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ABSTRACT 

J. Am. Soc. Brew. Chem. 75(1):11-21, 2017 

The paper showed the derivation of an equation to represent simultane-
ous dimethyl sulfide (DMS) formation and stripping during wort boiling. 
It also demonstrated a framework of linearization techniques for the re-
sulting equation, which should facilitate its implementation. DMS for-
mation and stripping were modelled by first-order rate equations with the 
rate constants k1 and k2 representing the rate constants for rate of DMS 
formation and DMS removal via stripping, respectively. The simultaneous 
processes of DMS formation and stripping were represented using an 
instantaneous differential mass balance. The resulting solution was seen 
to be similar to an equation stated previously by Mitani et al. Lineariza-
tion of the derived simultaneous DMS formation and stripping model was 
done using a MacLaurin series coming from Taylor’s series expansion. 
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Dimethyl sulfide (DMS) is a standout among the most critical 
off-flavors in the mashing process (1–3,6,12,16,21,26,30); the 
stripping of that unstable volatile is an exceptionally complex 
procedure, and it is made of two synchronous reactions, which are 
the change of S-methylmethionine (SMM) into DMS and its strip-
ping (5,17). That difficult circumstance created numerous sorts of 
methodologies as far as boiling vessels and equations so as to 
handle disposal of DMS (8–11,19,20,23,24,27,28). For that rea-
son, the principal model known for DMS stripping is the one of 
Mitani et al. (23,24), which is of a nonlinear form. Such nonlinear 
models are frequently linearized to ease implementation. 

In this work, the detailed derivation of a simultaneous DMS 
formation and stripping model is described, and the final non-
linear model is compared with the model stated by Mitani et al. 
(23) and found to be identical in form. To facilitate implementa-
tion, linearization of the nonlinear model was conducted using a 
MacLaurin–Taylor series expansion. 

EXPERIMENTAL 

Derivation of a DMS Stripping Model 
In these methods differential equations that gave the conversion 

of SMM to DMS and DMS stripping with time (d[SMM]/dt and 
d[DMS]/dt) were integrated to give a rate equation that followed 
the concentration of SMM or DMS elimination (stripping) as a 
function of time. 

MacLaurin Series Approach for SMM and  
DMS Nonlinear Models 

The MacLaurin series (which is a particular Taylor series when 
x0 = 0) is utilized to approximate infinitely differentiable nonlin-
ear equations. The MacLaurin polynomial function is built up 

according to the derivatives of the SMM and DMS functions at a 
0. The main idea behind the MacLaurin series is as follows: De-
rivatives, practically speaking, correlate to the contour of a curve, 
so the higher derivatives that two models have similarly at one 
point (0), the more comparable they appear at other nearby points 
(7,22). MacLaurin series are essential because they permit the 
figuring out of models that could not be computed directly or are 
difficult to handle. Although the MacLaurin polynomial for the 
exponential model seems confusing and irritating, it can be re-
duced to addition, subtraction, multiplication, and division. One 
can acquire an estimate of the original function by truncating the 
infinite MacLaurin series into a limited-degree MacLaurin poly-
nomial, which can be assessed. 

Determination of Constants: [SMM]t=0, [DMS]t=0, k1, and k2 
The methodology consists of, on the first hand (for each case, 

SMM and DMS), determining the best polynomial equation that 
correlates the experimental data. For each case, the obtained poly-
nomial equation allows the determination of [SMM]t=0 and 
[DMS]t=0 via its constant. The constant value of the derivate poly-
nomial equation for each case permits the calculation of k1 and k2. 

RESULTS AND DISCUSSION 

Derivative Approach of Establishing DMS Stripping Model 
Most chemical reactions take place in several stages; that is to 

say they evolve by successive elementary chemical reactions in 
which each step has its own rate with respect to time. DMS elimi-
nation from wort can also be considered the result of two con-
secutive irreversible reactions (namely, SMM conversion into 
DMS and thereafter DMS volatilization). The rate of each reac-
tion can be considered to be concentration dependent, and more 
specifically as a first-order reaction, in which the rate of progress 
of each reaction with respect to time is proportional to the con-
centration of the reactant, where the constant of proportionality 
(k) is termed the reaction rate coefficient (31). These consecutive 
reactions are presented as follows: SMM DMS 
DMSevap, where k1 is the reaction rate coefficient of SMM conver-
sion to DMS and k2 is the volatilization rate coefficient of DMS, 

Considering the depletion of SMM as a first-order reaction, 
where the concentration of SMM at any time t, denoted as [SMM]t 
is proportional to the concentration of SMM, 

 (1)
 

The negative sign is owing to depletion, and the first-order refers 
to the power index = 1. 

