-

XML and JSON
Recipes for SQL
Server

A Problem-Solution Approach

Ready-to-run solutions
for busy developers

Alex Grinberg
\ Apress:

XML and JSON
Recipes for SQL
Server

Alex Grinberg

Apress®

XML and JSON Recipes for SQL Server

Alex Grinberg
Richboro, Pennsylvania, USA

ISBN-13 (pbk): 978-1-4842-3116-6 ISBN-13 (electronic): 978-1-4842-3117-3
https://doi.org/10.1007/978-1-4842-3117-3

Library of Congress Control Number: 2017962636
Copyright © 2018 by Alex Grinberg

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the

date of publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Jonathan Gennick
Development Editor: Laura Berendson
Technical Reviewer: Michael Coles
Coordinating Editor: Jill Balzano

Copy Editor: Karen Jameson
Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media,
LLC is a California LLC and the sole member (owner) is Springer Science + Business Media
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit
http://www.apress.com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book's product page, located at www.apress.com/
9781484231166. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-3117-3
orders-ny@springer-sbm.com
www.springeronline.com
rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
www.apress.com/
9781484231166
www.apress.com/
9781484231166
http://www.apress.com/source-code
http://www.apress.com/source-code

This book is dedicated to my parents and Chante Silva.
You have left a light forever in our hearts and will not be forgotten.

Contents

About the AULNOLcoirremeiirremneirrrener s enn s nnn e nnnnnnns Xix
About the Technical REVIEWETcuureeessrrremmssssssnssssssssnsssssssnssssnsnnnnns XXi
Acknowledgments.......ccuseemmnnmssnnnnmsssssnnmmssssssssmssssssneesssssnsessssnnnns Xxiii

Part I: XML in SQL Servercccceumremessmmsmsssssssssssnssssssnnns 1

Chapter 1: Introducing XML..........ccccimmmsnmmmmmmsssssnnmmsssssnnmsssssnsnsssssnns 3
Stepping iNto XML ... 3
SaMPIE DALADASE.........cceeeeereerererer e na e e e sae e naen 4
UNderstanding XMLcoeocveeerererererererere e sesseres e ssesesaesessesassessssesassesssnsssesasaens 4
Entitizing XML CRAraCerscccoeveeererereerereereresersesesessesessesessesassessssessssessensssenessens 6
Exploring the XML Data TYPEceeeeererereerereererereresesersesessesessesessessssessssesssnsssensssens 7
1-1. Creating an Untyped XML COluMNcoocereeriereririererseee e 8
PrODIBM ... 8
LS T0] (o] SRS 8
Ly (0 L G 10
1-2. Creating an XML Schema in Visual Studiocccceeverercercennnne. 11
L (0] 1T | ST S 11
0] 11110 o PSP 11
HOW [EWOTKS......coeeeeceereecer e 13
1-3. Creating an XML Schema from SSMScccccvvvrrrvrvnrennenienne 14
Lo (0] [T 1 14
RS0] 1] 15
HOW HEWOEKS.......coveereceresesersse e s sns s sse e ssssssssessssessssessssssssnsnnenes 16

CONTENTS

1-4. Binding XML to a Schema Collection..........ccccevvvrvrrercercensersenenne 18
PIODIBIM «..vvoeveeereeseeesseeesssessssesssssessssesssssnssssessssssssssesssssssssnssssssssssnssssmssssmssssssssanees 18

E3 0] 11 (o] PP 18
HOW EWOTKS.....rvvsreessresseesssesssssssssssssssssssssnssssssssssessssssssssssssssssssmssssssssssssssssssanees 19
1-5. Creating a Typed XML Column...........ccoovvveeriennccrienensessssesesenennas 20
PrODIBIM ... s 20

0] 10 3 OO 21
HOW IEWOIKS.......cotieeeciete e 21
1111] 112 SRS 22
M Chapter 2: Building XML........cccusmmmssanmmsssnsssssnsssssssssssssssssnsssssnsesss 23
Fixing the “Unable to Show XML” EFTOrccccceereerceriercerrescesseses e 24
2-1. Converting Relational Data to a Simple XML Format...........c......... 26
PrODIBIM «..vvoevesereeseeesseeesssesssesssssessssessssensssssssssssssssessssnssssnssssssssssnssssmssssmssssssssanees 26

