
Paul Barde BoTS - Technical brief - February 24, 2025

Technical Brief : Boater Traffic Simulator (BoTS).

The purpose of this document is to provide a summary of the state of the BoTS project at the time I am ending
my postdoc on December 1, 2024. It provides, alongside the code and documentation, the necessary information for
someone to resume the project where I left it. Importantly, this document is not meant to be a research paper and is
thus not written with the corresponding standards in mind.

I have initiated and worked on this project with Clément and James for about a year. This document is
complementary to the code and documentation1, raw datasets2 and reproducibility models3.

1 Overview of the project
1.1 High-level objective
We aim to learn a fine-grained and controllable boater traffic simulator from the AIS data and Camille Kowalski’s
beluga-boater interaction model.

• Fined-grained: we want to generate traffic at the individual agent/trajectory level (individual (x, y, t) sequences
for each trip). This will enable us to compute a precise “noise budget” of “which boats impact which belugas,
where and when” (once coupled with a spatio-temporal explicit agent based model of belugas, and the noise
generation and propagation modules).

• Controllable: we want to use BoTS to investigate counterfactuals (“what if” questions) and asses the effect
of regulation policies. This requires to be able to condition the model on contexts of interest (weather, speed
limits, destination, etc.), generate coherently the remaining of the context (trip duration for instance) and
generate coherent trajectories for that complete context. It also requires that a trajectory takes into account
observables entities (coasts, speed limitation areas, belugas, etc.).

1.2 Overview of the data
Currently, we have two datasets:

• ptsAISB20182019_crs32187.csv: 312 AIS ids, 2451 trips, 2.4M points between May 2021 to October 2022.
• ptsAISB20212022_crs32187_v3.csv: 186 AIS ids, 1331 trips, 680k points between May 2018 to October 2019.

Figure 1: AIS data illustration.

An illustration of the validation dataset produced
after processing ptsAISB20182019_crs32187.csv (i.e.,
15% of the trips) is shown in Figure 1. As illustrated,
each data point contains information related to:

• navigation plan (departure location and time,
arrival location and time, boat characteristics, etc.)

• weather (temperature, wind, rain, tide, etc.)
• current state (location and time)
• future displacement (vector drom current loca-

tion to next location).

For simplicity we will regroup navigation plan and
weather into what we call context.

You can find and download an interactive .html file
of this plot4.

1https://github.com/PBarde/boater_project.git
2https://huggingface.co/datasets/boater-lisse/boater_raw_data/tree/main
3https://huggingface.co/boater-lisse/reproductibility_models/tree/main
4https://drive.google.com/file/d/1UC0GEPufW9d4DwFDF9AOQ-5Wh6KhE3eA/view?usp=drive_link
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1.3 High-level methodology
The BoTS project is part of the 3MTSim overarching project (see Figure 2 (a) for illustration). Specifically, BoTS
focuses on integrating the simulation of recreational boaters and their interactions with marine-mammals in 3MTSim.
To do this, we propose a hierarchical two-level boater model. The trajectory level model (TLM) is a Machine
Learning AIS trajectory generator, it allows capturing the complexity of boaters behaviors and efficiently producing
high-resolution trajectories directly from the AIS dataset. Yet, it is not very controllable in the sense that we do
not have a lot of control over the specific boater behavior (i.e., to test different reactions to regulations, whales,
etc.) nor does TLM detect or react to other 3MTSim agents (such as whales); indeed, it is solely derived from
recorded trajectories for which we do not have information about the corresponding whale activity. Thus, TLM will
be complemented with an interaction level model (ILM) which is triggered every time we detect a co-occurrence
between a boater agent and a whale agent in 3MTSim (similar locations at similar time) Note that ILM could also be
triggered if the boater enters a navigation restricted zone to test different speed/acceleration reactions. ILM is a
ruled-based model that follows Camille Kowalski’s interaction patterns (follow whale, turn-off engine, etc.). Once the
interaction phase is terminated, we transition back from ILM to TLM and TLM recomputes an adapted trajectory to
meet the navigation plan from the perturbed state (due to the interaction with the whale). The two-level model is
illustrated in Figure 2 (b).
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Figure 2: (a) Illustration of the simplified 3MTSim workflow. It takes as inputs some conditions (whale and ship specifications,
navigation constraints, etc.) and simulates boat and whale agents in the environment to estimate the cumulative noise received
by the whales. (b) BoTS two-level Boaters model. The high-level data-driven model (TLM) generates boaters trajectories. If
we detect a co-ocurrence between a boater trajectory and a whale agent, we transition to the low-level rule based whale-boater
interaction model (ILM). Once the interaction phase is completed, we transition back to the high-level model and update the
trajectory to meet the requirements of the navigation plan.