Because the DMS produced, which is denoted [DMS] prod
t

, in-
creases with time and is also proportional to the concentration of 
SMM, it is then expressed with a positive as follows: 

 (2) 
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The reaction conditions are as follows: 

t = 0 [SMM]t=0  0  0 

t = t [SMM]t  [DMS]t  [DMS] evap
t

t = ∞ 0  0  [SMM]t=0 

where [SMM]t=0 is the initial SMM concentration, before the boil-
ing stage. 

In a similar way to [DMS] prod
t

, the concentration of volatized 
DMS, denoted as [DMS] evap

t
, increases with time and is propor-

tional to the concentration of DMS. It is then expressed with as 
positive sign as follows: 

 (3) 

The rate of [DMS]t remaining in the wort owing to the consecu-
tive reactions is expressed as the difference between the rate of 
SMM conversion to DMS and the rate of DMS volatilized de-
noted [DMS] evap

t
: 

 (4) 

With respect to the mass balance, the initial concentration of 
SMM, denoted [SMM]t=0, can be expressed at any time as follows: 

 (5) 

Rearranging equation 1 gives 

 (6) 

By integrating both sides of equation 5 we get 

 (7) 

where [SMM]t=0 is the initial SMM concentration, before the boil-
ing stage. 

After completing integration and from the law of logarithms we 
obtain 

 (8) 

A transformation of the equation 8 gives 

 (9) 

When simplifying equation 9, the rate law becomes 

 (10) 

To determine [DMS]t remaining in the system during the two 
consecutive reactions, equation 4 is used. After rearranging that 
equation, the relation obtained is as follows: 

 (11) 

Substituting the expression for [SMM]t, equation 10, into equation 
11 gives 

 (12) 

Let us consider the following relation in order to understand 
and use equation 12: 

 (13) 

Recall that mathematical calculus states  

 (14) 

So equation 13 can be rewritten as 

 (15) 

Then, we obtain from equation 15 the following relation: 

 (16) 

Finally, it can be written as  

 (17) 

By distributing exp(k2t) in equation 17, we get the following: 

 (18) 

Considering the right hand-side of equation 18 only, and substi-
tuting the result of equation 12 for the term within the large brack-
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 (19)
 

By rearranging equation 19, we have 

 (20) 

Substituting equation 20 into equation 18 gives 

 (21) 

Rearranging equation 21 gives 

 (22) 

Integrating both sides, we obtain the following relation: 

 (23) 

(Note that the lower limit of the left-hand integral at t = 0 re-
duces to 0.) 

Continuing on, we know that 

 

(24)

 

We know also that 

 (25) 

After combining equations 24 and 25 with equation 23, we can 
then write 

 (26) 

Then, 

 (27) 

After using exponential laws and expanding equation 27, we ob-
tain the following: 

 (28) 

After simplifying equation 28, the relation obtained is 

 (29) 

In a real situation, at the end of mashing, the wort contains a 
certain amount of DMS coming from the conversion of SMM 

during the mashing process ([DMS]
mash

t ), and it is also reduced 
by volatilization during the boiling stage. That additional DMS in 
the wort follows also the first-order kinetic, and therefore it is 
expressed as follows: 

 (30) 

where [DMS]t=0 is the initial DMS concentration, before the boil-
ing stage. 