E3 0] 11 (o] PP 26
HOW EWOTKS.....rvvuoreessresseesssessssssssssnssssssssssssssssssssssssssmssssssssssmssssmssssmsssssssssssssanees 26
2-2. Generating XML Data with Table Names as Element Names 28
PrODIBIM ... s 28

0] 10§ OO 28
HOW IEWOIKS.......coticetcecre et sn e s s sn s 30
2-3. Generating Element-Centric XML..........ccccoevrvrcrcercncercerescesenene 30
PrODIBIM ... s 30
SOIULION. ..ttt e 31
HOW TEWOIKS.......coticercce ettt ettt et e st 31
2-4. Adding a Root Element..........cccvvrvrvrvrsns e 32
PIODIBIM «..vvoevesereeseeesseessseesssesssssessssesssssessssnssssssssssessssnsssssnssssssssssnssssmsssssnssssssssanees 32

E3 0] 11 (o] PP 32
HOW EWOTKS....orvvureessresseesssesssssnssmssssmsssssssssssssanees 33

vi

CONTENTS

2-5. Including Elements with NULL Values in Your XML Data................ 33
ProBIBM ... ——————————————— 33
£ 0] 1] T 33
L 0 L € 34
2-6. Including Binary Data in Your XML...........cooeerneersersersescessenenenns 34
PrODIBIM ... s 34
RST8] 1] ST 34
Ly (0 L € O 35
2-7. Generating Nested Hierarchical XML Data............cccoeevvereerrerienannns 36
PrODIBIM ... s 36
SOIULION. ...t 36
HOW [EWOTKS......coeeeeeestsieec et 38
2-8. Building Custom XML..........ccoovrrrrrrrerresresser s ses e e s sessesenns 38
ProBIBM ..o —————————————— 38
RST8] 1] T 38
L 0 L] € 40
2-9. Simplifying Custom XML Generationccceevverernicrnscsesnnenns 45
PrODIBM ... s 45
RST8] 1] SRS 45
HOW [EWOTKS......coeeeeceesieceei e 46
2-10. Adding Special Nodes 10 Your XML........ccccoovvrreriercerseenesseniennnns 48
PrODIBIM ... s 48
0] 11110 OO TPSS 48
HOW [EWOTKS......coeeeeieseeces et 49
11T 11] 1P SR 51

vii

CONTENTS

M Chapter 3: Manipulating XML FileS......ccuscsmsssmsssssnsssssnsssssnsssssnnsss 53
3-1. Storing XML Result in a File from SQL..........ccceovvrrrrierricresenens 53
PrODIBIM ... s 53
SOIULION. ..t 53
HOW [EWOIKS.......ctetreetnetr ettt ettt sttt 55
3-2. Creating XML from an SSIS Package.........c.ccerrerverversersersessessenienne 59
PIODIBIM «..vvovvesreeseeesseessesssssesssssessssnsssssnssssessssssssssesssssssssnssssssssssnssssmsssssmssssssssannees 59

E3 0] 1o PP 59
HOW EWOTKS....orveuereessresseesssssssssssssesssssnsssssssssssssssessssmsssssssssssssssssssssssssssssssssssanees 72
3-3. Loading XML from a Stored Procedure.........cccccvvervrerererscrnesernenns 72
PrODIBIM ... s 72

0] 110 o RSOSSN 72
HOW IEWOIKS.......covicceccreesese e s sns s s s 75
3-4. Loading XML from SSIS Package........c..cccveerrerrersersersessessessessenenns 78
PrODIBIM ... s 78
SOIUTION. ..ot 78
HOW TEWOIKS.......ctictrccetsetr ettt s ettt 90
3-5. Implementing a CLR Solution...........cccvvrvrververrnsersenserseses e 92
PrODIBIM «..vvoevesereeseeesseeessnesssesssssessssessssensssssssssssssssessssssssssnssssssssssnssssmsssssmssssssssanees 92

