** 0.888** –0.967** –0.859** –0.708* –0.850**

TFYC –0.966** 0.886** 0.852** 0.888** –0.921** –0.958** –0.887** –0.962**

TNC 0.930* –0.857* –0.928** –0.967** –0.921** 0.909** 0.788 0.877**

TPC 0.968** –0.846** –0.812* –0.859** –0.958** 0.909** 0.958** 0.955**

TFC 0.880** –0.723* –0.628 –0.708* –0.887** 0.788* 0.958** 0.863**

AA 0.950** –0.860** –0.770* –0.850** –0.962** 0.877** 0.955** 0.863**

**Correlation is significant at 1%.
*Correlation is significant at 5%.
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106 cfu/g), TLABC (2.01 3 106 cfu/g), TFYC (9.91 3 105 cfu/g), TNC

(5.36 mg CE/g), TPC (15.48 mg GAE/g), TFC (9.67 mg CE/g), and AA

(1.18 mg TE/g). These obtained results are closely related to the

numerical optimized data obtained, thus showing that the regression

models obtained could adequately predict the parameters.

3.6 | SEM and XRD of the ting samples

The SEM images of samples of ting were compared with investigate

possible morphological changes after fermentation. It can be observed

from the micrographs (Figure 2), that the granules were predominantly

spherical, with fermentation causing a degradation in the granular

structure. There was a gradual change from a more compact, fused and

consistent structure to a more loosened, disoriented one, forming pits

(Figure 2). This was more pronounced in ting samples fermented for

longer time and higher temperatures, suggesting increased degradation

and hydrolysis of components such as starch and amino acids.

Differences in the diffraction pattern of ting samples as affected

by the fermentation variables is presented in Figure 3. The diffracto-

gram of all ting samples showed similarities and exhibited the same “A”

pattern of diffraction, with significant peaks at angles of 2u around

17.78, 21, and 27.078. Differences in relative intensities could be attrib-

uted to the difference in the cellular and granular size (as observed

with SEM) and the proportion and arrangements of the amylose and

amylopectin components, which are known to have an impact on retro-

gradation and gelatinization.

3.7 | FTIR of the ting samples

FTIR spectroscopy was used to evaluate the composition of the

obtained ting samples in terms of their functional groups, while band

intensities could suggest their relative abundance. A comparative eval-

uation of the average spectra (Supporting Information Figure 1)

revealed that the ting samples all had strong absorption peaks around

3,300, 2,900, 2,850, 1,740, 1,640, 1,520, and 1,007 cm–1. Broad spec-

tral peaks around 3,300 cm–1 is associated with OAH and polyhydroxyl

bearing phenolic compounds suggesting the presence of quercetin,

alcohols, and phenolic compounds present in fermented foods (Adebiyi

et al., 2016; Taylor & Duodu, 2015). Bands occurring at 2,900 or and

diffuse ones at 2,850 cm–1 could be attributed to alkanes (CAH

stretching), aldehydes (HAC@O) and bound water in form of moisture,

while peaks at 1,640 cm21 represent conjugated carbonyl bonds which

could be from flavonoids and esterified phytosterols (Adiana & Mazura,

2011). Peaks around 1,520 cm21 represents the C@CAC signals of

FIGURE 2 Scanning electron images of ting samples: (a) 20 8C 36 hr, (b) 20 8C 60 hr, (c) 27 8C 24 hr, (d) 27 8C 48 hr, (e) 27 8C 72 hr, (f)
34 8C 36 hr, (g) 34 8C 60 hr, (h) 34 8C 24 hr

FIGURE 3 XRD patterns of the ting samples: 2036 (20 8C 36 hr),
2060 (20 8C 60 hr), 2724 (27 8C 24 hr), 2748 (27 8C 48 hr), 2772
(27 8C 72 hr), 3424 (34 8C 24 hr) 3436 (34 8C 36 hr), 3460 (34 8C
60 hr)
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condensed tannins, sharp peaks at 1,143 cm21 can be assigned to the