The total concentration of DMS residual in the wort (denoted 
[DMS]

total

t ) at the end of the boiling phase is, therefore, in respect 
of mass balance, equal to the residual DMS owing to the two con-
secutive irreversible reactions ([DMS]t) during wort boiling, to 
which is added the residual amount of DMS coming from the 
conversion of SMM during mashing ([DMS]

mash

t ). It is expressed 
as follows: 

 (31) 

Knowing the expressions of [DMS]t from equation 29 and the 
one of [DMS]

mash

t  from equation 30, the total amount of DMS 
([DMS]

total

t ) could be written from equation 31 as follows: 

 (32) 

where [DMS]0 and [SMM]0 are the initial DMS and SMM concen-
trations, respectively, k1 is the reaction rate coefficient of SMM 
conversion to DMS, and k2 is the volatilization rate coefficient of 
DMS. 

Equation 32 developed from reaction kinetics and for DMS 
stripping was identical in form to that of Mitani et al. (23). 

MacLaurin Series Approximations for  
SMM and DMS Nonlinear Models 

MacLaurin series approach. The linearization is done using 
the MacLaurin series, which is a particular expression of a Taylor 
series. That Taylor series is expressed as follows (4,7,14,29): 

 (33) 

The most typical form of useful sequence is the power series, 
which employs powers of the separate variables as basic func-
tions. The first kind of polynomial series is the MacLaurin series 
(25): 

 (34) 

whereby f(t) (the function to be symbolized) and s(t) hold for the 
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following for the first expression: 
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function as well as the series equate at t = 0. The nth derivation of 
the series at t = 0 is 

 (36) 

where n! (n factorial) is prescribed for n ≥ 1 and for instance (18) 

 (37) 

where 0! is considered to be equal to 1 based to the agreement for 
an empty product (15). The standard formula for the MacLaurin 
series coefficients to characterize the function f(t) is therefore 

 (38) 

The MacLaurin series development for f(t) around t = 0 therefore 
evolves into (7,22) 

 (39) 

Then, that power series could be expressed in complete form, by 
using the sum symbol as follows: 
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Approximating [SMM]t and [DMS]
total

t
nonlinear models us-

ing the MacLaurin series. Let us now consider equations 10 and 
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as a power series (equation 38), it is therefore necessary to derive 
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 (58) 

second derivation: 

 (59) 

 (60) 

third derivation: 

 (61) 

 (62) 

fourth derivation: 

 (63) 

 (64) 

 
nth derivation: 

 (65) 

 (66) 

where n ≥ 1. 
The power series of [SMM]t and [DMS]

total

t  is then expressed as 
follows: 

 (67) 

(68) 

Determination of SMM and DMS Equations Constants 
In this section, the aim is to ease the determination of constant 

coefficients of [SMM]t and [DMS]
total

t  nonlinear functions by 
means of linearization using the MacLaurin series. That transfor-
mation of nonlinear functions into power series could be one of 
the solutions to coefficient determination because that series looks 
much easier to handle. 

Use of nonlinear equation for determination of constants. 
The constants to be determined here are k1, k2, [SMM]t=0, and 
[DMS]t=0. 

From the nonlinear equation of [SMM]t, it is possible to deter-
mine k1 and [SMM]t=0 by using the logarithm: 

 (69) 

Recall from logarithm laws that 

 (70) 

 (71) 

From these laws, it is written 

 (72) 

 (73) 

From equation 73, it is observed that the introduction of the loga-
rithm transformed it into a linear form in which ln[SMM]t=0 is 
obtained when t = 0 and –k1 is the slope after obtaining the linear 
regression equation from the experimental data, when plotting 
ln([SMM])t = f(t). An illustration is presented in Figure 1. 

For the [DMS]
total

t  equation, the determination of k2 and [DMS]t=0 
are the main concern because k1 and [SMM]t=0 are already esti-
mated. For this case, the structure of that nonlinear equation 42 is 
so complex that an easy way of determining the constants is diffi-
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Fig. 1. Simplification of S-methylmethionine (SMM) nonlinear equation 
using logarithm. 
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cult to implement. For that purpose, we need to apply nonlinear 
regression fitting, but that is possible only with specific software 
such as Sigmaplot, Matlab, or BrainMaker, for which a program 
must be written for these software packages to solve the equation 
and give the desired results. This last software (BrainMaker version 
2.3) was used by Mitani et al. in 1999 (23). This justifies thereby 
the necessity of finding another way of acquiring these data. 

