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Abstract

This thesis investigates the statistical properties of individual trajectories of human bronchial epithelial

(HBE) cells within a monolayer, using experimental time-lapse data. The primary goal is to determine

whether cell motility follows a Lévy walk—a model of super-diffusion characterized by heavy-tailed

step distributions and power-law velocity autocorrelation decay. To this end, cell trajectories were

extracted from microscopy images using Trackpy and analyzed through a variety of statistical tools,

including mean squared displacement (MSD), displacement distributions, stationarity tests, and

velocity auto-correlation functions (ACF).

Initial MSD analysis revealed super-diffusive behavior with scaling exponents close to ballistic

motion in the early stages of the experiment, transitioning to near-normal diffusion as cell density

increased. However, further analysis of displacement distributions and ACF showed clear deviations

from Lévy walk predictions. In particular, displacement data did not fit Lévy alpha-stable or Gaussian

distributions, but were well captured by a mixture of two normal distributions. Velocity ACFs

displayed exponential rather than power-law decay, further contradicting the Lévy walk model.

Segmented and moving window analyses highlighted a temporal shift in the diffusion regime, with

increasing crowding correlating with reduced motility. These findings suggest that while HBE cells

initially exhibit super-diffusive motion, their behavior over time is more complex and better modeled

by a heterogeneous, density-dependent process rather than a pure Lévy walk.
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Part I

Introduction

Random walks are mathematical models that describe paths consisting of a succession of random steps

[4, 10]. They are used to model various stochastic processes in fields such as physics, biology, finance,

and computer science. Lévy walks are a specific type of random walk that incorporate both short

and long steps, following a power-law distribution for the step lengths [1, 10]. This results in super-

diffusive behavior, where the mean squared displacement grows faster than linearly with time[1, 9, 10].

In biology, Lévy walks have been observed in the movement patterns of various organisms, including

animals searching for food, the spread of pathogens, and the movement of cells and microorganisms [1].

For example, in [1] it has been suggested that bacterial trajectories are subject to super-diffusion

characterized by Lévy walks.The goal of my thesis is to characterize the statistical properties of human

bronchial epithelial (HBE) cell trajectories. In particular, I aim to test whether they resemble Lévy

walks, which implies a non Gaussian super-diffusion. We collaborate with Dr. Victor Yashunsky from

Ben-Gurion University of the Negev, who provided the experimental data.

Research Questions In order to characterize the statistical properties of cellular trajectories, my

research will focus on answering the following questions:

• Mean squared displacement (MSD) of cellular trajectories.

• How does the diffusion behavior evolve over time?

• What is the distribution of displacements?

• Do the scaled displacements distribution fit Lévy alpha-stable distribution?

• Can the velocity of the cells be considered a stationary process?

• Velocity auto-correlation function.

• Is there a connection between cell density and the diffusion regime?

• Can an alternative model better explain the observed data?
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The answers to these questions, as well as any additional insights that may arise, will contribute to a

more comprehensive understanding of the characteristics of cells trajectories. By investigating these

aspects, we can determine whether the cells exhibit Lévy walk behavior.

Main Results The research reveals that the cellular trajectories exhibit super-diffusive behavior early

in the experiment, transitioning toward normal diffusion as time progresses along with cell density

increases. Although initial MSD scaling exponent is consistent with Lévy walks, other statistical

properties, such as displacement distribution and velocity auto-correlation, contradict the Lévy walks

model. Instead, a mixture of two normal distributions provides a superior fit to the data.
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1 MEAN SQUARED DISPLACEMENT

Part II

Theoretical background

1 Mean Squared Displacement

Let r (t) be a random variable in Rd, representing the position of a particle at time t. Its initial position

at time t = 0 is denoted by r0. The displacement vector, which describes how the particle has moved

from its starting point, is given by
→
r (t)−→

r0. This vector captures both the direction and magnitude of

the motion. To quantify how far the particle has moved from its initial position, we compute the norm

of the displacement vector

∥→r (t)−→
r0∥. (1.1)

To simplify the analysis and avoid dealing with square roots, we instead use the squared norm.

Taking the expected value of the squared norm across many trajectories yields the Mean Squared

Displacement. The Mean Squared Displacement (MSD), given by

〈
∥→r (t)−→

r0∥2
〉

, (1.2)

is a measure used in physics, particularly in the study of particle motion and diffusion. It quantifies

the average squared distance between the particle’s position at time t and its initial position. MSD

is crucial for understanding Brownian motion, diffusion processes, and the dynamics of particles in

various systems. The analysis of MSD provides a quantitative measure of how particles diffuse or

spread out over time, making it essential for understanding particle dynamics in various fields. The

MSD is important because it reveals a lot about the statistical properties of the process [6, 7, 9].
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1.1 Diffusion 1 MEAN SQUARED DISPLACEMENT

1.1 Diffusion

In the context of a particle trajectory, diffusion refers to the process by which particles spread out over

time due to random motion [6]. It can be observed in various fields, such as physical, chemical, and

biological systems. A common way to quantify diffusion is by measuring the MSD of the particles

over time [4].

In one-dimension, we can describe a diffusion process by Fokker-Planck Equation (FPE), also

known as diffusion equation. In the case of pure random fluctuations, without any drift, the FPE is

given by
∂

∂t
p (x, t) = D

∂2

∂x2 p (x, t) , (1.3)

where p (x, t) is a probability density function, x denotes the position, and t is time. The solution is a

given by

p (x, t) =
1√

4πDt
e−

(
x√
4Dt

)2

, (1.4)

which is a probability density function of a normally distributed random variable, whose variance

grows linearly with time

x ∼ N (0, 2Dt) . (1.5)

This means that as time progresses, the variance increases, implying that the process is non-stationary,

as its statistical properties change over time. The parameter D is called the diffusion coefficient. It

quantifies the rate at which the particles diffuse and is important for understanding how quickly

particles will spread [4, 6]. The larger the value of D, the faster the dispersion. Next, consider the

stochastic differential equation (SDE)

dx =
√

2DdB (t) , (1.6)

where B (t) represents Brownian motion. This SDE describes the change in the particle’s position. It

can be proved that FPE and this SDE are equivalent, namely

∂p
∂t

= D
∂2 p
∂x2 ⇐⇒ dx =

√
2DdB (t) , (1.7)

meaning both equations describe the same process from different perspectives. Integrating the SDE
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1.2 Anomalous Diffusion 1 MEAN SQUARED DISPLACEMENT

with respect to time t and computing the variance gives

〈
(x (t)− x0)

2
〉
= 2D

〈
B2 (t)

〉
= 2Dt, (1.8)

which is the same result obtained earlier from solving FPE. The left hand side is exactly what we

defined as the MSD in one-dimension. Therefore, for simple diffusion, such as in the case of particles

with trajectories subject to Brownian motion, we say that the MSD grows linearly with time. In higher

dimensions we get

〈
∥→r (t)−→

r0∥2
〉
= 2dDt, (1.9)

where d is the number of dimensions. Another way to present the relationship between MSD and time

is 〈
∥→r (t)−→

r0∥2
〉

∝ t, (1.10)

which shows that, for simple diffusion process which undergo Brownian motion, the MSD grows

linearly with time for large t.