1.4 Project limitations
• The trajectory-level model (TLM) is solely based on AIS data, so we do not model nor account for boats that

are not equipped with AIS, such as small fishing boats.
• Since that boats were recorded likely encountered whales, AIS trajectories already incorporate whale-boat

interactions. Yet, we ignore this interaction signal in the AIS data since we cannot tie it to any recorded whale
activity for the moment.

1.5 Current state of the project
Currently, we have a TLM model that is able to generate trajectories from a given context. Some trajectories collide
with the coasts, so we have to filter out approximately 7% of the trajectories generated on context that were never
seen during training. For known context this proportion is close to 1%. The generated trajectories produce a traffic
density that matches the ground-truth traffic densities. We will give more details on the model performance in
Section 2.6.
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1.6 Next steps
1.6.1 For TLM

• Check with collaborators that the generated trajectories are satisfactory (check densities, speed profiles, and ask
what other metrics would be of interest).

• Make TLM robust to state perturbation and trajectory replanning (when transitioning back from ILM). To
do this, I think we can simply modify TLM training such that any point on a trajectory can serve as initial
context.

• Create a context generator that can produce a context from scratch or from a partially defined context. We
can look into ideas from language modelling for that, for instance using a small transformer architecture to fill
in the blanks in masked contexts.

1.6.2 For ILM

• See with Camille if her theoretical interaction model is ready and implement it as rule-based model inside
3MTSim.

1.6.3 Integration in 3MTSim

• I believe what would be best would be a client-server interface between a TLM server API that sends boater
trajectories (context, list of current state) to the 3MTSim client. 3MTsim detects agents co-ocurrences and
runs ILM. Once interactions are done, 3MTSim queries the TML API with the current perturbed (context,
current state) to get an updated trajectory it can play. This will require some synchronous execution of
3MTSim code when querying TLM for trajectories (i.e., the time loop in 3MTSim will have to wait for the
updated trajectories).

2 Methodology details
2.1 Data
2.1.1 Data processing

You will find all the details and processing scripts under boater_data/ais_data/data_processing/. In brief we do
(please refer to the code for more details):

• We project the positions from EPSG:32187 to EPSG:32619 (I do not really remember the rationale behind this
choice and it could be revisited but I believe it is because the second projection is more common and better
supported in the different libraries).

• We relabel the entries for clarity and consistency.
• We remove duplicated points.
• We clean and remove outlier points with a variety of processing:

– For consecutive points in a trajectory that are very close to each other in location (<2 m), we keep the
oldest point.

– for consecutive points in a trajectory that are very close to each other in time (<5 s), we keep the point that
is better aligned with the previous and next points. For the points are at the start or end of a trajectory,
we keep the point which location yields the smaller velocity. If we have multiple consecutive segments with
the same time stamp, we iteratively remove the first point of the segments that yield a too big velocity
(> 26 m/s, 50 knots, 100 km/h). After this, we iteratively remove the first point of segments such that
there are no consecutive points with less than 5s between them. Finally, we drop the points with too big a
velocity (> 26 m/s).

• We linearly interpolate the trajectories to get a point every 2 minutes. We remove the trips which interpolation
leads to collision with the coasts (we could avoid this by running a path planning algorithm to avoid collisions
during the interpolation).

• We preprocess the variables to get either discrete ids (like start and end area names) or continuous variable (we
use a sine and cosine to express the day of the year, for instance). We also normalize the quantities either with
(mean, std) or max values.
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2.1.2 Additional inputs

Note that we also compute some additional inputs to the model from the data:

• We compute the future displacement and normalize it, we also create a done flag that indicates if a point is
the last of the trajectory.

• We compute the vector from the current position to the end position in normalized position space (we call it
delta to end position). We also compute the time remaining for each point using the trip duration and the
elapsed time.

• We compute the lidar distance for each point (see description below).

Lidar distances: for each point in a trajectory we cast lidar rays at angles (0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦,
315◦). For each ray, if it intersects with a coastline at a distance below 500 m we report this distance, otherwise we
report 500 m. Sections of trajectories with lidar distances displayed are shown in Figure 3.

