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SARS-CoV-2 is the coronavirus responsible for the current 
COVID-19 pandemic (1, 2). A striking difference between the 
S protein of SARS-CoV-2 and SARS-CoV is the presence, in 
the former, of a polybasic sequence motif, RRAR, at the S1/S2 
boundary. It provides a cleavage site for a host proprotein 
convertase, furin (3–5) (fig. S1A). The resulting two proteins, 
S1 and S2, remain non-covalently associated, with the serine 
protease TMPRSS2 further priming S2 (6). Furin-mediated 
processing increases infectivity and affects the tropism of 
SARS-CoV-2, while furin inhibition diminishes SARS-CoV-2 
entry, and deletion of the polybasic site in the S protein re-
duces syncytia formation in cell culture (3–5, 7). 

The C terminus of the S1 protein generated by furin cleav-
age has an amino acid sequence (682RRAR685), that conforms 
to a [R/K]XX[R/K] motif, termed the ‘C-end rule’ (CendR) 
(fig. S1B) (8). CendR peptides bind to Neuropilin-1 (NRP1) 
and NRP2, transmembrane receptors that regulate plei-
otropic biological processes, including axon guidance, angio-
genesis, and vascular permeability (8–10). To explore the 
possibility that the SARS-CoV-2 S1 protein may associate with 
neuropilins we generated a GFP-tagged S1 construct (GFP-S1) 
(fig. S1C). When expressed in HEK293T cells engineered to 
express the SARS-CoV-2 receptor ACE2, GFP-S1 immunopre-
cipitated endogenous NRP1 and ACE2 (Fig. 1A). We transi-
ently co-expressed NRP1-mCherry and either GFP-S1 or GFP-
S1 ΔRRAR (a deletion of the terminal 682RRAR685 residues) in 

HEK293T cells. NRP1 immunoprecipitated the S1 protein, 
and deletion of the CendR motif reduced this association (Fig. 
1B). Comparable binding was also observed with mCherry-
NRP2, a receptor with high homology to NRP1 (fig. S1, D and 
E). In both cases, residual binding was observed with the 
ΔRRAR mutant indicating an additional CendR-independent 
association between neuropilins and the S1 protein. 

To probe the functional relevance of this interaction, we 
generated HeLa wild type and NRP1 knock out (KO) cell lines 
stably expressing ACE2, designated as HeLawt+ACE2 and 
HeLaNRP1KO+ACE2 respectively (the level of ACE2 expression 
was comparable between these lines) (fig. S1F). Using a clini-
cal isolate SARS-CoV-2 (SARS-CoV-
2/human/Liverpool/REMRQ001/2020), we performed viral 
infection assays and fixed the cells at 6 and 16 hours post in-
fection (hpi). SARS-CoV-2 infection was reduced in 
HeLaNRP1KO+ACE2 relative to HeLawt+ACE2 (Fig. 1C). HeLa 
cells lacking ACE2 expression were not infected (fig. S1G). In 
Caco-2 cells, a human colon adenocarcinoma cell line endog-
enously expressing ACE2 and widely used in COVID-19 stud-
ies, the suppression of NRP1 expression by shRNA greatly 
reduced SARS-CoV-2 infection at both 7 and 16 hpi respec-
tively, whereas that of vesicular stomatitis virus (VSV) 
pseudotyped with VSV-G was unaffected (Fig. 1D and figs. 
S1H and S2A). To determine if NRP1 was required for early 
virus infection, we established a sequential staining 
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SARS-CoV-2, the causative agent of COVID-19, uses the viral Spike (S) protein for host cell attachment and 
entry. The host protease furin cleaves the full-length precursor S glycoprotein into two associated 
polypeptides: S1 and S2. Cleavage of S generates a polybasic Arg-Arg-Ala-Arg C-terminal sequence on S1, 
which conforms to a C-end rule (CendR) motif that binds to cell surface Neuropilin-1 (NRP1) and Neuropilin-
2 (NRP2) receptors. Here, we used X-ray crystallography and biochemical approaches to show that the S1 
CendR motif directly bound NRP1. Blocking this interaction using RNAi or selective inhibitors reduced 
SARS-CoV-2 entry and infectivity in cell culture. NRP1 thus serves as a host factor for SARS-CoV-2 
infection and may potentially provide a therapeutic target for COVID-19. 
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procedure using antibodies against SARS-CoV-2 S and N pro-
teins to distinguish extracellular and intracellular viral parti-
cles (fig. S2B). While NRP1 depletion did not affect SARS-
CoV-2 binding to the Caco-2 cell surface (Fig. 1E), virus up-
take was halved in NRP1-depleted cells compared to control 
cells after 30 min of internalization (Fig. 1F). Thus, NRP1 en-
hances SARS-CoV-2 entry and infection. 