Use of power series for determination of constants. For 
[SMM]t equation constants determination, equation 67 is consid-
ered. When fitting that equation with the experimental data, we 
then deduce graphically that the value of [SMM]t=0 is obtained at 
t = 0. By making a correspondence with the MacLaurin series of 
equation 34, we can therefore state that 

 (74) 

After obtaining the value of [SMM]t=0, the remaining constant to 
determine for the [SMM]t equation is k1. One of the ways of deter-
mining it is graphically after deriving the [SMM]t equation and 
plotting the derivation. Deriving of equation 67 gives the follow-
ing: 

 (75) 

An analysis of equation 75 permits stating that, by plotting it, the 
value of [–([SMM]t=0 k1] is obtained at t = 0. By comparing that 
equation 75 to the derivative equation of the MacLaurin series 
(equation 34), which is expressed as 

 (76) 

we can say that 

 (77) 

Knowing that [SMM]t=0 = a0, we can then finally have 

 (78) 

For [DMS]
total

t  equation constants, the same approach is used. 
For this case, the constants to determine are k2 and [DMS]t=0, 
knowing that k1 and [SMM]t=0 are already determined. The ap-
proach again is to fit the [DMS]

total

t  power series approximation 
(equation 68) with experimental data. By that method, the value 
of [DMS]t=0 is obtained at t = 0. If the MacLaurin series is rewrit-
ten as follows 

 (79) 

we can then write by comparison of equations 68 and 79 that 

 (80) 

When deriving [DMS]
total

t  and the MacLaurin power series equa-
tions, we obtain 

 

(81)

 

 (82) 

By comparing the two derivative equations 81 and 82, we deduce 
the following: 

 (83) 

That value of b1 is obtained when the derivative equation 76 is 
around t = 0. The value of k2 is then calculated from equation 77 
as the following: 

 (84) 

Then, 

 (85) 

Application of the MacLaurin Series on Evaluating Reaction 
Rate Coefficient of SMM Conversion to DMS (k1), Initial 
SMM Concentration ([SMM]t=0), Initial DMS Concentration 
([DMS]t=0), and Volatilization Rate Coefficient (k2) 

In this part, we provide a range of illustrative cases to exhibit 
the use of equations 66 and 67. In all of these cases concerning 
wort boiling, we have applied MacLaurin series approximation 
of the functions to resolve k1, k2, [SMM]t=0, and [DMS]t=0. All the 
polynomial regressions were done using CurveExpert Profes-
sional version 2.3 software (©2011–2016 Daniel G. Hyams) and 
verified with TableCurve 2D version 5.01 software (Systat Soft-
ware, San Jose, CA, U.S.A.). The method in all the subsequent 
cases is identical. 

First, the linearized equation is built into experimental data as a 
way to figure out [SMM]t=0. Second, the linearized equation is 
derived and the formula obtained is plotted to be able to deter-
mine k1. Third, the linearized model of [DMS]

total

t  evolution is 
also fitted to its experimental data to determine [DMS]t=0. Finally, 
that equation is derived, and the derivative equation is one more 
time plotted to calculate the value of k2, being aware of the values 
of k1, [SMM]t=0, and [DMS]t=0. 

Example 1. Let us consider Mitani et al. (23) wort boiling ex-
perimental data obtained after using a pilot-scale kettle with a 
volume of 0.4 m3, heat exchange area of 0.3 m3, and heat supply 
rate of 160 MJ·m–3wort·h–1. That wort boiling process is realized 
for 90 min, and the data are compiled in Table I. Figures 2A and 
3A show that the power series having the best regression with 
the experimental data is in both cases the third-order polynomial 
equation. These third-order polynomial equations are then chosen 
to determine their respective constants. From Figures 2 and 3 the 
respective values of [SMM]t=0, k1, [DMS]t=0, and k2 are 5.05 µM, 
0.0147 min–1, 1.89 µM, and 0.0519 min–1, which were similar to 
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the ones obtained by Mitani et al. (23). The approximations of 
[SMM]t and [DMS]

total

t  functions using the MacLaurin series are 
therefore accurate for easier determination of all the constants. 

