
DIFFUSION PROCESS

THEORETICAL VIEW COMBINED WITH PYTHON CODE

ALON SELA

JULY 05, 2025

CONTENTS CONTENTS

Contents

Abstract i

1 Mean Squared Displacement 1

2 Diffusion 2

2.1 Diffusion in 1D . 2

2.2 Diffusion in 2D . 9

2.3 Diffusion in d dimensions . 12

3 Anomalous Diffusion 13

References 14

Abstract

This document explores the concept of Mean Squared Displacement as a fundamental tool for ana-

lyzing particle motion in various diffusion regimes. While mean squared displacement is often used

to characterize normal diffusion, where it increases linearly with time, it is also crucial in identifying

anomalous diffusion, where mean squared displacement follows different time behaviors.

The discussion begins with one-dimensional normal diffusion, demonstrating how mean squared

displacement naturally emerges from both the Fokker–Planck Equation and its equivalent stochastic

differential equation, which is subject to Brownian motion. The document then extends the discussion

to two-dimensional normal diffusion and the general case of diffusion in d-dimensions.

Finally, it introduces anomalous diffusion, exploring how deviations from normal diffusion can

be identified and analyzed using mean squared displacement.

i

1 MEAN SQUARED DISPLACEMENT

1 Mean Squared Displacement

Let r (t) be a random variable in Rd, representing the position of a particle at time t. Its initial position

at time t = 0 is denoted by r0. The displacement vector, which describes how the particle has moved

from its starting point, is given by
→
r (t)−→

r0.

Figure 1.1:

This vector captures both the direction and magnitude of the motion. To quantify how far the

particle has moved from its initial position, we compute the norm of the displacement vector

∥→r (t)−→
r0∥ =

√
n

∑
i=1

|xi|2, (1.1)

where xi is the i-th component of the vector. To simplify the analysis and avoid dealing with square

roots, we instead use the squared norm. Taking the expected value of the squared norm across many

trajectories yields the Mean Squared Displacement. The Mean Squared Displacement (MSD), given by

〈
∥→r (t)−→

r0∥2
〉

, (1.2)

is a measure used in physics, particularly in the study of particle motion and diffusion. It quantifies

the average squared distance between the particle’s position at time t and its initial position. MSD

is crucial for understanding Brownian motion, diffusion processes, and the dynamics of particles in

1

2 DIFFUSION

various systems. The analysis of MSD provides a quantitative measure of how particles diffuse or

spread out over time, making it essential for understanding particle dynamics in various fields. The

MSD is important because it reveals a lot about the statistical properties of the process[2, 3, 4].

2 Diffusion

In the context of a particle trajectory, diffusion refers to the process by which particles spread out over

time due to random motion [2]. It can be observed in various fields, such as physical, chemical, and

biological systems. A common way to quantify diffusion is by measuring the MSD of the particles over

time [1]. In order to understand why, we need to understand the connection between Fokker-Planck

Equation and stochastic differential equation.

2.1 Diffusion in 1D

In one-dimension, we can describe a diffusion process by Fokker-Planck Equation (FPE), also known

as diffusion equation. In the case of pure random fluctuations, without any drift, the FPE is given by

∂

∂t
p (x, t) = D

∂2

∂x2 p (x, t) , (2.1)

where p (x, t) is a probability density function, x denotes the position, and t is time. The solution is a

given by

p (x, t) =
1√

4πDt
e−

(
x√
4Dt

)2

, (2.2)

which is a probability density function of a normally distributed random variable, whose variance

grows linearly with time

x ∼ N (0, 2Dt) . (2.3)

This means that as time progresses, the variance increases, implying that the process is non-stationary,

as its statistical properties change over time. The parameter D is called the diffusion coefficient. It

quantifies the rate at which the particles diffuse and is important for understanding how quickly

particles will spread [1, 2]. The larger the value of D, the faster the dispersion. Next, consider a

2

2.1 Diffusion in 1D 2 DIFFUSION

stochastic differential equation (SDE) of the form

dx =
√

2DdB (t) , (2.4)

where B (t) represents Brownian motion. This SDE describes the change in the particle’s position due

to pure random fluctuations of B (t). It can be proved that FPE and this SDE are equivalent, namely