We also observed that SARS-CoV-2-infected HeLawt+ACE2 
cells displayed a multi-nucleated syncytia cell pattern, as re-
ported by others (Fig. 1C) (5). Using an image analysis algo-
rithm and supervised machine learning (fig. S2, C to F) (11), 
we quantified syncytia of infected HeLawt+ACE2 and 
HeLaNRP1KO+ACE2 cells. At 16 hpi, the majority of 
HeLawt+ACE2 cells formed syncytia, while in 
HeLaNRP1KO+ACE2 cells this phenotype was reduced (fig. S2G). 
When infected with a SARS-CoV-2 isolate lacking the furin 
cleavage site (SARS-CoV-2 ΔS1/S2) (fig. S1A) the differences 
in infection and syncytia formation were less pronounced 
(fig. S2, H and I). However, a significant decrease in infection 
of HeLaNRP1KO+ACE2 was still observed at 16 hpi, indicating 
that NRP1 may additionally influence infection through a 
CendR-independent mechanism (fig. S2H). 

The extracellular regions of NRP1 and NRP2 are com-
posed of two CUB domains (a1 and a2), two coagulation fac-
tor domains (b1 and b2), and a MAM domain (9). Of these, 
the b1 domain contains the specific binding site for CendR 
peptides (fig. S3A) (12). Accordingly, the mCherry-b1 domain 
of NRP1 immunoprecipitated GFP-S1, and a shortened GFP-
S1 construct spanning residues 493-685 (figs. S1C and S3B). 
Isothermal titration calorimetry (ITC) established that the b1 
domain of NRP1 directly bound a synthetic S1 CendR peptide 
(679NSPRRAR685) with an affinity of 20.3 μM at pH 7.5, which 
was enhanced to 13.0 μM at pH 5.5 (Fig. 2A). Binding was not 
observed to a S1 CendR peptide in which the C-terminal argi-
nine was mutated to alanine (679NSPRRAA685) (Fig. 2A). We 
co-crystallized the NRP1 b1 domain in complex with the S1 
CendR peptide (Fig. 2B). The resolved 2.35 Å structure re-
vealed 4 molecules of b1 with electron density of the S1 CendR 
peptide clearly visible in the asymmetric unit (fig. S3C). S1 
CendR peptide binding displayed remarkable similarity to 
the previously solved structure of NRP1 b1 domain in complex 
with its endogenous ligand VEGF-A164 (Fig. 2B and fig. S3D) 
(12). The key residues responsible for contacting the C-termi-
nal R685 of the CendR peptide - Y297, W301, T316, D320, 
S346, T349 and Y353 - are almost identical between the two 
structures (Fig. 2B and fig. S3D). The R682 and R685 
sidechains together engage NRP1 via stacked cation-π inter-
actions with NRP1 side chains of Y297 and Y353. By project-
ing these findings onto the structure of the NRP1 ectodomain, 
the b1 CendR binding pocket appears to be freely accessible 
to the S1 CendR peptide (fig. S3E) (13). 