Example 2. Let us consider again Mitani et al. (23) data, this 
time working on a commercial scale. The kettle is a 6 m3 volume 
with a tubular heat exchanger area of 2.8 m2 and a heat supply 
rate of 150 MJ·m–3 wort·h–1. The boiling time in this case is 80 
min, and the data are reported in Table II. 

Figure 4A shows that the best polynomial regression to be con-
sidered as an approximation of SMM equation is the third-order 
polynomial equation, while for Figure 5A, it is proven that the 
polynomial equation to be used is the sixth-order one for DMS. 
Also, from the analysis of Figures 4 and 5, the values of the con-
stants were exhibited easily. From there, it is obtained for 

[SMM]t=0, k1, [DMS]t=0, and k2 the respective values 3.5 µM, 
0.0172 min–1, 1.889 µM, and 0.100 min–1. These values are simi-
lar one more time to those obtained by Mitani et al. (23). 

Example 3. Let us consider now our laboratory-scale boiling 
procedure in a 20 L insulated kettle. Different boiling conditions 
are applied with the same preheating protocol. The data are pre-
sented in Tables III and IV. Only one case is illustrated. The other 
results are following the same approach. The case to be consid-
ered in Table IV is the first column. The values of [SMM]t=0 and k1 
are obtained using the nonlinear equation 41 and its polynomial 
approximation (equation 67). There are therefore obtained similar 
values of [SMM]t=0 and k1 as presented in Figures 1 and 6. The 
best polynomial regression in this case is the fourth-order polyno-
mial equation. For DMS and the determination of [DMS]t=0 and

Fig. 2. A, Determination of [SMM]0 = [SMM]t=0 using linearized [SMM]t equation; and B, determination of k1 using [SMM]t equation derivation (example 1). 

Fig. 3. A, Determination of [DMS]0 = [DMS]t=0 using linearized [DMS]T = [DMS]
total

t  equation; and B, determination of k2 using [DMS]
total

t  equation 
derivation (example 1). 

TABLE I 

Evolution of S-Methylmethionine (SMM) and Dimethyl Sulfide (DMS) 

Concentration with Time (Example 1) 

Time (min) SMM (ppb) DMS (ppb) 

0 5.05 1.77 

30 3.23 1.82 
60 2.07 1.84 
90 1.32 1.86 

TABLE II 

Evolution of S-Methylmethionine (SMM) and Dimethyl Sulfide (DMS) 

Concentration with Time (Example 2) 

Time (min) SMM (ppb) DMS (ppb) 

0 3.50 1.89 
30 2.06 0.49 
60 1.21 0.26 
80 0.85 0.18 
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Fig. 4. A, Determination of [SMM]0 using linearized [SMM] equation; and B, determination of k1 using [SMM] equation derivation (example 2). 

Fig. 5. A, Determination of [DMS]0 using linearized [DMS] equation; and B, determination of k2 using [DMS] equation derivation (example 2). 

TABLE III 

Comparative Evaluation of [SMM]0 = [SMM]t=0 and k1 from First-Order Kinetic (Exponential) and Its Approximated Polynomial Equation (Example 3)

Time (min) 0 15 30 45 60 

[SMM] (ppb) 807 695.63 599.64 516.89 445.56 

TABLE IV 

Comparative Evaluation of [DMS]0 = [DMS]t=0 and k2 from Nonlinear and Its Approximated Polynomial Equation (Example 3) 

Time 1 2 3 4 5 6 7 8 

Time (min)         
0 587.3 592.3 589.4 588.7 585.3 586.8 586.9 582.4 
15 566.4 524.7 521.5 519.8 507.8 505.9 515.8 472.4 
30 534.9 479.8 460.1 456.8 437.0 437.4 441.0 392.2 
45 495.7 416.6 405.1 400.6 374.4 377.3 391.0 330.5 
60 458.5 367.1 356.6 351.2 326.4 324.4 336.4 274.2 
75 418.5 324.2 308.5 305.4 279.5 281.2 292.5 232.2 
90 378.3 284.0 269.6 264.8 242.0 242.5 253.0 196.0 