E3 0] 1o PP 92
HOW EWOTKS...uovvvureessressnesssnsssssessssssssssssssssssssmssanees 96
SUMMANY ...t n e s r e 99
M Chapter 4: Shredding XML......c.cuscenmssannmsssnnssssnsssssnsssssnsssssnsssssanss 101
4-1. Shredding XML with Internal ENTITY Declarations 101
PrODIBIM ... s 101
SOIULION....cv et e e e 101
HOW IEWOIKS.......coticeisccrs e e s ss s sn s s s s s sn s nnas 102

viii

CONTENTS

4-2. Migrating OPENXML into XQUETYcccecevrerrserreneserensessesessessnennas 108
PrODIBIT «...coovvesceseesssesssssssesssssssssssssssses s ssss st ssssss st s ssssssssssssssssnsssnns 108
SOIULION.....eeecetctees s e nn s 108
HOW HEWOIKS......covecreccrreereseses s sss s s e sesssssssssssssssssssssnsnses 109

4-3. Shredding XML from a Column........ccccceveerverenncennsesesesesenennes 113
PrODIBIM ... e 113
SOIULION....ce ettt e e 113
HOW EWOIKS......covecctcicecresr e sn e n s sn e 114

4-4. Dealing with Legacy XML Storagecocevvverrersersercessessessensennns 116
PrODIBIM ... s 116
LS T0] 11110 TR 117
HOW TEWOTKS......cnceeeceerteeceres e e 118

4-5. Navigating Typed XML ColUMNS.......cccevvrrrerrenrerserser s ses e e 120
PrODIBIT «...oovveocesressesssssssessssssssesssssssses s ssss st sssss s st ssssssss s sssssssnssssssssssssnns 120
SOIULION....ceeeeetctee iR r e n s 120
HOW HEWOEKS......covecereerienereseses s sss e sss s ssssesss e sesssssssssssssssssssssnsnnes 122

4-6. Retrieving a Subset of Your XML Datacccccocerricrerenicrnnncnee 123
PRODIBIM ... 123
SOIULION....c.eecectce e e 123
HOW EWOEKS......covectcccecessre e sn e sn s n e 124

4-7. Finding All XML Columns in a Tableccccvvreercersercercercersenennn 127
PrODIBIM ... s 127
0] 11110 TSRS 127
HOW IEWOTKS......coceeeceestceceres e s 129

4-8. Using Multiple CROSS APPLY Operators..........cecvrerrerrersersersensenns 132
PrODIBIT «...oovvescesressresessssessssssssesssssssses s ssssss st st sssssssss s sssssssssssnsssnsssnes 132
SOIULION....ceeceetcreer e ne e n s 132
HOW HEWOEKS......covecrrecreeseresese s sss e ssse s se s sssssssssssssssssnsnnes 133

ES 1111 4P 134

CONTENTS

Chapter 5: Modifying XMLcccuscmmssanmmssansmsssnsssssssssssssssssnssssnns 135
5-1. Inserting a Child Element into Your XML........cccccrirercrcercernne 135
PrODIBIM ... s 135
SOIULION...e et ————— 135
HOW TEWOIKS.......ctciccct ettt sttt st 136
5-2. Inserting a Child Element into an Existing XML Instance
With NAMESPACEcoererererererese s s e se e s e snsnens 137
PrODIBIM ... s 137
£ 10] 110 OO SRSR 137
HOW FEWOIKS.......covicersecre s ss s s e ss s s nnas 138
5-3. Inserting XML Attributes ... 140
PrODIBIM ... —————— 140
SOIULION. ..o ——————— 140
HOW IEWOIKS.......ctieiccic ettt ettt sttt 141
5-4. Inserting XML Attribute Conditionally..........ccccovrvrvercerrercerserenne, 143
PIODIBIM w.vvvvvvesreeseeesseeesseessssnsssssnsssnssssssssssnssssssssssnssssnsssssnssssnsssssmssssessssssssssssssanes 143
£ 0] 1o PSPPSR 143
HOW EWOTKS.....rvvuereessressnesssessssssssssssssssssssnssssssssssmsssssssssssssssnssssssssssssssssssssssssnes 144
5-5. Inserting a Child Element with Position Specification 144
PrODIBIM ... s 144
0] 1110 3 OO PSR SRR 144
HOW IEWOIKS.......covictsecrs e ss s s e s sn s snsennas 146
5-6. Inserting Multiple Elements..........cccocrcrvrcrcrcrsercescescesesenens 146
PrODIBIM ... ————————— 146
SOIULION. .. ——————— 146