Now, because inputs to the model are in normalized position space, we have to normalize the lidar distances. Note
that since the normalization is different between the x and y coordinates (the mean and std values are different) the
resulting normalized rays are at different angles in normalized space than in the reference space. This is illustrated in
Figure 3 (c).

Finally, computing ray-coast intersections on the fly during training is compute-intensive and slows down training
prohibitively. To palliate to this, we precompute the lidar rays distance on a grid covering the whole domain and then
use nearest neighbor to estimate the lidar distances for a point on a grid. This is illustrated in Figure 4.

You will find all the details under boater_data/ais_data/lidar/ and boater_data/ais_data/gridmaps/dis-
tance_maps/

(a) (b) (c)

Figure 3: Trajectories with lidar distances displayed. Distances are blue if the point is in the water and red if the point is
on the land (collision). (a) Trajectories where one of them has been shifted to collide with the coastline. (b) Zoom near the
coastline, note that the lidar rays capture the distance from the boat to the coastline across different angles. (c) Lidar angles
are distorted in the normalized space because the scaling for the x and y coordinates differ (due to different std). Red shows
the rays in reference space and blue in normalized space
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(a) (b)

Figure 4: Cached lidar distances on a grid. The grid resolution is coarser than in the actual trainings to avoid visual cluttering.
(a) A zoomed portion of the domain for which lidar distance are calculated. We do not compute distance for a point further
than 500 m away from the coast (we will use a default value of 500 m anyway). Distances are negative and displayed in red if
inside the coast. (b) Illustration of nearest neighbor on the grid, points take the value of the center point of the grid square
they are in.

2.1.3 Notations

• context , c
• current state , s
• future displacement , ∆
• done , d
• (·)t , quantity (·) at timestep t
• (·){:t} , sequence of (·)t from timestep 0 to timestep t

• (̃·) denotes an approximation of quantity (·) as produced by our model.

2.1.4 Dataset splits

We split into training/validation/test datasets while trying to maintain 70%/15%/15% ratios in terms of number of
points, trips, and AIS ids.

2.1.5 Data artifacts

As discussed with Jean-François Senécal there are some artifacts in the data (probably introduced by the extraction
scripts on the rawest data previous to the .csv files). We have for instance duplicated points, point with exact same
positions but different timestamps, or point with same time stamps but different positions (infinite velocity). Also,
points are removed from marinas even if the boat just passes through it without ending or starting the trip.
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2.2 The model
The model is quite simple, it takes as inputs two kind of values:

• continuous inputs: ’positions’, ’trip_weather_floats’, ’start_time_floats’, ’trip_duration’,
’elapsed_time’, ’start_position’, ’end_position’, ’lidar_distances’, ’delta_to_end_position’, ’time_re-
maining’

• discrete (or categorical) inputs: ’type_of_ship’, ’start_area’, ’end_area’, ’main_area’, ’tide’,
’start_day_of_the_week’

The model is illustrated in Figure 5. The discrete inputs are passed into Embedding layers to be converted into
float representations, then they are concatenated with the continuous inputs and passed to a Linear layer that is fed
to the Torso module. The Torso is either:

• a sequence of Linear + ReLu + Dropout layers, in which case we call the model “plain” and denote it MLP .
• a sequence of GRU layers5 (also with dropout) in which case we call it “GRU” and denote it GRU .

You will find all the details in boater_algo/actors.py. The outputs of the Torso are then processed by two independent
heads (comprised of Linear, ReLu, and potentially Sigmoid layers) to produce the model outputs that are the future
displacement and the done flag.
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Figure 5: Model architecture. Inputs are in gray, trainable parameters in green and targets in red.

The plain model looks only at the context and the current state to produce the current future displacement
and current done, or to put it mathematically:

∆̃t, d̃t = MLP (ct, st) = MLP (c, st)

On the other hand, the GRU model looks at the whole past trajectory:

∆̃t, d̃t = MLP (c{:t}, s{:t})

Note that ct = c ∀t, meaning that the context for a given trajectory is the same regardless of the timestep (navigation
plan and weather are trip-wise quantities and do not vary during the trip).