∂p
∂t

= D
∂2 p
∂x2 ⇐⇒ dx =

√
2DdB (t) , (2.5)

meaning both equations describe the same process from different perspectives. Integrating the SDE

with respect to time t yields

∫ t

0
dx =

√
2D

∫ t

0
dB (t) (2.6)

=⇒ x (t)− x0 =
√

2DB (t)

where x (0) = x0. The expectation is

⟨x (t)− x0⟩ =
√

2D ⟨B (t)⟩ = 0, (2.7)

since the expectation of a Brownian motion at any time t is ⟨B (t)⟩ = 0. Computing the variance gives

〈
(x (t)− x0)

2
〉
= 2D

〈
B2 (t)

〉
= 2Dt, (2.8)

which is the same result obtained earlier from solving FPE. The left hand side is exactly what we

defined as the MSD in one-dimension. Therefore, for simple diffusion, such as in the case of particles

with trajectories subject to Brownian motion, we say that the MSD grows linearly with time t.

Simulation The following Python code demonstrates a simple one-dimensional diffusion process,

computes the Mean Squared Displacement, and verifies its linear relationship with time.

3

2.1 Diffusion in 1D 2 DIFFUSION

import numpy as np

import matplotlib.pyplot as plt

Simulation parameters

time = 10

num_particles = 100

D = 24.0

dt = 0.1

num_steps = int(time / dt)

Step size for Brownian motion

step_std = np.sqrt(2 * D * dt)

Storage for particle positions

positions = np.zeros(num_particles)

trajectory = np.zeros((num_steps, num_particles))

Simulate 1D Brownian motion

for t in range(num_steps):

steps = np.random.normal(loc=0.0, scale=step_std, size=num_particles)

positions += steps

trajectory[t] = positions

Plot a few sample trajectories

time_array = np.arange(num_steps) * dt

plt.figure(figsize=(8, 4))

for i in range(10):

plt.plot(time_array, trajectory[:, i], linewidth=0.5)

plt.scatter(0, trajectory[0, i], s=10)

plt.scatter(time_array[-1], trajectory[-1, i], s=10)

plt.xlabel("Time")

plt.ylabel("Position (x)")

plt.grid(True)

plt.title("Sample 1D Brownian Trajectories")

plt.show()

Code 1: Simulation of 1D Diffusion

4

2.1 Diffusion in 1D 2 DIFFUSION

Calculate MSD from trajectories

msd = np.mean((trajectory - trajectory[0])**2, axis=1)

Plot raw MSD values

plt.figure(figsize=(8, 4))

plt.scatter(time_array, msd, s=5, color=’red’, alpha=0.6, label="MSD")

plt.xlabel("Time")

plt.ylabel("MSD")

plt.title("Mean Squared Displacement")

plt.grid(True)

plt.legend()

plt.show()

Code 2: Mean Squared Displacement

5

2.1 Diffusion in 1D 2 DIFFUSION

6

2.1 Diffusion in 1D 2 DIFFUSION

from sklearn.linear_model import LinearRegression

import warnings

Suppress divide-by-zero warning from log(0)

warnings.filterwarnings("ignore", message="divide by zero encountered in log")

Prepare log-log data

valid = time_array > 0

log_time = np.log10(time_array[valid]).reshape(-1, 1)

log_msd = np.log10(msd[valid])

Optional: slice fitting range

s = 1

e = -1

log_time_slice = log_time[s:e]

log_msd_slice = log_msd[s:e]

Fit linear regression model in log-log space

model = LinearRegression()

model.fit(log_time_slice, log_msd_slice)

Extract slope and intercept

slope = model.coef_[0]

intercept = model.intercept_

predicted_log_msd = model.predict(log_time_slice)

Plot log-log MSD with linear regression

plt.figure(figsize=(8, 5))

plt.scatter(log_time_slice, log_msd_slice,

edgecolors=’r’, facecolors=’none’, s=8, label=’Log-Log Data’)

plt.plot(log_time_slice, predicted_log_msd, color=’blue’, label=’Linear Fit’)

plt.text(0.6, 0.5,

fr’$\alpha = {slope:.2f}$’,

transform=plt.gca().transAxes,

fontsize=15,

weight=’bold’,

color=’blue’,

verticalalignment=’center’)

plt.xlabel(r’\log_{10}(Time)’, fontsize=12)

plt.ylabel(r’\log_{10}(MSD)’, fontsize=12)

plt.grid(True, which="both", linewidth=0.4, color=’black’)

plt.title("Log-Log Regression of MSD")

plt.legend()