5 (01 L0 R 147

CONTENTS

5-7. Updating an XML Element Value.........cccoevrerverrersersersensessensensenns 148
PrODIBIT «...coovvesceseesseessssssesssessssss s ssssss s ssssss st st ssssss s ssssssssssssnsssnsssnns 148
SOIULION.....eeecetctees s e nn s 148
HOW HEWOIKS......covecreccrreereseses s sss s s e sesssssssssssssssssssssnsnses 149

5-8. Updating XML Attribute Valueccccceereerercercrcercescesces e 150
PrODIBIM ... e 150
SOIULION....ce ettt e e 150
HOW EWOIKS......covecctcicecresr e sn e n s sn e 151

5-9. Deleting an XML Attribute ... 151
PrODIBIM ... s 151
SOIULION. ... 151
HOW TEWOTKS......coceeceesesecere et 152

5-10. Deleting an XML Element...........ccccvvrvrrrrrnnsnsessesses s senenns 153
o (0] 0] [T 1 T 153
RST8] o] 153
HOW HEWOIKS......ceecreeereeereneses s ses e ssssesss s e s sessssssssssssessssesssnsnses 154

SUMMAIY ...t ae s n s 156

Chapter 6: Filtering XML........ccccuusemmmmmssssnnnmsssssssnsssssssnnssssssnnssnsss 157

6-1. Implementing the exist() Method ... 157
PRODIBIM ... s 157
SOIULION. ..t 157
HOW EWOIKS......coveccrecceerestr et sn e sn s sn e 158

6-2. Filtering an XML Value with the exist() Method............ccceuu...... 160
PrODIBIM ... s 160
IS T0] 11110 o TSR 160
HOW IEWOTKS......coceeeeceistseecere e s 161

xi

CONTENTS

6-3. Finding All Occurrences of an XML Element Anywhere

Within an XML INStanCe..........cccverrrrrnrnessensessessessessesses e sessesnenns 164
PrODIBIM ... s 164
SOIUTION. ...ttt ettt se st e e e e e e e et e e nenp e nenenenpnrnrnens 164
HOW TEWOIKS........ceeieccie et 166

6-4. Filtering by Single Valuecccocrerercercerrer e 167
PrOBIBIM ...t e s 167
LS 10] 110 o TP 167
HOW TEWOTKS. ...t e e 168

6-5. Filtering XML by T-SQL Variable.............coeerrerrrererssessesesesenennas 168
o (0] 0] [T 0 T 168
RS 0] 1o PP 168
HOW IEWOIKS.......coercesceeecrrese e se s s s s s sesss s sssnesessnnennas 169

6-6. Comparing to a Sequence of ValUESccccevverrerrerserrersersessensenans 170
o (0] 1] T ST 170
SOIUTION. ...ttt se e e e e e e e e e e e et e e g e nenenenenrnrnens 170
HOW TEWOIKS........ceeieccce et e 171

6-7. Matching a Specified String Pattern.........cccoccovrervrcrcrcncenene 171
o (0] 1] T OO 171
LS 10] 1110 o TP 172
HOW TEWOTKS.......occeceece et 172

6-8. Filtering @ Range of Valuescccvvrvervrrrsensensessesesres e 174
o (0] 0] [T 0 174
SOIUTION. ...ttt e e se e e e se e e e e e e e e e e e e e ne e nesenesese e senenesenenenenenenens 174
HOW IEWOIKS.......coviceercreeerresesse e sese s e s s e s s sss s e s s sssssssssssssssnnennns 175