Site-directed mutagenesis of the S1 R685 residue to 

aspartic acid drastically reduced GFP-S1493-685 immunoprecip-
itation by mCherry-b1, confirming the critical role of the C-
terminal arginine (Fig. 2C). Mutagenesis of the T316 residue 
within the mCherry-b1 domain of NRP1 to arginine also re-
duced association with GFP-S1493-685, consistent with its inhib-
itory impact on VEGF-A164 binding (12) (Fig. 2D). Accordingly, 
incubation of mCherry-b1 with VSV particles pseudotyped 
with trimeric S resulted in immunoprecipitation of processed 
forms of S1, which was dependent on the T316 residue (fig. 
S3F). Next, we transiently expressed either GFP, full length 
NRP1 wt-GFP or full length NRP1-GFP harboring the T316R 
mutation in HeLaNRP1KO+ACE2 cells. GFP expression and 
ACE2 expression levels were comparable and both constructs 
retained similar cell surface localization (fig. S3, G and H). 
SARS-CoV-2 infection was significantly enhanced in cells ex-
pressing NRP1 wt-GFP compared to GFP control, whereas it 
was not enhanced in cells expressing the T316R mutant (Fig. 
2E). Thus, the SARS-CoV-2 S1 CendR and NRP1 interaction 
promotes infection. 

To establish the functional relevance of the S1 CendR-
NRP1 interaction, we screened monoclonal antibodies 
(mAb#1, mAb#2, mAb#3) raised against the NRP1 b1b2 ecto-
domain. All three bound to the NRP1 b1b2 domain, displayed 
staining by immunofluorescence in NRP1-expressing PPC-1 
(human primary prostate cancer) cells but not in M21 (hu-
man melanoma) cells that do not express NRP1 (fig. S4A) (8), 
and stained the extracellular domain of NRP1-GFP expressed 
in cells (fig. S4B). Of these antibodies, mAb#3, and to a lesser 
extent mAb#1, bound to the CendR-binding pocket with high 
specificity, as defined by reduced ability to bind to a b1b2 mu-
tant that targets residues (S346, E348, T349) at the opening 
of the binding pocket (Fig. 3A) (12). Incubation of Caco-2 cells 
with mAbs#1 and 3, reduced SARS-CoV-2 infection compared 
to a control mAb targeting avian influenza A virus (H11N3) 
hemagglutinin (Fig. 3B). Consistent with this, mAb#3 inhib-
ited binding of GFP-S1493-685 and mCherry-b1 (Fig. 3C). As a 
comparison, Caco-2 and Calu-3 cells were incubated with sol-
uble ACE2, which inhibited SARS-CoV-2 infection in both 
cases (fig. S4C). 

Next, we turned to the small molecule EG00229, a selec-
tive NRP1 antagonist that binds the b1 CendR binding pocket 
and inhibits VEGF-A binding (Fig. 3D) (14). ITC established 
that EG00229 bound to the NRP1 b1 domain with a Kd of 5.1 
and 11.0 μM at pH 7.5 and 5.5 respectively (Fig. 3E). EG00229 
inhibited the direct binding between b1 and the S1 CendR 
peptide, and the immunoprecipitation of GFP-S1493-685 by 
mCherry-b1 (Fig. 3E and fig. S4D). Finally, incubation of 
Caco-2 cells with EG00229 reduced the efficiency of SARS-
CoV-2 infection at 7 and 16 hpi (Fig. 3F). Thus, the SARS-CoV-
2 interaction with NRP1 can be targeted to reduce viral infec-
tivity in relevant human cell lines (fig. S5). 