1.2 Anomalous Diffusion

Anomalous diffusion is common in biological environments like cells, where obstacles and active

transport processes lead to non-standard particle motion [9, 10]. When referring to the concept of

anomalous diffusion, we mean that the MSD is not linear in time. Instead, the asymptotic behavior of

the MSD scales with time as 〈
∥→r (t)−→

r0∥2
〉

∝ tγ, (1.11)

where γ is a constant such that γ ̸= 1. In the case where γ = 1 we come back to a normal diffusion

process. There are several types of anomalous diffusion.

Sub-Diffusion This is a type of anomalous diffusion where particles spread out slower than expected

based on normal diffusion models. In sub-diffusion, the MSD increases with time according to a

power law where 0 < γ < 1. In the context of biological systems such as cells, this type of diffusion is

characterized by a non-linear relationship between the MSD and time. Specifically, for sub-diffusion,

the MSD grows slower than linearly with time.
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2 MODELS

Super-Diffusion This is a type of anomalous diffusion where particles spread faster than they would

under normal diffusion. The MSD scales as a power law where 1 < γ < 2. Super-diffusion can occur

in various physical systems and is often observed in complex systems where traditional Brownian

motion does not adequately describe particle trajectories.

Ballistic Diffusion This is a type of anomalous diffusion which describes a physical phenomenon

where particles move with constant velocity, leading to a MSD that scales quadratically with time, cor-

responding to γ = 2. In ballistic diffusion, particles exhibit straight-line motion without experiencing

significant random scattering events typically observed in Brownian motion.

Hyper Ballistic Diffusion This type of anomalous diffusion represents an extreme form of particle

motion, where the MSD increases faster than quadratically with time, corresponding to γ > 2. It is

characterized by particles moving with continuously increasing velocity and persistent acceleration.

In real physical systems, energy resources are finite, making such persistent acceleration impossible.

2 Models

In order to compare the experimental results with models and simulations, I focused on 3 different

models which represent the range of diffusion behaviors observed in different systems: Langevin for

normal diffusion, fractional Brownian motion for sub-diffusion, and Lévy walk for super-diffusion.

Figure 2.1 shows simulation results for the MSD behavior of all three models on a log-log scale.

6



2.1 Langevin 2 MODELS

Figure 2.1: Simulations for three different models: Langevin dynamics (green), fractional Brownian
motion (blue), and Lévy walk (red). Each simulation has 500 trajectories, total time of 10, 000, and ∆t
equal 5. Additional parameters are: diffusion coefficient D = 16, Hurst parameter H = 0.2, power law
exponent α = 1.3, speed s = 4. For each model, I calculated the MSD. The figure presents a log-log
plot of the results. On the x-axis is the logarithm of time, and on the y-axis is the logarithm of the MSD.
The dots represent the actual simulated MSD values (after taking their log). The dashed lines are linear
regressions of these values. From these regressions, I have extracted the slopes, which highlight the
distinct diffusive regimes for each stochastic process:
• Langevin slope: 1.02 (theoretical value is 1).
• fBm slope: 0.4 (theoretical value is 0.4).
• Lévy walk slope: 1.64 (theoretical value is 1.7).

2.1 Langevin

According to Newton’s second law, the net force on a body is equal to its mass multiplied by the body’s

acceleration

F (t) = mv̇ (t) , (2.1)

where m is the mass, and v̇ (t) is the acceleration.

The Langevin model is a mathematical framework used to describe the dynamics of particles

subjected to both deterministic and random forces [4, 5, 6, 7]. In the absence of an external deterministic

force, the Langevin stochastic differential equation for a particle’s velocity in 1D is given by

mv̇ (t) = −mγv (t) + η (t) . (2.2)

The term −mγv (t) originates from friction, where γ is the friction coefficient, and η (t) is a Gaussian

7



2.1 Langevin 2 MODELS

white noise with the following properties,

⟨η (t)⟩ = 0,
〈
η (t) η

(
t′
)〉

= Γδ
(
t − t′

)
. (2.3)

The function δ (t − t′) is the Dirac delta function, and Γ is a non-negative constant, given by

Γ = 2mγkBT. (2.4)

Here, kB is the Boltzmann constant, and T is the temperature of the system.

Since the velocity v (t) is the time derivative of the position dx(t)/dt = v (t), we can find the

displacement by integrating the velocity,

x (t)− x0 =
∫ t

t0

v
(
t′
)

dt′. (2.5)

Calculating the MSD and by the fluctuation-dissipation theorem [5, 7], we obtain the relation

〈
(x (t)− x0)

2
〉
= 2Dt. (2.6)

This linear dependence of the MSD on time t characterizes normal diffusive behavior. The term D is

called the diffusion coefficient, and is given by D = kBT/γm.

To generalize the above in 2D, let r (t) be the position of a particle at time t, given by

r (t) = (x (t) , y (t)) , (2.7)

where x (t) and y (t) are the Cartesian coordinates at time t, each subject to its own Langevin equation

mv̇x (t) = −mγvx (t) + ηx (t) , mv̇y (t) = −mγvy (t) + ηy (t) . (2.8)

Here, vx (t) and vy (t) are the velocities along the axes. The terms ηx (t) and ηy (t) are independent

Gaussian white noise processes with ⟨ηi (t)⟩ = 0 and ⟨ηi (t) ηi (t′)⟩ = 2mγkBTδ (t − t′), i ∈ {x, y}.
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2.2 Fractional Brownian Motion 2 MODELS

The corresponding MSD is then given by

〈
(r (t)− r0)

2
〉
= 4

kBT
γm

t = 4Dt. (2.9)

2.2 Fractional Brownian Motion

As the name suggests, fractional Brownian Motion (fBm) is a generalization of Brownian motion [8].

It is a continuous Gaussian process with stationary increments. It is common to denote the fBm by

BH (t), where H is called the Hurst parameter (also known as the Hurst index) where 0 < H < 1.

Unlike Brownian motion, the increments of fBm are dependent, except when H = 0.5. In that case,

fBm reduces to Brownian motion with independent increments. The value of the Hurst parameter H

determines the nature of the dependence.

• When 0 < H < 0.5, the increments are negatively correlated, indicating anti-persistent behavior

where increases (or decreases) are likely to be followed by decreases (or increases).

• When H = 0.5, the process behaves as Brownian motion, with no long-range dependence.

• When 0.5 < H < 1, the increments are positively correlated, indicating persistent behavior

where increases (or decreases) in the process are likely to be followed by further increases (or

decreases).

Figure 2.2 presents simulation results of fBm for three different values of the Hurst parameter H. The

auto-correlation function of fBm is given by

⟨BH (t) BH (s)⟩ = 1
2

(
|t|2H + |s|2H − |t − s|2H

)
. (2.10)

When H = 1/2, the process reduces to a standard Brownian motion. In that case the auto-correlation

function is

⟨B1/2 (t) B1/2 (s)⟩ =
1
2
(|t|+ |s| − |t − s|) = min (s, t) . (2.11)

The MSD for fBm is given by 〈
B2

H (t)
〉
= 2Dt2H . (2.12)
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2.2 Fractional Brownian Motion 2 MODELS

As a result, fBm can be used as a diffusion or anomalous diffusion model, with 0 < H < 0.5 corre-

sponding to sub-diffusion, H = 0.5 for normal diffusion, and 0.5 < H < 1 for super-diffusion. This

versatility of diffusion regimes can be used to model wide range of phenomena.