6-9. Filtering by Multiple Conditionscccceerverrcrernsenssesesenenes 175
(0] 1] T ST 175
SOIUTION. ...ttt ettt se e se e e e e e e e e et e e na st nenp e nrnenenenrnenens 175
HOW TEWOIKS........ceeiecce et e 176

xii

CONTENTS

6-10. Setting a Negative Predicateccevrrrerverrersersersessessessesennns 177
o (0] 0] [T 1 T 177
RST8] o] 177
HOW HEWOIKS......covecrrecreeseseseses s sss e sssssss s se e sessssssssssssesssnessnnsnnes 178
6-11. Filtering Empty ValUESccceeeeeereercerrer s 178
PRODIBIM ... e 178
SOIULION....c.eecitc e e 179
HOW HEWOIKS......coveecrciceeresre e sn e s n e 180
SUMMANY ...t sn s n e e sn s sn e r e n e nr e n e nn e n s 182
Chapter 7: Improving XML Performanceccccseusssssnsesssssssssnsss 185
7-1. Creating a Primary XML INdeXcccceerveerrrrrcr s 185
PrODIBIM ... s 185
SOIULION. ..t e 185
HOW HEWOIKS......ccteiieeccircrtre sttt p s 187
7-2. Creating a Secondary PATH Type IndeX........cccvvrrrrerrersersensensennns 193
PrODIBIM .vvvvrvveoeeeseesssesssesssssnsssssssssssssssessssssessssssssmssssssssssnssssmssssmssssnssssmssssnssssnns 193
SOIULION....ceeceetctees e e nn s 193
HOW HEWOIKS......covecrecernesereseses s ses e ssss s sss e sesssssssssssssssssssssnsnnes 195
7-3. Creating a Secondary VALUE Type IndexX.......cccccvceenrererersernnnennes 196
PRODIBIM ... 196
SOIULION....c.ecitce e e 196
HOW EWOIKS......covectcicec e s sn e sn s n e 198
7-4. Creating a Secondary PROPERTY Type Index........ccceeveercercernnne. 200
PRODIBIM ... e 200
SOIUTION. ..t 200
HOW HEWOIKS......ceecreecc ettt st e 202

xiii

CONTENTS

7-5. Creating a Selective XML INdeXccccvververrerserrersersensessessessenenns 202
PrODIBM w.vvvvvvesreesreesseessenesssnsssssessssnsssssssssnssssssssssnssssnsssssnssssmsssssnssssesssssssssssssanes 202
RS 0] 1o PP 203
HOW EWOTKS.....vvvuereessresseesssesssssssssssssssssssnssssssssssssssssssssnsssssssssssssssssssssssssssssanns 205
7-6. Optimizing a Selective XML IndeX.........coeevierrrerernsesnsesesenennas 210
PrODIBIM ... s 210
£ T0] 103 PR 210
HOW FEWOIKS.......coticteceie et 211
7-7. Creating a Secondary Selective XML Indexccccveereercercernenne 213
PrODIBIM ... ——————— 213
SOIULION. ..t ————————— 213
HOW TEWOEKS.......ctietctc ettt ettt ettt 214
7-8. Modifying Selective XML INAEXEScccvverrerrerrersersersersersessensenas 215
PrODIBIM w.vvvvveesresseeesseeesseesssesssssnsssnssssnsssssnssssnsssssnssssnsssssnssssmsssssssssssssssssssssssssanes 215
0] 11 (o] PSPPI 215
HOW EWOTKS.....rvvuereesseessnessseesssssssssssssssssssnssssssssssmsssssssssssssssmssssmssssssssssssssssssssnns 217
WEaPPING UP ceeeeererereresesese s sessessesesesseses e e ssessssssssssssssssssssssnsnns 218