AOH aromatic bond present in catechins, while the intense peaks at

1,007 and 930 cm21 suggest the presence of phenolic compounds

(flavonoids, tannins, glucosyl moieties), carbohydrates and amines

containing the stretching vibrations of @CAOAC, CAC, or vibrational

CAOAH bonds (Duodu, Tang, Grant, Wellner, & Belton, 2001; Sinelli,

Spinardi, Di Egidio, Mignani, & Casiraghi, 2008). The high intensity

bands in this region can be explained by the high amounts of flavonol

glycosides and a possible accumulation of proteins (in form of amino

acids) in the ting samples.

Regions associated with these described bands were selected, pre-

treated and subjected to PCA using different transformation techni-

ques (Supporting Information Figure 2). The best pretreatment

technique in terms of sample grouping coupled with relatively high var-

iation of principal components (PCs) was the SNV pretreated data set

(Figure 4a). As observed from Figure 4a, the first two principal compo-

nents (PCs) accounted for 88% of the total variation. While PC-1 with

73% of the total variation differentiated ting samples fermented at

20 8C (for 36, 60 hr) and 34 8C (for 24, 36 hr) on the right, PC-2 with

15% separated the samples fermented at 27 8C (for 48, 72 hr), 34 8C

for 60 hr, and majority of samples at 20 8C (for 36, 60 hr) above, from

other ting samples below. This is also reflected on the discrete grouping

formed along the PCs. The clustering as depicted in Figure 4a further

confirm the observations on other parameters investigated in this

study. Samples fermented for shorter fermentation times generally

clustered together and the same was observed for those fermented for

relative longer times, with temperature also playing a significant role.

An additional PC-3 contributed 6% to the variation, bringing the total

variation of the PCs to 94% and effectively differentiated samples fer-

mented at 27 8C (for 48, 72 hr) from ting obtained at 34 8C for 60 hr

(Figure 4b).

The loadings plot (Figure 4b) revealed that peaks at 2,900, 2,850,

and 1,740 cm21 largely contributed to the grouping of ting fermented

at 27 8C (for 48, 72 hr) and 34 8C for 60 hr (Figure 4c). As observed

from Figure 4d, the peak around 3,300 cm21 was the major contributor

to the discrimination of samples fermented at 20 8C, while peaks at

1,007 and 930 cm21 influenced samples fermented at 34 8C for 36 hr.

The cluster analysis (CA) presented as a dendrogram in Figure 4e,

shows three-defined clusters, grouped in terms of sample similarity,

and followed patterns of the PCA.

4 | CONCLUSIONS

Using a Doehlert RSM approach, this study investigated the effects of

fermentation variables on some selected parameters, that is, pH, titrat-

able acidity, microbial count, tannin content, total phenolic content,

FIGURE 4 Plots of multivariate data analysis of the ting samples: (a) PCA scores plot (PC-1 and PC-2); (b) PCA scores plot (PC-1 and
PC-3); (c) PC-1 loadings plot; (d) PC-2 loadings plot; (e) CA dendrogram
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total flavonoid content, and antioxidant activity. Numerical optimiza-

tion of factors for the fermentation process established that optimal

processing temperature and time condition for ting production was

34 8C for 24 hr. At these conditions, maximal phenolic, tannin, flavo-

noid contents, and antioxidant activity were derived, complemented

with good microbial growth, reduced pH, and high production of

organic acids. The reduced pH and high TTA levels at this optimal con-

dition, would extend shelf life and preserve the ting better. Physico-

chemical characterization of ting first reported in this study, showed

slight changes in the microstructure and similarity in the diffraction pat-

tern of the differently obtained ting samples. FTIR analysis further con-

firmed the presence of different functional groups, while chemometric

analysis effectively showed differentiation and variations in ting sam-

ples analyzed. Results from this study will be beneficial for the produc-

tion of high quality ting for subsequent consumption.
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