The fBM can be extended to 2D by considering r (t) = (x (t) , y (t)) as the position of a particle

at time t, where x (t) and y (t) are independent 1D fBm processes with the same Hurst parameter

x (t) = Bx
H (t) , y (t) = By

H (t) . (2.13)

The MSD is then given by 〈
(r (t)− r0)

2
〉
= 4Dt2H .

(a) H = 0.1 (b) H = 0.5 (c) H = 0.9

Figure 2.2: Three different simulations of fBm paths with varying Hurst parameters. (a) H = 1,
negatively correlated increments, leading to slow spread and sub-diffusion. (b) H = 0.5, independent
increments leading to normal diffusion. (c) H = 0.9, positively correlated increments, leading to fast
spread and super-diffusion.
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2.3 Lévy Walk 2 MODELS

2.3 Lévy Walk

Before delving into the Lévy walk model, it is essential to first understand the concept of Lévy flight.

Lévy Flight This is a continuous-time random walk (CTRW), in which the duration of each step is

constant, and the step length l is a random variable drawn from a power-law distribution [9, 10]. The

probability density function f (x) of a power-law is given by

f (x) =

Ax−(α+1) x ≥ xmin

0 x < xmin

, (2.14)

where A is a normalization constant and xmin is the lowest value that the random variable can take

x ∈ [xmin, ∞) [11].

In one-dimensional space, the direction of movement (either left or right) is a random variable u

which takes values in the set {−1, 1} with equal probabilities. In two-dimensional space, the direction

of movement can be represented by an angle θ, which is uniformly distributed θ ∈ [−π, π].

In order for the integral
∫ ∞

xmin
Ax−(α+1)dx to converge, we must have α > 0. Depending on the

value of α, the model exhibits different diffusion behaviors:

• For 0 < α < 1, the model behaves as ballistic diffusion where
〈
(x (t)− x0)

2
〉

∝ t2.

• For 1 < α < 2, we get super-diffusion with
〈
(x (t)− x0)

2
〉

∝ tγ where 1 < γ < 2.

• For α > 2, it reduces to normal diffusion with
〈
(x (t)− x0)

2
〉

∝ t.

In order to use Lévy flight as a super-diffusion model, we need 1 < α < 2, which leads to a divergent

second moment 〈
x2 (t)

〉
=

∫ ∞

xmin

x2 · Ax−(α+1)dx = ∞. (2.15)

This means that the spread of step lengths from their average value is unbounded, allowing for

very large (unbounded) steps. While Gaussian distributions also allow for very large values, their

probability is extremely small. In contrast, power-law distributions admit very large values with a

high probability.

Let v = sû be a velocity vector, where s represents the speed, and û is a unit vector indicating the

direction of motion. Then, as the connection between length, velocity, and time is given by l = v · t,
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2.3 Lévy Walk 2 MODELS

the velocity is proportional to the step length,

sû ∝ l. (2.16)

This implies that the speed is unbounded. Very high speed can occur with significant probability. This

unbounded speed characteristic presents a substantial issue when attempting to apply this model to

real-world physical scenarios, as it does not account for the finite speed of actual objects. To address

this limitation, a more realistic model known as the Lévy walk was introduced.

Lévy Walk Unlike the Lévy flight, where the speed of the process can theoretically become infinite,

the Lévy walk constrains the speed to a constant value [9]. This adjustment makes the Lévy walk a

more accurate representation of natural phenomena, as it better reflects the finite velocity at which

physical objects can move. In a Lévy walk, the step length l is still drawn from a power-law distribution,

ensuring that occasional long movements occur, but this step is now taken at a constant speed, thereby

maintaining a more realistic model of motion in both one-dimensional (1D) and two-dimensional (2D)

spaces. As the connection between length, velocity and time is given by l = v · t, the time taken for

each step is proportional to the step length,

t ∝ l. (2.17)

In the context of a power law, it is worth mentioning that some distributions may only exhibit a power

law in their tail, for large enough values. In other words, some distributions behave as power laws

asymptotically. Such a distribution can be expressed in the form,

f (x) = L (x) x−(α+1), (2.18)

where L (x) is a function with two important properties:

1. The limit as x → ∞ of L (x) is a non-negative constant c > 0,

lim
x→∞

L (x) = c. (2.19)

12



2.3 Lévy Walk 2 MODELS

2. The limit as x → ∞ of L(ax)/L(x)equals one,

lim
x→∞

L (ax)
L (x)

= 1. (2.20)

Simulation To simulate a one-dimensional Levy walk, we generate a sequence of walks, each defined

by an isotropic random direction d ∈ {−1, 1} (left or right) and a random walk duration drawn

from a power-law distribution. A simple way to sample from a power-law distribution is through

inverse transform sampling, where we draw a uniform random variable u ∈ (0, 1) and apply the

transformation

τ = τmin (1 − u)−1/α , (2.21)

where τmin is the minimum possible duration of the walk, α > 1 is the power-law exponent, and τ

is the resulting walk duration. During each walk, we move at a constant speed s, and the position is

updated by ∆x = d · τ · s.

In the case of two-dimensional simulation, the walk duration τ is generated in the same way.

However, the direction is now defined by an angle θ ∈ [−π, π], drawn uniformly at random to ensure

isotropic motion in the plane. We then moves a distance τ · s in the direction specified by θ, resulting

in a movement along the axes of ∆x = τ · s · cos θ and ∆y = τ · s · sin θ.

13



3 EXPERIMENTAL DATA

Part III

Results

3 Experimental Data

The data used in this research was provided by Dr. Victor Yashunsky, whose work focuses in part on the

dynamics of Human Bronchial Epithelial (HBE) cells, exploring their collective behavior and motion [2].

In Dr. Yashunsky’s experiment, HBE cells were cultured on a glass plate, and their movements

were tracked over time using the TrackMate tracking system. TrackMate is an image processing

software designed for tracking particles, cells, or other objects in microscopy images and time-lapse

image sequences. The user can extract various quantitative measurements such as displacement,

velocity, and trajectory features.

The data set comprises detailed tracking information of HBE cells, where the time difference be-

tween each frame in the tracking data is 5 minutes. By analyzing this data set, the research aims

to test whether HBE cell trajectories are statistically consistent with Lévy walks, contributing to the

understanding of cell movement dynamics in a biological context. The analysis will involve calculating

the mean squared displacement (MSD), comparison to diffusion and anomalous diffusion simulations,

eliminating Gaussian process features, and examining the step length distributions to identify any

power-law behavior indicative of Lévy walks.

3.1 Frame Images

The data provided by Dr. Victor Yashunsky includes 5 different sets of experiments, each with 800

frame images from a time-lapse sequence, showing the movement of HBE cells over time. Figure 3.1

shows magnified sections from two different frames of the experiment. The images display a dense

field of cells, each with distinct outlines and internal structures. The cells vary in shape and size,

appearing to be actively engaged in various stages of movement or interaction.

The high contrast in the image highlights the cell boundaries, making it easier to distinguish in-
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3.2 Data Processing 3 EXPERIMENTAL DATA

dividual cells within the population. The time-lapse images enable a detailed observation of cell

dynamics, providing insights into the collective behavior and interactions of the cells.

(a) Frame 1 (b) Frame 413

Figure 3.1: Frame Image (set number 4). In order to get a better look, I cut two different frames into
9 equal pieces each, and saved the top-left piece as a new frame. (a) and (b) are actually 1/9 of the
original frames. Comparing the first frame with frame number 413, it can be seen that the later frame is
much more dense and populated. This increase in cell density is due to cell splitting and multiplying.
These observations highlight the dynamic nature of the biological system under study, showcasing the
continuous changes and growth within the cellular environment.