Cell entry of SARS-CoV-2 depends on priming by host cell 
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proteases (5, 6, 15). Our data indicate that a component of 
SARS-CoV-2 S protein binding to cell surface neuropilins oc-
curs via the S1 CendR motif generated by the furin cleavage 
of S1/S2. While not affecting cell surface attachment, this in-
teraction promotes entry and infection by SARS-CoV-2 in 
physiologically relevant cell lines widely used in the study of 
COVID-19. The molecular basis for the effect is unclear, but 
neuropilins are known to mediate the internalization of 
CendR ligands through an endocytic process resembling 
macropinocytosis, (8, 16, 17). Interestingly, gene expression 
analysis has revealed an up-regulation of NRP1 and NRP2 in 
lung tissue from COVID-19 patients (18). A SARS-CoV-2 virus 
with a natural deletion of the S1/S2 furin cleavage site 
demonstrated attenuated pathogenicity in hamster models 
(19). NRP1 binding to the CendR peptide in S1 is thus likely 
to play a role in the increased infectivity of SARS-CoV-2 com-
pared with SARS-CoV. The ability to target this specific inter-
action may provide a route for COVID-19 therapies. 
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Fig. 1. NRP1 Interacts with S1 and enhances SARS-CoV-2 infection. (A) HEK293T cells transduced to express 
ACE2 were transfected to express GFP or GFP-tagged S1 and lysed after 24h. The lysates were subjected to 
GFP-nanotrap and the immune-isolates were blotted for ACE2 and NRP1 (N=3). (B) HEK293T cells were co-
transfected to express GFP-tagged S1 or GFP-S1 ΔRRAR and mCherry or mCherry-tagged NRP1 and subjected 
to GFP-nanotrap (N=5). Two-tailed unpaired t-test; P= 0.0002. (C) HeLawt+ACE2 and HeLaNRP1 KO+ACE2 cells 
were infected with SARS-CoV-2. Cells were fixed at 6 or 16 hpi and stained for N protein (magenta) and Hoechst 
(cyan), and virus infectivity was quantified (N=3). Two-tailed unpaired t-test; P=0.00002 and 0.00088. Scale 
bar=200 μm. (D) Caco-2 cells expressing shRNA against NRP1 or a non-targeting control (SCR) were infected 
with SARS-CoV-2 and fixed at 7 or 16 hpi. The cells were stained for N protein (magenta) and Hoechst (cyan), 
and infectivity was quantified (N=3). Two-tailed unpaired t-test; P=0.0005 and 0.00032. Scale bar=500 μm. 
(E) Caco-2 shSCR or shNRP1 cells were inoculated with MOI=50 of SARS-CoV-2 and incubated in the cold for 
60 min, and fixed. A two-step antibody staining procedure was performed using anti-S and -N Abs to distinguish 
external (green) and total (red) virus particles, and the binding of particles per cell was quantified for over 3300 
particles per condition (N=3). Two-tailed unpaired t-test; P=0.6859. (F) Caco-2 shSCR or shNRP1 cells were 
bound with SARS-CoV-2 as in (E), followed by incubation at 37 °C for 30 min. The cells were fixed and stained 
as in (E). Viral uptake was quantified for over 4200 particles per condition (N=3). Two-tailed unpaired t-test; 
P=0.00079. Scale bars for (E) and (F) = 10 μm and 200 nm (zoom panels). The square regions were zoomed in. 
The bars, error bars, circles and triangles represent the mean, SEM (B) and SD (C-F), individual data points, 
respectively. ∗P< 0.05, ∗∗P< 0.01, ∗∗∗P< 0.001, ∗∗∗∗P< 0.0001. 
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Fig. 2. Molecular basis for CendR binding of SARS-CoV-2 S1 with NRP1. (A) Binding of NRP1 b1 with native 
(green line) and mutant (orange line) form of S1 CendR peptide (corresponding to residues 679-685) by ITC at 