2.3 The losses
To train the model, we use the following losses:

• L2 loss for the future displacement: L∆(∆t, ∆̃t) = ||∆t − ∆̃t||2

• Binary cross entropy for the done flag : Ld(dt, d̃t) = −
(
ptdt log(d̃t) + (1− dt) log(1− d̃t)

)
, pt is a weight to

trade off recall and precision by adding weight to positive examples, indeed we only have one positive example
(done) per trajectory so we set pt to the trajectory length if dt = 1 otherwise we set it to 1. Finally, we use
label-smoothing on dt with coefficient α: dt = dt × (1− α) + 0.5× α

Finally, since both losses impact the torso, we scale their magnitude to be the same before each backpropagation, see
boater_algo/actors.py for more details.

5https://pytorch.org/docs/stable/generated/torch.nn.GRU.html
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2.4 Generating trajectories
Once the model is trained we can use it to generate a trajectory autoregressively: we can get s0 from c and use our
model to get ∆0, then adding ∆0 to s0 we get s1, and so on and so forth...

s̃t = s̃t−1 + ∆̃t−1 = s̃t−1 +MLP (c, s̃t−1)

The above equation can be regressed all the way to s0 which is given by the context c. The same can be done for
the GRU model.

2.5 Teacher forcing
We see that there is a discrepancy between training and the usage we will make of the model. Indeed, during training
the model always takes as inputs the “true" values st (that is, the values that are present in the dataset). On the
other hand, when we use the model to generate trajectories, it has to produce ∆̃t and d̃t by looking at the estimated
quantity s̃t it just produced. This will likely result in compounding errors during generation that have not been
addressed during training. Using the ground truth quantity st−1 as input during training, regardless of the value of
s̃t−1, is referred to as “teacher forcing”.

We investigated and implemented a version (traj_plain) where we do not use teacher forcing at every step,
but instead we keep s̃t−1 as input with a given probability. This resulted in a much slower training (we have to
autoregressively generate trajectories during training while retaining the compute graph across time steps) without
significant performance benefits (but this might be due to overfitting, see. Section 2.7).

2.6 Evaluation
The main problem I had during the evaluation was collisions with the coast. I implemented a “bouncing” mechanism
such that boats will bounce off the coast during trajectory generation (like for elastic collisions) but it ended-up in
boats getting stuck in concave coast areas (like bays). So eventually, I decided to just filter out trajectories with
collisions based on a threshold (see. boater_algo/results_vizualization). This results in rejecting approximately
8% of trajectories for test and validation datasets.

We can then visualize representative trips on each dataset, as well as the traffic density corresponding to the
trajectories (true vs. generated). Some of these visualizations are displayed in Figures 6,7 and 8, for more details go
to boater_algo/results_vizualization.

2.7 Potential next steps to improve the model performance
• train with dropout for traj_plain to avoid overfitting (see Section 2.5).
• to speed up traj_plain, enable it only after full teacher-forcing training has converged (see Section 2.5).
• to avoid collisions, we could add an adversarial loss (i.e., GAN training) where the discriminator looks at

whole trajectories and the generator backpropagates through it. In that case, the generator has to produce the
trajectories without teacher forcing and retrain the computational graph.

• collaborators were suggesting using tides at start/end marina locations and times instead of mean overall tide.
• additional metrics could be used to assess the quality of the generated trajectories, for instance we could look at

how the per-boat-type-speed-profiles are reproduced.

2.8 Final remarks
You will find a lot of resources and details in the code and the boater_project/README.md. There is also a folder
boater-figs6 that contain a lot of .html images of results and analysis that can be generated with the code. Finally,
the trainings reproducing the current results can be found on HuggingFace7. Finally, do not hesitate to reach out to
me paul.b.barde@gmail.com.

6https://drive.google.com/file/d/1geHD9Ypqj8ZwK1X8htKMkpHihpOvG8Rz/view?usp=sharing
7https://huggingface.co/boater-lisse/reproductibility_models/tree/main
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Figure 6: True trips (red) vs. generated ones (blue) for different levels of performance (worst, median, and best) for the
different datasets (train, validation, and test).
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Figure 7: True traffic density (left) vs. generated (middle) vs. differences (right) for the different datasets (rows). We see that
our model tend to underestimate traffic in the Saguenay fjord (probably due to filtering out colliding trajectories in this narrow
canal).
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Figure 8: Jensen-Shannon Divergence (JSD) between datasets’ traffic densities (left) and JSD between generated and true
traffic densities (right). We see that the worst generating divergence (2.33%) is close to the worst divergence between true
datasets (2.63%).
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