3.2 Data Processing

Trackpy, a specialized tool for particle tracking, automates the extraction of cell movement data from

the time-lapse images. This section outlines the key steps and functionalities provided by Trackpy in

processing the data.

Cell Detection and initialization Using the trackpy.locate() function, cells are detected in each frame.

This process identifies local maxima in a filtered version of the image, corresponding to the centroid of

each detected cell. Adjustable parameters, such as particle diameter and detection threshold, ensure

accurate identification of cells while minimizing false positives from noise or background pixels.

Linking Cells Across Frames After detecting cells in individual frames, Trackpy links their positions

across frames to form continuous trajectories. The key functions used are:
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3.2 Data Processing 3 EXPERIMENTAL DATA

• link(): Connects particles between consecutive frames based on proximity.

• link_df_iter(): Iteratively handles multi-frame tracking, with parameters like search_range (max-

imum distance for linking) and memory (number of frames to backtrack for reconnecting lost

particles).

These linking processes result in the creation of continuous trajectories for each cell, representing their

movement over time.

Trajectory Construction and Data Storage The trajectories are stored in a structured PANDAS

DATAFRAME, where each row corresponds to a cell’s position at a specific frame. Key columns

include:

• Frame number: Timestamp of the position.

• (x, y) coordinates: Cell centroid position in the frame.

• Trajectory ID: Unique identifier for each cell’s trajectory.

Trackpy supports efficient storage of large datasets in HDF5 format, enabling streamlined access and

manipulation for further analysis.

Handling Tracking Challenges Trackpy addresses several challenges in tracking:

• Overlapping particles: Algorithms minimize errors by considering proximity and motion pat-

terns.

• Cell loss: The memory parameter reconnects lost cells across frames.

• Division or fusion events: Although explicit handling of these events is limited, the memory

parameter helps maintain trajectory continuity.

Exporting Data The resulting trajectory data can be exported in various formats, including PANDAS

DATAFRAME, HDF5, and pickle files, facilitating comprehensive analysis. By automating these

processes, Trackpy enables efficient large-scale studies of cell dynamics, including assessments of

anomalous diffusion behaviors, such as Lévy walks. Table 1 shows a sample of the extracted trajectories

data, while Figure 3.2 illustrates cellular trajectories built from the data.
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Cell x y Frame

473 343.416 375.762 0

802 816.711 648.121 0

1742 206.706 1470.011 0

1779 171.522 1498.575 0

1813 171.385 1524.101 0

(a)

Cell x y Frame

473 344.207 376.523 1

802 817.865 645.244 1

1742 205.5334 1475.842 1

1779 174.738 1495.427 1

1813 172.344 1520.924 1

(b)

Table 1: Cell Coordinates Across Frames (set number 4). The tables display the Cartesian coordinates
of five tracked cells in two consecutive frames - frame 0 (a) and frame 1 (b). Each row corresponds to a
specific cell, identified by its cell number, and shows the cell’s centroid position in a 2D coordinate
system. The change in coordinates between the two frames illustrates the displacement of each cell
over a 5 minute interval. Each pixel in the frame corresponds to 0.74 microns.
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(a) (b)

(c) (d)

Figure 3.2: Cell Trajectories (set number 4). The plot presents four randomly selected cell trajectories.
Each black line represents the trajectory of an individual cell, tracked over time. The green dot indicates
the starting point of the trajectory, while the red dot marks the endpoint. These trajectories illustrate
the diverse movement patterns and displacements of the cells. The long, relatively straight extrusions
made us suspect that the trajectories are super-diffusive, consistent with Lévy walks.

4 Data Analysis

4.1 Diffusion Regime

To characterize the diffusion regime of cells, I analyzed their MSD. To ensure reliable analysis, only

cell trajectories constructed from at least 75 frames were included, ensuring that sufficient tracking

data was available. This threshold was chosen to balance between sample size and trajectory quality.

Other thresholds were also tested and yielded similar results, confirming that the conclusions are not
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sensitive to this specific cutoff.

For each individual cell, I gathered the (x, y) coordinates of its position across the frames where

it appeared, and its trajectory was plotted. Figure 4.1 displays numerous trajectories plotted together.

Initially, the time a which the trajectories were observed in the experiment was not taken into con-

sideration, only the absolute trajectory and the total displacement over time were analyzed. For

example, one cell’s trajectory might span from frame 1 to frame 75 (representing the initial stage of the

experiment), while another cell’s trajectory might span from frame 328 to frame 427 (occurring during

the middle of the experiment). Despite these differences, the specific timing of the trajectory within the

experimental timeline was disregarded, and only the number of frames over which the trajectory was

observed was considered. This approach allowed me to calculate the MSD across a sufficiently large

number of trajectories while ensuring that each trajectory covered a meaningful number of frames.

by doing so, I could examine the MSD across a sufficient range of time points, irrespective of when

during the experiment the individual trajectories occurred.

Figure 4.1: Trajectories (set number 4). The set consists of 367,673 individual cells, of which 18,092
appear in at least 75 frames. To maintain clarity in visualization, only 4,523 randomly selected
trajectories are plotted.

Calculating the MSD The investigation of the diffusion regime began with analyzing the trajectories

of individual cells to determine how their movement evolved over time. Each trajectory was examined

19



4.1 Diffusion Regime 4 DATA ANALYSIS

step by step, with k representing the number of steps taken from the initial position. Since the initial

frame varied between different cells, k = 0 corresponded to the first recorded position of a given cell,

with subsequent steps indexed accordingly.

The position data, extracted as (x, y) coordinates, were used to compute the displacement at each

step. At each step k, the squared displacement was calculated for every cell. These values were then

averaged over the entire ensemble to obtain the MSD for step k. The process was repeated for 74 steps

to capture the overall MSD behavior. Figure 4.2 presents the results of this analysis.

Figure 4.2: MSD (set number 4). The plot presents the MSD for cells that appears in at least 75 frames.
The x-axis represents time, indicating the progression of the experiment. The y-axis denotes the mean
squared displacement value.

Log-Log MSD To characterize the diffusion regime, I examined the relationship between MSD and

time using a log-log transformation. This approach transformed the MSD equation into a linear form,

where the slope of the resulting line determined the diffusion exponent γ. A linear regression analysis

was then performed to estimate this exponent. The results indicates that the cell trajectories followed a

super-diffusive behavior with γ in the range of 1.78 to 1.80.

Since cell movement was influenced by dynamic interactions such as collisions, splitting, and environ-

mental factors, I further analyzed whether the diffusion behavior changed over time. To investigate
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this, I divided the trajectory data into two segments: the first half and the second half of the experiment.

By computing the MSD separately for each segment and applying the same log-log transformation

and regression analysis, I obtained diffusion exponents for both phases. The results showed that

the diffusion exponent was higher in the first half compared to the second half. Figure 4.3 provides

a pictorial overview of the results, while Table 2 presents the numerical analysis for five different

experimental sets.

Figure 4.3: Log-Log of MSD (set number 4). The plot presents MSD vs. time on a log-log scale,
analyzed for the full data set, first half, and last half of the trajectories data. The plot includes three
different fits: Full trajectory (blue): The entire data set, with a scaling exponent γ = 1.78, suggesting
super-diffusion. First half (green): The initial part of the trajectories, showing a higher exponent
γ = 1.95, suggesting ballistic behavior. Last half (black): The later part of the trajectories, with a lower
exponent γ = 1.26, indicating a transition towards normal diffusion.