Calculated values         
[DMS]0 exp (ppb) 589.6 591.2 585.2 588.4 585.9 586.8 587.5 580.9 
k2 exp (min–1) 0.01544 0.02049 0.02133 0.02165 0.02341 0.02343 0.02260 0.02751

[DMS]0 pol (ppb) 587.8 591.2 589.4 588.7 585.9 586.8 587.5 582.4 
k2 pol (min–1) 0.01557 0.02046 0.02110 0.02145 0.02341 0.02341 0.02240 0.02664

       (continued on next page) 

a [DMS]0 exp = [DMS]t=0, exp and [DMS]0 pol = [DMS]t=0, pol: Initial DMS concentration obtained respectively from equation 32 and linearized polynomial equation;

k2 exp and k2 pol: volatilization rate coefficient obtained respectively from equation 32 and linearized polynomial equation. 
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k2, the adequate polynomial regression is the third-degree one. In 
this case, the calculation of these constants obtained using the 
linearization presented in Figure 7 is similar to the one acquired 
using the nonlinear function with the help of Matlab R2014a 
(MathWorks, Natick, MA, U.S.A.), as shown in Table IV (column 
1). When analyzing Table IV for the other cases, it is therefore 
demonstrated that the MacLaurin series as an approximation of 

nonlinear equations for SMM and DMS evolution during wort 
boiling is very accurate, and the determination of constants is 
easier. 

Example 4. Let us consider the data obtained from the boiling 
process of two wort substitutes using a 20 L insulated kettle (13). 
The boiling data are presented in Table V. The approach to calcu-
late the different constants is the same as the previous examples. 

Fig. 6. A, Determination of [SMM]0 using linearized [SMM] equation; and B, determination of k1 using [SMM] equation derivation (example 3). 

Fig. 7. A, Determination of [DMS]0 using linearized [DMS] equation; and B, determination of k2 using [DMS] equation derivation (example 3). 

TABLE IV (continued from previous page) 

9 10 11 12 13 14 15 16 17 18 

          
584.4 585.7 586.3 587.7 586.4 589.1 587.6 586.5 586.6 586.1 
463.5 454.0 443.7 433.8 392.9 320.3 306.3 291.3 261.4 243.9 
380.9 360.4 341.8 333.4 286.9 193.9 184.4 176.4 144.6 129.2 
311.0 290.3 274.4 256.4 213.0 137.6 125.7 119.1 95.7 88.8 
257.1 242.6 219.1 212.9 160.3 102.7 96.0 90.9 74.9 69.4 
216.3 199.7 198.4 182.8 133.3 83.7 78.4 73.6 60.0 55.9 
182.4 166.0 165.9 151.4 109.6 69.0 66.6 61.3 52.6 47.3 

          
583.6 584.9 586.8 587.5 586.3 589.4 587.8 585.8 586.7 586.0 

0.02920 0.03118 0.03342 0.03487 0.04180 0.05842 0.06141 0.06415 0.07358 0.07882

583.9 585.6 585.8 587.5 585.6 589.1 587.6 586.4 586.6 586.1 
0.02959 0.03078 0.03187 0.03386 0.04110 0.05662 0.06167 0.06461 0.07417 0.07626
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In this case, the best approximation of the nonlinear equation is 
obtained using the fifth-degree polynomial equation. One more 
time, the MacLaurin series appears to be accurate to estimate the 
constants [SMM]t=0, k1, [DMS]t=0, and k2, because the values ob-
tained are similar to the ones obtained by Desobgo et al. in 2015 
(Table V). 

CONCLUSIONS 

The derivation of a simultaneous DMS formation and stripping 
nonlinear model was described, utilizing a combination of an 
instantaneous mass balance and a first-order reaction equation to 
represent separately DMS formation and stripping. This nonlinear 
model was found to be identical to one proposed elsewhere in the 
literature by Mitani et al. (23). To facilitate the implementation of 
our model, linearization of our nonlinear model was conducted 
using a MacLaurin–Taylor series expansion. Several examples of 
implementation of both our nonlinear and linearized models were 
described. 
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