two different pH conditions (N=3). All ITC graphs represents the integrated and normalized data fit with 1-to-1 
ratio binding. (B) Left: NRP1 b1 – S1 CendR peptide complex superposed with NRP1 b1 – VEGF-A fusion complex 
(PDB ID: 4DEQ). Bound peptides are shown in stick representation. RMSD = root mean square deviation. Right: 
Enlarged view highlighting the binding of S1 CendR peptide b1. Key binding residues on b1 are shown in stick 
representation. (C). HEK293T cells were co-transfected with combinations of GFP-tagged S1493-685 and S1493-685 
R685D, and mCherry or mCherry-NRP1 b1, and subjected to mCherry-nanotrap (N=5). Two-tailed unpaired t-
test; P <0.0001. (D). HEK293T cells were co-transfected with combinations of GFP-tagged S1493-685 and 
mCherry, mCherry-NRP1 b1 or mCherry-NRP1 b1 T316R mutant and subjected to mCherry-nanotrap (N=5). 
Two-tailed unpaired t-test; P <0.0001. (E) HeLaNRP1KO + ACE2 cells transfected with GFP, NRP1 wt-GFP or NRP1 
T316R-GFP constructs were infected 24 h later with SARS-CoV-2. At 16 hpi the cells were fixed and stained for 
SARS-CoV-2-N, and viral infection quantified in the GFP-positive subpopulation of cells (N=3). The percentage 
of infection was normalized to that of GFP-transfected cells. Two-tailed unpaired t-test; p = 0.002. The bars, 
error bars and circles represent the mean, SEM (C-D) and SD (E), individual data points, respectively. ∗P< 0.05, 
∗∗P< 0.01, ∗∗∗P< 0.001, ∗∗∗∗P< 0.0001. 
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Fig. 3. Selective inhibition of the S1-NRP1 interaction reduces SARS-CoV-2 infection. (A) ELISA of anti-NRP1 
monoclonal antibodies (mAb#1, mAb#2, mAb#3) at 3 μg/mL using plates coated with NRP1 b1b2 wild type, 
b1b2 mutant (S346A, E348A, T349A) or BSA, used as control (N=3). Binding is represented as arbitrary units 
of absorbance at 655 nm. Two-tailed unpaired t-test; P = 0.0207, 0.2430, 0.0007. (B) Cells were pre-treated 
with 100 μg/mL of anti-H11N3 (Ctrl) mAb, mAb#1, 2 or 3 for 1 h prior to infection with SARS-CoV-2. Cells were 
fixed at 16 hpi and stained for N protein (magenta) and Hoechst (cyan) (N=3). Two-tailed unpaired t-test; 
P=0.015, 0.36, 0.0003. Scale bar=500 μm. (C) HEK293T cells were co-transfected with combinations of 
mCherry or mCherry-b1 and GFP-tagged S1493-685 and subjected to mCherry-nanotrap with or without co-
incubation with mAb#3 (N=3). Two-tailed unpaired t-test; P = 0.0143. (D) NRP1 b1 – S1 CendR peptide complex 
superimposed with NRP1 b1 – EG00229 inhibitor complex (PDB ID:3I97). Key binding residues on b1, bound 
peptides and EG00229 are shown in stick representation. (E) ITC analysis of EG00229 binding to b1 domain of 
NRP1 at two different pH conditions. Pre-incubation with EG00229 blocks S1 CendR peptide binding (orange 
line), and the CendR peptide can reduce binding of EG00229 (green line). (N=3). All ITC graphs represents the 
integrated and normalized data fit with 1-to-1 ratio binding. (F). Cells were pre-treated with 100 μM of EG00229 
or DMSO prior to infection with SARS-CoV-2. Cells were fixed at 7 and 16 hpi and stained for N protein (magenta) 
and Hoechst (cyan) (N=3). The square region was zoomed in. Scale bars=500 μm and 100 μm (zoom panel). 
Two-tailed unpaired t-test; P = 0.0059 and 0.0013. The bars, error bars, circles and triangles represent the 
mean, SEM (C) and SD (A, B, F) and individual data points, respectively. ∗P< 0.05, ∗∗P< 0.01, ∗∗∗P< 0.001, 
∗∗∗∗P< 0.0001. 
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