21



4.2 Displacement Distribution 4 DATA ANALYSIS

Set No. Cells Full First half Second half

1 17,197 1.80 1.96 1.16

2 15,732 1.78 1.95 1.14

3 16,874 1.79 1.95 1.25

4 18,092 1.78 1.95 1.26

5 17,709 1.79 1.96 1.27

Table 2: Scaling Exponent. The table presents the scaling exponents γ obtained from the log-log MSD
analysis for cells appearing in at least 75 frames across five different experiment sets. No. Cells: Refers
to the total number of cells included in the full calculation for each set. Full: Represents the diffusion
exponent γ when considering the entire trajectory data. First Half: Shows the exponent calculated
from the first half of the trajectories, generally exhibiting a higher value, indicating a more ballistic
behavior. Second Half: Corresponds to the latter part of the trajectories, where the exponent drops
significantly, suggesting a shift toward normal diffusion. Since the first and second halves are analyzed
separately, the number of contributing cells in each half is half of the total number listed in the table.

This finding suggested that cell movement was initially more active but slowed down over time.

In the early stages of the experiment, cells exhibited a higher degree of displacement, possibly due

to lower cell density and fewer interactions, allowing them movement that seems ballistic. As time

progressed, increased collisions, crowding effects, or changes in cellular behavior may have contributed

to the reduction in the diffusion exponent. Despite this decrease, the overall super-diffusive nature of

the movement remained evident throughout the experiment.

4.2 Displacement Distribution

According to the generalized central limit theorem, the sum of i.i.d random variables with a divergent

second moment converges to a Lévy alpha-stable distribution [4, 9, 10]. This suggests, that for a cell

undergoing a Lévy walk with an exponent in the range 1 < α < 2, the displacement should follow a

symmetric Lévy alpha-stable distribution. Further more, it implies that the components across the

axes should follow a symmetric Lévy alpha-stable distribution as well.

To analyze the displacement distribution, for every step k I computed the displacement components of

22



4.2 Displacement Distribution 4 DATA ANALYSIS

the j-th cell by

∆xj (k) = xj (k)− xj (0) , ∆yj (k) = yj (k)− yj (0) , (4.1)

where ∆xj (k) and ∆yj (k) are the displacement components. This process provided displacement

values for each step across different trajectories. I then calculated the average displacement at each

step k, and used a kernel density estimation to plot the distributions. Figure 4.4 shows the resulting

displacement densities at three different time intervals of the experiment.

Figure 4.4: Displacement Densities (set number 4). The figure presents displacement densities along
the x-axis at different time intervals of the experiment: black - 75 minutes, green - 125 minutes, blue -
350 minutes. The results for the y-axis, which aren’t plotted here, showed similar results.

To verify whether the resulting densities align with the theory, I attempted fitting a symmetric

Lévy alpha-stable distribution to the displacement densities across the axes. As the scaling exponent

should be 1/α, I tested several values for α, varying between 1 < α < 2. The resulting plots showed

no fit, suggesting that, although the cells exhibit super-diffusion, their steps do not subject to Lévy walk.

Next, I’ve attempted to fit a normal distribution, but again, the results showed no fit, indicating

that the displacement distribution doesn’t follows a normal diffusion either. Figure 4.5 presents the

fitting results for the 350 minute time interval.
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(a) (b)

Figure 4.5: Densities Fitting (set number 4). Both figures present the displacement density of the
x-axis after 350 minutes (gray), along with corresponding fitting curves. (a) The figure shows the
fitting attempts of a Lévy alpha-stable distribution with α = 1.4 (green), and a normal distribution with
σ = 47.4 (red). (b) The figure presents the resulting Lévy alpha-stable fitting with different α values:
α = 1.1 (black), α = 1.4 (green), α = 1.9 (red). Similar results were observed for the displacement along
the y-axis.

4.3 Velocity Auto-Correlation Function

According to the Lévy walk theory, the velocity assumed to be stationary with auto-correlation function

(ACF) that behave as C (∆t) ∝ ∆t−α. To test whether the experimental trajectories velocity behave as

the theory, I first applied the Augmented Dickey-Fuller (ADF) test to check for stationarity in both the

velocity’s components along the x and y axes, for the first and second moments. Next, I computed the

velocity auto-correlation function and tested whether it follows a power-law decay.

Velocity Calculation At each time step k, I computed the velocity components for the j-th cell by

vj
x (k) =

xj (k + 1)− xj (k)
δt

, vj
y (k)

yj (k + 1)− yj (k)
δt

(4.2)

where vj
x (k) and vj

y (k) denotes the velocity components of the j-th trajectory at step k, and δt = 5

minutes, representing the time interval between consecutive frames. By applying these calculations to

each trajectory, I obtained a time series of velocity components for every individual cell.
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Stationarity Analysis To verify whether the velocity can be considered as a weak sense stationary

process, I applied the ADF test in two different ways:

1. Test on Individual Trajectories: I performed the ADF test on each trajectory’s velocity time series

separately.

2. Test on mean velocity time series: I computed the mean velocity across all trajectories at each

step k. I then applied the ADF test to this mean velocity series to assess overall stationarity.

Table 3 summarizes the results of the stationarity test applied to the velocity time series of individual

trajectories, while Table 4 and Figure 4.6 present the results of the stationarity test applied to the mean

velocity time series.

Moment First Second

Axis x y x y

Stationary 14,726 14,781 16,306 15,331

Non-stationary 3,366 3,311 1,786 2,761

Stationary % 81.40% 81.70% 90.13% 84.74%

Average ADF -7.0068 -6.7018 -7.2127 -6.6790

Average p-value 5.43% 5.30% 3.51% 5.65%

Table 3: Test on Individual Trajectories (set number 4). The tables presents results of the ADF
stationarity test for the first and second moments, applied to the velocity data. Stationary & Non-
Stationary: The number of trajectories classified as stationary and non-stationary based on the ADF
test. % Stationary: The percentage of trajectories identified as stationary. Average ADF: The mean
value of the ADF test statistic across all trajectories. Average p-value: The mean p-value from the
ADF test across all trajectories. A p-value less than 5% indicates that the null hypothesis is rejected,
suggesting that the time series is stationary.

Moment First Second

Axis x y x y

ADF -4.664 -3.900 -5.705 -5.012

p-value 0.0001 0.0020 0.0000 0.00002

Table 4: Test on Mean Velocity Time Series (set number 4). The table presents results of the ADF
stationarity test for the first and second moments, applied to the velocity data.
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(a) (b)

(c) (d)

Figure 4.6: Test on Mean Velocity Time Series (set number 4). Analysis of the velocity’s first and
second moments. Average of the first and second moments components for the velocity as a function
of time. The dots represent the average value of the moment and the dashed line is the overall mean.
the shaded area represents ± standard deviation.When computing averages for larger time t, fewer
trajectories contribute to the calculation. This reduction in sample size leads to increased variability in
the estimates, which is visible in the plots. At smaller time t where more trajectories are included, the
mean and second moment appear stable. However, as t increases and fewer data points remain for
averaging, the estimates become more dispersed, introducing greater statistical fluctuations.

The results obtained from both tests implies that the velocity’s first and second moment components

can be considered as stationary.