Part 1l: JSON in SQL Server.......ccccourremesssremssssssnssssnennes 219

Chapter 8: Constructing JSONcccusseemnmmssssnnnsmsssssssssssssnsssnssns 221
JSON INtroduCtion ..o s 221
8-1. Building JSON with AUTO Mode........ccccvvererierrrerererereesererenaennns 225
PrODIBIM ... ——————— 225
SOIULION. ..t ———————— 225
HOW [EWOIKS..... .ottt ettt ettt st s 226
8-2. Handling NULL When JSON BUild.........ccooeervernreresessessesessesensennas 230
PIODIBIM «..vvvvverreeseeesseeessseesssesssssesssnsssssssssnssssssssssnssssnsssssnssssssssssssssssssssssssssessssnes 230
0] 11 (o] PSPPI 230
HOW EWOTKS.....vvvuereesseessnesssessssnssssnsssssssssnsssssssssssssssmsssssmssssnssssssssssssssssssssssssnns 231

xiv

CONTENTS

8-3. Escaping the Brackets for JSON OQutputccocovvrvrrrvrcrcennnne, 232
PrODIBIM w.vovoeveeeesseesseesssesssssnessssssssenssssessssssesssessssesssssssssssssssmssssmssssnssssnssssnssssnns 232
SOIULION.....eeecetctees s e nn s 232
HOW HEWOIKS......covecreccrreereseses s sss s s e sesssssssssssssssssssssnsnses 232

8-4. Adding ROOT Key Element to JSONccocveeriennicnecencrnnenes 233
PrODIBIM ... e 233
SOIULION....ce ettt e e 233
HOW EWOIKS......covecctcicecresr e sn e n s sn e 233

8-5. Gaining Control over JSON Qutput........ccccoevrvrcrrrcrcrcerceeere 234
PrODIBIM ... e 234
SOIUTION. ..t 234
HOW HEWOIKS......cteciccccirctrer et 235

8-6. Handling Escape Characters.........ccocuvvrervrrersersessensessessessessensenns 239
PrODIBIM w.vvvveveeeeeseesssesssesssssnesssnssssenssssessssssesssssssssssssssssssnsssssmssssmssssnssssmsssssssssnns 239
SOIULION....ceeeeetctees e e e nn s 239
HOW HEWOIKS......covecceecreeenesese s sssesss e e sessssssssssssesssnssssnsnnes 240

8-7. Dealing with CLR Data TYpesccermrerernieresesessssessesessesenennns 241
PRODIBIM ... e 241
SOIULION....ce ettt e e 242
HOW EWOIKS......covcccreiceeresr e sn e n e sn e 243

SUMMANY ...t sn e r e n e sn s sn e sn e sn e nr e n e nn e n s 244

Chapter 9: Converting JSON to Row Setscccenssmnnnrssssnnnsnnsns 245

9-1. Detecting the Columns with JSON.......ccccervrrrrrcrrrrrceeee e 245
PrODIBIM ... e 245
SOIUTION. e 245
HOW HEWOIKS......cvecteccetcctre sttt p s 247

XV

CONTENTS

9-2. Returning a Subset of a JSON Document..........c.cccvvrrerierrerennen 249
PIODIBIM «..vvvvverreesreessesessessssesssssesssnssssssssssnssssssssssnssssssssssnssssmsssssnssssesssssesssssssssnns 249
E3 0] 1o PP 249
HOW EWOTKS...v.vvvuereesseessnesssesssssssssnsssssssssnssssmssssmsssssssssssssssssssssssssessssssssssssssanes 250
9-3. Returning a Scalar Value from JSONcccocverrernicnnccscsencnnas 251
PrODIBIM ... s 251
£ 10] 1110 3 PRSP 251
HOW FEWOIKS.......coticteceie e n e s enas 252
9-4. Troubleshooting a Returned NULL............cccrrrircrcrcrercree 254
PrODIBIM ... —————————— 254
SOIULION. ..t ————— 254
HOW FEWOIKS.......ctictcecie ettt ettt sttt 254
9-5. Converting JSON into a Table........c.ccocvvrvrrerrrrersercercer e 255
PIODIBM «..vvvvverreesreesseeessenssssnsssssesssnsssssssssnesssssssssnssssssssssnssssnsssssnssssessssssssssessssnns 255
£ 0] 11 (o] PSPPI 255
HOW TEWOTKS....orvvuereesseesseesssessssssssssnsssssssssnssssmssssssssssssssnssssssssssssssssssssssssssssanns 256
9-6. Processing JSON Nested Sub-0bjects.........ccoceeerrerrierencresenennas 259
PrODIBIM ... nan 259
£ 0] 110 3 PR SR 259
HOW FEWOIKS.......coticteccir e s s 262
9-7. IndexXing JSON.........ccoorerrrerr s 263
PrODIBIM ... ——————— 263
SOIULION...e et ————————— 263
HOW TEWOEKS..... .ottt ettt sttt st 264
1111 4P 267