7

2.1 Diffusion in 1D 2 DIFFUSION

plt.show()

Print regression results

print("Log-Log Fit Results:")

print(f" Slope (alpha) = {slope:.4f} (expected ~1.0 for normal diffusion)")

print(f" Intercept (log A) = {intercept:.4f}")

print(f" Prefactor A = {10**intercept:.4f}")

Code 3: Log-Log regression

8

2.2 Diffusion in 2D 2 DIFFUSION

2.2 Diffusion in 2D

Consider a particle moving in a two-dimensional space. Let r (t) be the position of the particle at time

t, given by

r (t) = (x (t) , y (t)) , (2.9)

where x (t) and y (t) are the Cartesian coordinates at time t, each subject to its own diffusion process.

The motion is governed by the SDE’s

dx =
√

2DdBx (t) dy =
√

2DdBy (t) , (2.10)

where Bx (t) and By (t) are two independent Brownian motions. The displacement vector from the

initial position r0 = (x0, y0) is given by

→
r (t)−→

r0 = (x (t)− x0) î + (y (t)− y0) ĵ. (2.11)

Calculating the squared norm yields

∥→r (t)−→
r0∥2 = (x (t)− x0)

2 + (y (t)− y0)
2 . (2.12)

Taking the expectation over all particle trajectories gives the MSD

〈
∥→r (t)−→

r0∥2
〉
=

〈
(x (t)− x0)

2 + (y (t)− y0)
2
〉

(2.13)

=
〈
(x (t)− x0)

2
〉
+

〈
(y (t)− y0)

2
〉

= 2Dt + 2Dt

= 4Dt.

This result confirms that, in two dimensions, the MSD grows linearly with time t.

Simulation The following Python code simulates 2D Brownian motion for multiple particles and

computes the MSD.

9

2.2 Diffusion in 2D 2 DIFFUSION

import numpy as np

import matplotlib.pyplot as plt

Parameters

time = 1000 # Number of time steps

num_particles = 1000 # Number of particles

D = 24.0 # Diffusion coefficient

dt = 0.1 # Time step

num_steps = int(time / dt) # Number of steps based on

Standard deviation of step size based on Brownian motion

step_std = np.sqrt(2 * D * dt)

Initialize positions

positions = np.zeros((num_particles, 2)) # Start at origin (0,0)

trajectory = np.zeros((num_steps, num_particles, 2))

Simulate diffusion

for t in range(num_steps):

steps = np.random.normal(loc=0.0, scale=step_std, size=(num_particles, 2))

positions += steps

trajectory[t] = positions

Compute Mean Squared Displacement (MSD)

msd = np.mean(np.sum((trajectory - trajectory[0])**2, axis=2), axis=1)

Plot sample trajectories

plt.figure(figsize=(8, 6))

num_to_plot = 1 # Number of particles to visualize

for i in range(num_to_plot):

plt.plot(trajectory[:, i, 0], trajectory[:, i, 1], alpha=0.7, label=f"Particle {i+1}")

plt.scatter(trajectory[0, i, 0], trajectory[0, i, 1], color=’green’, marker=’o’, s=50) # Start point

plt.scatter(trajectory[-1, i, 0], trajectory[-1, i, 1], color=’red’, marker=’o’, s=50) # End point

#plt.title("Sample 2D Diffusion Trajectories with Start (green) and End (red)")

plt.xlabel("x")

plt.ylabel("y", rotation=0, labelpad=20)

plt.axis("equal")

plt.grid(True)

#plt.legend()

plt.show()

Plot MSD vs Time

plt.figure(figsize=(8, 5))

plt.plot(np.arange(num_steps) * dt, msd)

10

2.2 Diffusion in 2D 2 DIFFUSION

#plt.title("Mean Squared Displacement (MSD) in 2D")

plt.xlabel("Time")

plt.ylabel("MSD")

plt.grid(True)

plt.show()

Code 4: Simulation of 2D Diffusion

Figure 2.1:

11

2.3 Diffusion in d dimensions 2 DIFFUSION

2.3 Diffusion in d dimensions

In a general d-dimensional space, the position of a particle at time t is

r (t) = [x1 (t) , ..., xd (t)] , (2.14)

where each coordinate xi (t) is subject to a diffusion process. The motion of each coordinate evolves

independently and is governed by it own SDE fo the form

dxi =
√

2DdBi (t) , (2.15)

with Bi (t) representing independent Brownian motions for each spatial direction i = 1, 2, ..., d and

D being the diffusion coefficient. The displacement from the initial position can be described by the

vector
→
r (t)−→

r0 = [x1 (t)− x1 (0) , ..., xd (t)− xd (0)] . (2.16)

The squared norm is given by

∥→r (t)−→
r0∥2 =

d

∑
i=1

[xi (t)− xi (0)]
2 . (2.17)

Taking the expectation over all trajectories yields the MSD

〈
∥→r (t)−→

r0∥2
〉
=

〈
d

∑
i=1

[xi (t)− xi (0)]
2

〉
(2.18)

=
d

∑
i=1

〈
[xi (t)− xi (0)]

2
〉

=
d

∑
i=1

2Dt

= 2dDt.

Another way to present the relationship between MSD and time is

〈
∥r (t)− r0∥2

〉
∝ t, (2.19)

12

3 ANOMALOUS DIFFUSION

which shows that, for simple diffusion process which undergo Brownian motion, the MSD grows

linearly with time for large t.

3 Anomalous Diffusion

Anomalous diffusion is common in biological environments like cells, where obstacles and active

transport processes lead to non-standard particle motion [4, 5]. When referring to the concept of

anomalous diffusion, we mean that the MSD is not linear in time. Instead, the asymptotic behavior of

the MSD scales with time as 〈
∥r (t)− r0∥2

〉
∝ tγ, (3.1)

where γ is a constant such that γ ̸= 1. In the case where γ = 1 we come back to a normal diffusion

process. There are several types of anomalous diffusion.

Sub-Diffusion This is a type of anomalous diffusion where particles spread out slower than expected

based on normal diffusion models. In sub-diffusion, the MSD increases with time according to a

power law where 0 < γ < 1. In the context of biological systems such as cells, this type of diffusion is

characterized by a non-linear relationship between the MSD and time. Specifically, for sub-diffusion,

the MSD grows slower than linearly with time.

Super-Diffusion This is a type of anomalous diffusion where particles spread faster than they would

under normal diffusion. The MSD scales as a power law where 1 < γ < 2. Super-diffusion can occur

in various physical systems and is often observed in complex systems where traditional Brownian

motion does not adequately describe particle trajectories.

Ballistic Diffusion This is a type of anomalous diffusion which describes a physical phenomenon

where particles move with constant velocity, leading to a MSD that scales quadratically with time, cor-

responding to γ = 2. In ballistic diffusion, particles exhibit straight-line motion without experiencing

significant random scattering events typically observed in Brownian motion.

Hyper Ballistic Diffusion This type of anomalous diffusion represents an extreme form of particle

motion, where the MSD increases faster than quadratically with time, corresponding to γ > 2. It is

13

REFERENCES REFERENCES

characterized by particles moving with continuously increasing velocity and persistent acceleration.

In real physical systems, energy resources are finite, making such persistent acceleration impossible.

References

[1] Venkataraman Balakrishnan. “Mathematical physics: applications and problems.” Springer Nature

(2020). 2

[2] Gerrit Gerhartz. “Langevin and Fokker-Planck equation.” In Seminar Theoretical Statistical Physics,

Heidelberg University (2023). 2

[3] Patrick H. Diamond. “Brownian Motion and Langevin Equations.” Lecture Notes for Physics 210B.

https://courses.physics.ucsd.edu/2020/Fall/physics210b/lecture.html (2020). 2

[4] Vasily Zaburdaev, Sergey Denisov, and Joseph Klafter. “Lévy walks.” Reviews of Modern Physics

87, 483-530 (2015). 2, 13

[5] Ralf Metzler, and Joseph Klafter. “The random walk’s guide to anomalous diffusion: a fractional

dynamics approach.” Physics Reports 339, 1-77 (2000).

13

14

	Abstract
	1 Mean Squared Displacement
	2 Diffusion
	2.1 Diffusion in 1D
	2.2 Diffusion in 2D
	2.3 Diffusion in d dimensions

	3 Anomalous Diffusion

	References