ACF Decay After confirming that the velocity can be treated as a weak sense stationary process, I

tested whether the ACF decays as a power law. To do so, I first computed the ACF at different lags by

C (∆t) =

〈→
v (0)

→
v (∆t)

〉
−

〈→
v (0)

〉2〈
→
v

2
(0)

〉
−

〈→
v (0)

〉2
, (4.3)
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where ∆t denotes the time lag. The maximum ∆t was determined by the shortest trajectory in the data

set. Since I examined trajectories with at least 75 frames and the time between frames is δt = 5, the

maximum lag is 370. Figure 4.7 shows the resulting graph.

Figure 4.7: Velocity ACF vs. Time Lag (set number 4). The x-axis represents the time lag ∆t. The
y-axis shows the value of the velocity auto-correlation function.

Next, according to the theory, the velocity ACF follows a power law

C (∆t) ∝ ∆t−α. (4.4)

By applying a log-log transformation, this relationship becomes linear in log ∆t

log C (∆t) = −α log ∆t + log b. (4.5)

Therefore, after computing the ACF for different lags, I performed a log-log transformation, followed

by a linear regression and an R2 analysis. Figure 4.8 shows the resulted linear regression and R2 value.
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Figure 4.8: Velocity Log-Log ACF (set number 4). The x-axis represents log ∆t, and the y-axis
represents log C (∆t). The blue dots correspond to the computed ACF values at different time lags
after applying a log transformation. The red line represents the linear regression fit to the data. If the
velocity ACF followed a power-law decay, the blue dots would align well with the red line. However,
the spread in the data and the R² value suggest that the power-law model does not provide a perfect
fit.

However, the results didn’t aligned well with a power law decay, as predicted by the Lévy walk

model. To further investigate, I tested for an exponential decay

C (∆t) ∝ e−α∆t, (4.6)

which appears linear in ∆t after a log-log transformation

log C (∆t) = −α∆t + log b, (4.7)

and repeated the linear regression with an R2 analysis. Figure 4.9 shows the improved fit.
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Figure 4.9: Velocity Semi-Log ACF (set number 4). The x-axis represents ∆t, and the y-axis represents
log ∆t. The blue dots correspond to the log transformed ACF values at different time lags. The red line
represents the linear regression fit, which appears to align well with the data. The higher R2 value
compared to the log-log plot suggests that an exponential decay model provides a better fit than a
power-law decay.

The improved R2 value confirmed that the velocity ACF does not follow a power law decay but

instead exhibits an exponential decay. Table 5 presents the R2 results comparison for the different

experimental sets.

Set log-log R2 semi-log R2

1 0.8336 0.9865

2 0.8488 0.9868

3 0.6979 0.8178

4 0.8165 0.9425

5 0.8090 0.9510

Average 0.8017 0.9369

Table 5: Linear Regression’s R2 Values. The table shows the R2 values obtained from linear regression
analyses, performed on both log-log and semi-log transformed data, for different experiment sets. The
results shows that the exponential decay model provides a much better fit for the velocity ACF decay
behavior compared to the power law decay.

The results implies that the velocity ACF isn’t decaying as power-law, but rather exponentially. By

so, it contradicts the initial assumption that the HBE cells follow a Lévy walk.
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4.4 Segment Analysis

Upon reviewing the initial analysis, it became apparent that the data did not align with the expected

behavior of Lévy walks across the entire data set. To better understand the temporal evolution of the

diffusion properties, I decided to break the data into three distinct segments: first, middle, and last.

This approach allowed me to investigate potential changes in the diffusion regime over time, treating

each segment as an independent experiment.

4.4.1 MSD

For each segment, I selected only cell trajectories that lasted at least 75 frames to ensure robust statistical

analysis. I then repeated the same analytical steps to each segment separately, including calculating

the MSD, applying a log-log transformation, and performing a linear regression to determine the

scaling exponent γ. Figure 4.10 provides a visual comparison across the three segments. In addition, I

calculated the number of cells at each segment.

(a) (b)

Figure 4.10: Segment Analysis of MSD (set number 4). The figure shows the difference between
the three segments. (a) MSD plot. The x-axis represents time, and the y-axis is the mean squared
displacement. The curves correspond to different segments of the experiment. The first segment (blue)
shows the highest values, followed by the middle segment (green) and the last segment (red). (b)
Log-Log MSD. The x-axis represents the log of time, and the y-axis represents the log of MSD. The
dots are the experimental data, and the dashed lines are the linear regression fitting, with slopes of
γ = 2.02 for the first segment, γ = 1.85 for the middle, and γ = 1.32 for the last, showing decreasing
in diffusion as the experiment progresses.

The results showed notable differences between the three segments, suggesting that the statistical
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Segment First Middle Last

set no. cells γ no. cells γ no. cells γ

1 261 1.99 4,027 1.86 12,291 1.24

2 148 2.01 2,966 1.9 12,011 1.26

3 250 2.01 4,332 1.87 12,121 1.33

4 266 2.02 5,113 1.85 12,742 1.32

5 299 2.00 4,731 1.86 12,514 1.32

Average 244.8 2.006 4,233.8 1.868 12,335.8 1.294

Table 6: Segment Analysis of Scaling Exponent. The table shows the number of cells and the diffusion
scaling exponent γ across three experimental segments: first, middle, and last. Initially, the number of
cells is relatively low (244.8 on average), but it increases significantly over time, reaching 12,335.8 on
average in the last segment, due to cell splitting. At the same time, the diffusion exponent γ decreases
from 2.0006 (average) in the first segment (indicating super-diffusive motion) to 1.29 (average) in the
last segment, suggesting a transition toward normal diffusive behavior. This trend implies that as cell
density increases, crowding and collisions limit movement, leading to reduced displacement.

properties of the trajectories are changing over time. The results make intuitive sense, as the scaling

exponent was approximately γ = 2 (ballistic) in the early stage with fewer cells, and decreasing

towards γ = 1 (normal diffusion) in the later stage as cell density increased. This shift from ballistic to

normal can be attributed to the effects of growing density and crowding, which lead to more frequent

collisions and, consequently, a reduction in movement. Table 6 summarizes the numerical results for

each segment across five different experimental sets.

4.4.2 Displacement Analysis

In addition to the MSD analysis, I performed a density analysis to the three segments, in order to

further investigate the temporal evolution of cell movement. For each segment, I selected the same

three time intervals relative to its starting point: ∆t = 75, 125, 350 minutes. These time intervals

represent different stages within each segment, allowing for a detailed comparison of movement

patterns over time. For each selected time interval, I calculated the displacement distribution and

plotted it using a kernel density estimation. This resulted in several density distributions, enabling two

types of comparisons: within a segment at different time intervals, and across segments at the same

time interval. Figure 4.11 shows the displacement distributions within each segment across different

time intervals, while Figure 4.12 compares the displacement distributions across segments at a fixed
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time interval of 350 minutes.

(a) First Segment (b) Middle Segment

(c) Last Segment

Figure 4.11: Displacement Distribution (set number 4). The figure presents the displacement distribu-
tions along the x-axis across three different segments of the experiment: first (a), middle (b), and last
(c). Within each segment, the same time intervals were sampled: ∆t = 75, 125, 350 minutes. It can be
seen that, as the experiment progresses, the distributions become narrower, reflecting a decrease in cell
movement. Comparing the same time interval across the different segments shows a clear transition
in diffusion behavior, from broader heavy tailed distributions in the early segment, to narrower and
more concentrated distributions in the later stages - indicating a reduction in motility.