xvi

CONTENTS

Chapter 10: Modifying JSON..........cccccrsremmnmmsssnnnnmsssssnnssssssnnsnssnss 269
10-1. Adding a New Key-Value Pair to JSON...........ccocoverercrcrcnrcnnnnne 269
PRODIBIM ... 269
SOIUTION. e 269
HOW HEWOIKS......cvecccccircrtrer st 270
10-2. Updating EXisting JSONccocrvrrrrerrerrerrer e ses e 270
PrODIBIM w.vvvveveoeeeseesssesssessssenssssssssssnssssessssssesssssssssssssssssssnsssssmssssmssssnssssmssssnssssnns 270
RST8] o] 270
HOW IEWOTKS. ...vveuereessreessesssnesssssssnsssssessssssssssesssssssssssssssnsssssmssssssssssssssmsssssnssssnns 271
10-3. Deleting from JSONcccovcieeriernrre e 271
o (0] 0] [T 1 SRS 271
SOIULION....ceeitce e s 271
HOW HEWOEKS......covccctccciesir s sn s sn s s s nsnnes 271
10-4. Appending @ JSON Property.......ccccocverersrsensessessssses s sessessennens 273
PrODIBIM ... s 273
SOIUTION. .t 273
HOW HEWOIKS......cvececccir ettt e st p s 274
10-5. Modifying with Multiple ACtions..........cccvverrerrerrrrerser s 274
PrODIBIM w.vvvovveeeesseessseessessssenesssssssssnssssessssesssssssssssssssssssssesssssmssssmsssssssssmssssnssssnns 274
RS0] o] T 274
HOW TEWOTKS. ...vveuereesseeessessssssssssssssssssesssssssssssssssssssssssssssssssssssssnsssssssssnsssssssssnns 275
10-6. Renaming @ JSON KeYcccccereemriernnmresnnsesesnsessssessesessesssensens 275
o (010][] 1 SR RSPS 275
SOIULION....ce et 275
HOW HEWOIKS......coveccrccccresir e sn e sn e s sss s nsnnas 276

xvii

CONTENTS

10-7. Modifying @ JSON ODBjJecCtcccccvvvvrrrrrrer e 277
PrODIBM w.vvvvvveereesreesseeessenesssnsssssessssssssssssssnssssssssssnssssssssssnssssnsssssnssssesssssssssssssssnns 277
SOIUTION. ...ttt e se e nesesesenesenesenenenenenenens 277
HOW EWOTKS.....vvvuereesseessnesssesssssssssssssssssssnssnns 277

10-8. Comparing XML vS. JSONccccecereemrienreresereses s sesesssesnens 279
PrODIBIM ... s 279
£ 0] 110 3 PRSP 279
HOW FEWOIKS.......cotietreets e s s s 283

Wrapping UP...cocoeiererercne s se e 285

INA@X.uueenriissnnnnnnssssnnnnsssssnnnnsssssnnnnsssssnnnnnssssnnnnsssssnnnnnssssnnnnnssssnnnnnsssnn 287

xviii

About the Author

Alex Grinberg has more than 20 years of IT
experience. His primary focus is on the latest
Microsoft technologies, including .NET (VB and C#),
SSRS, and SSIS. He provides tuning, optimization,
analysis, and development services toward creating
new applications; converting legacy applications
into newer technologies such as SQL Server,
VB.NET, and C#; and toward onsite training. Alex is
a senior DBA architect at Cox Automotive Inc. He
provides consulting services for the New York City,
Philadelphia, and Delaware areas.

Xix

About the Technical

Reviewer

Michael Coles is a database architect and developer
working out of New Jersey. He has authored several
books and published dozens of articles on SQL

Server development topics. Michael holds multiple
Microsoft certifications and has been recognized as a
Microsoft MVP for his work with SQL Server and for his
contributions to the SQL community.