The density plots revealed distinct differences in the shape of the displacement distributions across

segments, for the same time interval. In the first segment, the distribution was broad and spread out,

with a notable presence of large displacements. At the middle and last segments, the distributions

became narrower, reflecting a transition towards what seems as normal diffusion. This shift is likely
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Figure 4.12: Displacement Distributions Across Segments (set number 4). The figure presents the
kernel density estimation of displacement for the first (pink), middle (purple), and last (gray) segments
over time interval of 350 minutes. It can be seen that the width and height of the densities are quit
different, indicating different diffusion regime for each segment.

due to increased crowding and cell colliding, which constrain movement and reduce the occurrence of

large jumps.

Density Fitting Next, within each segment, I attempted fitting a symmetric Lévy alpha-stable distri-

bution across the axes. As before, I’ve done so with several values of α, varying in the range 1 < α < 2.

However, none of the tested values provided a good fit to the data. As the density distributions

became (seemingly) Gaussian-like over time, I then attempted to fit a normal distribution. The results

showed that, while the normal distribution was not a good fit in the first segment, it provided a better

approximation in the middle and last segments. Given these findings, I considered the possibility

that the displacement distribution is more complex in nature and requires a more flexible model for

accurate fitting.

To address this, I applied a mixture of two normal distributions, aiming to capture both the broad

spread and the pronounced peaks observed in the data. The mixture model was fitted to the displace-

ment data using a maximum likelihood approach. The results showed that the mixture model provided

a significantly improved fit compared to both the single normal and Lévy alpha-stable distributions.

Figure 4.13 shows the fitting results across the three segments at ∆t = 350 minutes, comparing the

empirical data with the fitted models.
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(a) First Segment (b) Middle Segment

(c) Last Segment

Figure 4.13: Density Fitting (set number 4). Comparison of displacement densities across different
segments at the same time interval of ∆t = 350 minutes. Each plot presents the empirical data (gray),
fitted normal distribution (dashed red), Lévy alpha-stable with α = 1.4 (green), and a mixture of two
normal distributions (black). It can be seen that the mixture model consistently provides the closest fit
to the data across all segments.

Examining the density plots, it is evident that the normal and Lévy alpha-stable distributions

fail to capture the full complexity of the empirical data, particularly in the first and last segments.

In contrast, the mixture model closely aligns with the observed distributions, effectively capturing

the heterogeneity in cell movement and providing a more accurate representation of the underlying

motility dynamics.
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Akaike Information Criterion Test To quantitatively assess which model best describes the dis-

placement distributions across the axes, I applied the Akaike Information Criterion (AIC)[12], given

by

AIC = 2k − 2 logL, (4.8)

where k is the number of parameters of the fitted model, and L is the log-likelihood of the distribution.

It evaluates model quality based on both goodness of fit and model complexity, helping to determine

the most appropriate statistical representation of the observed data.

For each segment I fitted a symmetric Lévy alpha-stable distribution, Gaussian distribution, and

Mixture of two normal distribution. The Lévy alpha-stable is characterized by four parameters: stabil-

ity index α, skewness β, location µ, and scale c. Since the focus was on symmetric distribution, β and µ

were set to zero, leaving k = 2. Similarly, the Gaussian distribution, which is characterized by its mean

µ and standard deviation σ, also resulted in k = 2. The Mixture of two normal distribution required

five parameters: two means µ1, µ2, two standard deviations σ1, σ2, and a weight w1 (as w2 is given by

1 − w1), resulting in k = 5.

AIC values were computed for each model across different time intervals and segments. The model

with the lowest AIC was considered the best fit for the displacement data. The results consistently

showed that the Mixture of two normal distributions had the lowest AIC across all segments and time

points, making it the most suitable model. Table 7 presents the AIC results obtained across different

segments and time intervals from one selected experimental set.
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Segment Time Lévy Stable Gaussian Mixture

1
75 2,955 2,819 2,790

125 3,243 3,064 3,030

350 3,822 3,551 3,501

2
75 49,184 47,965 47,946

125 53,667 52,557 52,520

350 62,084 60,974 60,898

3
75 111,926 92,544 92,092

125 121,179 101,530 100,871

350 139,406 115,650 114,329

Table 7: Akaike Information Criterion (set number 4).The table presents AIC values for three different
models: Lévy stable, Gaussian, and Mixture of two normal distribution, applied to the displacement
distributions along the x-axis. The scaling exponent used was α = 1.4 . Results are shown across three
segments and at different time intervals ∆t = 75, 125, 350 minutes. In every case, the Mixture model
yielded the lowest AIC, indicating it provided the best fit for the data. The y-axis showed similar
results.

This suggests that the displacement distribution is more complex than can be captured by a single,

uni-modal distribution. Instead, it likely reflects the presence of multiple dynamic populations or

movement modes, such as cells moving in opposite directions, or a combination of slower and faster

movement behaviors. This might explain the requirement of a more flexible, multi-component model

to accurately describe the data.

4.5 Moving Window Analysis

It became evident that the diffusion regime is not constant over time, but rather exhibits dynamic

transitions throughout the course of the experiment. To investigate this temporal heterogeneity in

greater detail, I implemented a floating window analysis. This approach involved dividing the ex-

periment into several overlapping segments, allowing a more detailed assessment of the dynamics.

Each floating window spanned a fixed number of 241 frames, with a stride of 25, ensuring overlap

between consecutive segments. For instance, the first window covered frames 0 to 240, the second

covered frames 25 to 265, and so on. As with the threes segments analysis, each floating window was

treated as an experiment on its own.
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This method provided a finer temporal resolution, enabling the detection of subtle transitions in

behavior that might otherwise be missed with an overall or large-scope view. Within each floating

window, I repeated the entire analysis pipeline - calculating the MSD, making a log-log transformation,

and applying a linear regression to estimate the scaling exponent γ. In addition, I computed the

average number of cells per frame. This gave an indication about the relationship between the density

of the cells and their ability to move freely. The goal was to capture time variations in movement

behavior and diffusion regime, that are not observable when calculating the overall scaling exponent

over the entire experiment.

The results reveal a systematic decrease in the scaling exponent γ over time, combined with in-

creasing cell density. Initially, γ values were close to 2, indicating ballistic motion. As the experiment

progressed and cell density increased, γ steadily declined, reaching values near 1.2 in the final win-

dows, suggest approaching normal diffusion. By plotting γ as a function of the average number of

cells per frame, a clear relationship emerged, demonstrating how increased density limits cells mobility

and affects the diffusion regime. Figure 4.14 illustrates this dynamic relationship between the average

number of cells and the scaling exponent γ.
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4.5 Moving Window Analysis 4 DATA ANALYSIS

Figure 4.14: Floating Window Scaling Exponent (set number 4).The plot shows the scaling exponent γ
as a function of cell density, measured by the average number of cells per frame. The x-axis represents
the average number of cells per frame, while the y-axis shows the corresponding scaling exponent γ,
obtained from log-log regression of the MSD within each time window. A clear monotonic decline in
γ is observed as the average number of cells increases, indicating a transition from super-diffusive
(ballistic-like) motion at low density, to normal diffusive behavior at higher densities. This trend
highlights the effect of crowding on cell movement.
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Part IV

Discussion

The goal of this research was to investigate the statistical properties of HBE cell trajectories and evaluate

whether their motion could be characterized by a Lévy walk model. Using time-lapse imaging data

and analytical techniques, including Trackpy for trajectory extraction and various statistical methods

for analysis, we explored multiple aspects of cell movement across both time and space.

Initial analysis of the MSD across all cell trajectories revealed super-diffusive behavior, with scal-

ing exponents γ in the range of 1.78 − 1.80. This observation initially suggested the possibility of Lévy

walk dynamics, which are known to produce super-diffusion with similar exponents. By dividing each

data set into two equal halves and calculating the scaling exponent separately, we started investigating

the temporal evolution of the diffusion behavior. Interestingly, in the first half of each set, we observed

very strong super-diffusion with γ ≈ 1.96 approaching ballistic motion. In contrast, the second half of

the data consistently exhibited a significant drop in the exponent, with γ values in the range 1.14 − 1.27,

closer to normal diffusion. This difference suggests a time-dependent change in motility rather than a

stationary stochastic process. Further analyses showed inconsistencies with the theoretical properties

of Lévy walks.

The displacement distributions, when tested against both symmetric Lévy alpha-stable distribu-

tions and Gaussian distributions, failed to fit well to either model. Notably, even at long time intervals

where heavy-tailed behavior would typically be most prominent, the empirical data did not exhibit

the power-law characteristics required for Lévy walks. Instead, a mixture of two normal distributions

provided a significantly better fit, as evidenced by lower AIC values across all experimental seg-

ments and time points. This suggests that the cell motion likely consists of multiple movement modes

or dynamic sub-populations, which cannot be adequately captured by a single Lévy or Gaussian model.

The velocity ACF analysis provided additional evidence against the Lévy walk hypothesis. Lévy

walks are expected to yield a power-law decay in the velocity ACF. However, our results showed

a significantly better fit to an exponential decay model. The ADF stationarity tests supported the
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assumption of weak stationarity for the first and second moments, but the decay behavior of the ACF

strongly contradicted the theoretical Lévy walk dynamics.

To further investigate the temporal evolution of diffusion behavior, we performed a three-segment

analysis as well as a moving window approach. Both methods consistently revealed a gradual shift in

motility over time. In the early stages of the experiment, the motion was nearly ballistic, with scaling

exponents γ ≈ 2. As time progressed, the diffusion behavior transitioned toward values of γ ≈ 1.2,

indicative of almost normal diffusion. This temporal trend showed a clear correlation with cell density.

As the number of cells increased, the measured γ values decreased. This suggests that as cells became

more densely packed, their movement was increasingly constrained.

The mixture of two normal distributions, which consistently provided a superior fit compared to both

single Gaussian and Lévy stable models, capture the complexity of cell displacement distributions.

While this statistical improvement does not directly imply the existence of two distinct sub-populations,

it does suggest heterogeneity in the displacement behavior that a single-mode model fails to capture.

Interestingly, a video created from the time-lapse frame images visually reveals what appears to be

two main opposing streams of cells, moving in different directions. Although this observation is

qualitative, it offers a possible explanation for the improved fit of the mixture model. The displacement

distributions may be shaped by directional flows or transient collective motion, rather than distinct

motility modes. Further quantitative analysis would be required to confirm whether these visually

observed streams correspond to separable motion patterns within the data.

Despite these insights, several important questions remain unanswered and point toward poten-

tial avenues for future work:

Censoring Effects: How do limitations in trajectory duration—caused by cells moving out of frame

or segmentation issues—affect statistical measurements such as MSD scaling or displacement dis-

tributions? A more systematic approach is needed to quantify potential bias introduced by data

censoring.
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Interpretation of the Mixture Model: Why does a mixture of two Gaussian distributions outperform

both single Gaussian and Lévy models? Is this simply a statistical artifact, or does it reflect biological

reality such as underlying sub-populations, transient directional motion, or collective effects?

Time vs. Density Dependence: The observed decrease in motility (γ values) over time correlates

with increasing cell density. However, it remains unclear whether this trend is driven primarily by

mechanical constraints due to crowding or intrinsic cellular changes over time, such as senescence or

metabolic slowing.

Super-Diffusion Despite Exponential ACF: Super-diffusive behavior is often associated with long-

time correlations, yet the velocity auto-correlation function decays exponentially rather than as a power

law. This raises the question: what mechanisms are responsible for the observed super-diffusion, and

can they be reconciled with short-range memory effects?

Addressing these questions will be critical for constructing more accurate models of cell motility

and understanding the underlying biological mechanisms at play.
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Hebrew Abstract

אנושיים, סימפונים אפיתל תאי של דקה בשכבה בודדים תאים מסלולי של הסטטיסטיות התכונות את בוחן הזה המחקר

הליכת של מודל לפי מתנהלת התאים תנועת האם לבדוק היא המרכזית המטרה ניסיוניים. טיימלפס נתוני באמצעות

הקורלציה פונקציית של ודעיכה כבדים זנבות עם צעדים בהתפלגויות המאופיין סופר־דיפוזיה של מודל ־ לוי

חזקתי. חוק לפי המהירות של העצמית

סטטיסטיים כלים ידי על ונותחו טראקפי תוכנת באמצעות מיקרוסקופ מתמונות הוצאו התאים מסלולי כך, לשם

מהירות. של העצמית הקורלציה ופונקציות נייחות מבחני ההעתק, התפלגויות ההעתק, ריבועי ממוצע ביניהם שונים,

בליסטית לתנועה הקרובים מעריכים עם סופר־דיפוסיבית התנהגות חשף ההעתק ריבוע תוחלת של ראשוני ניתוח

ניתוח זאת, עם התאים. בצפיפות העלייה עם רגילה כמעט לדיפוזיה עוברת אשר הניסוי, של המוקדמים בשלבים

לוי. הליכת מודל של מהחיזוי ברורות סטיות הראה העצמית הקורלציה ופונקציה ההעתק התפלגויות של יותר מעמיק

מיקס ידי על יותר טוב תוארו אלא גאוסית, להתפלגות או אלפא־יציבה לוי להתפלגות התאימו לא הנתונים במיוחד,

דעיכה במקום מעריכית דעיכה הציגה המהירות של העצמית הקורלציה פונקציית נורמליות. התפלגויות שתי של

לוי. הליכת למודל שמנוגד מה חזקתי, חוק לפי

התאים בצפיפות גידול כאשר הדיפוזיה, במשטר הזמן במהלך שינוי הדגישו נעים זמן וחלונות מקטעים ניתוח

סופר־דיפוסיבית, תנועה תחילה מציגים שהתאים שבזמן כך על מצביעים אלה ממצאים התנועה. לצמצום מתאם הראה

ידי על ולא בצפיפות, התלוי הטרוגני תהליך ידי על יותר טוב ומתוארת יותר מורכבת זמן לאורך שלהם ההתנהגות

לוי. הליכת
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אריאל, גיל פרופ׳ של בהדרכתו נעשתה זו עבודה

למתמטיקה, המחלקה מן

בר־אילן. אוניברסיטת של



בר־אילן אוניברסיטת

אפיתל תאי של דקה בשכבה בודדים תאים מסלולי של סטטיסטיות תכונות
אנושיים סימפונים

סלע אלון

למתמטיקה במחלקה מוסמך תואר קבלת לשם מהדרישות כחלק מוגשת זו עבודה

בר־אילן אוניברסיטת של

תשפ״ה גן רמת
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