XXi

Acknowledgments

For a number of years I had been dreaming about writing a book to share my knowledge.
Finally, this dream came true. However, to write a book is not a single-person effort. There
are many people who helped me to deliver this book to the reader. I would like to thank
the Apress team - Jonathan Gennick, Jill Balzano, and Laura Berendson who motivated
me and provided valuable advice to move forward with the book.

My big appreciation and respect to technical reviewer Michael Coles, who provided
me with plenty of recommendations to make this book better and more comprehensively
cover the recipes, especially for the XML part. Also, I would like to thank Alessandro Alpi,
who consulted with me for the JSON part.

I got tremendous help from Cox Automotive colleagues, especially Cary Dickerson,
who provided me with the powerful server to test the recipes that allows me to
demonstrate and compare the recipe’s performance as they run in the production
environment. Thanks to Michael Neuburger and Mathew Silva for their support during
the book-writing period. My sincerest apologies if I missed anyone, but there were a lot of
you!

I also would like to thank my friends Said Salomon and Vince Napoli for encouraging
and supporting me.

Of course, my deepest special thanks to my family - wife Ludmila and daughters
Anna and Katherine, who suffered minimal attention from me during the book-writing
process, but still supported me throughout the project and patiently waited for the book
to be completed.

Thanks very much to all of you! It was a pleasure to work with you!

Alex Grinberg

xxiii

PART I

XML in SQL Server

CHAPTER 1

Introducing XML

Welcome and thank you for reading XML and JSON Recipes for SQL Server. In the
modern world of information technology, keeping data stored and manipulated reliably
and efficiently is one of the first priorities. In the last decade, SQL Server has evolved

into a sophisticated Enterprise RDBMS tool, and it is still growing by providing more
functionalities to store and manipulate data reliably. eXtensible Markup Language (XML)
is one of the technologies that SQL Server implements not only for data manipulation
but also for many internal usages, such as Execution Plans, Extended Events, DDL trigger
Eventdata() function, and behind construction for SQL Server Business Intelligence Tools
(SSIS, SSRS, SSAS). In Part 1 of this book, I will cover and provide the recipes on how to
work with the SQL Server XML data type; discuss and demonstrate real type scenarios

to load, build, and shred the XML; and present how daily tasks can be simplified by
implementing XML technologies. In this book, I will primarily be focusing on technology
rather than theory.

Stepping into XML

To work with XML, we need to understand this technology, especially for SQL Server.
XML is similar to HTML (Hypertext Markup Language). XML and HTML contain markup
elements to describe the contents of the file or page for HTML. The big difference
between them is that HTML contains predefined elements (tags), while XML elements
and attributes are not predefined and based on described data within the files.

Several more important differences between HTML and XML:

e XML is key sensitive while HTML is not.

e XML opened element must be closed. HTML can have an opened
element without a closed element. For example, <DATA>Display
Text will compile for HTML and will return an error for XML.

Caution SQL Server, by default, is not case sensitive. However, XML is case sensitive,
and all XQuery Path Language (XPath) functions and node tests are case sensitive (all
lowercase). They will return an error when entered with any case other than lowercase.

© Alex Grinberg 2018 3
A. Grinberg, XML and JSON Recipes for SOQL Server,
https://doi.org/10.1007/978-1-4842-3117-3_1

https://doi.org/10.1007/978-1-4842-3117-3_1

CHAPTER 1 * INTRODUCING XML

Sample Database

All code samples for Part I in this book utilize the SQL Server AdventureWorks sample
database, unless otherwise specified and referenced separately in the text. The
AdventureWorks database URL is https://github.com/Microsoft/sql-server-
samples/releases/tag/adventureworks2014. I would highly recommend downloading
and installing the AdventureWorks sample database to run the samples presented.

Understanding XML

Before working with XML, we need to explain the difference between the two types of
node-centric XML formats supported by SQL Server:

1. Element-centric
2. Attribute-centric

Both elements and attributes can contain data. However, SQL Server has specialized
functionality and features for each format generating or shredding (shredding is a process
to convert XML into rows-columns format) attribute-centric or element-centric data.

In the element-centric format, values are contained within the opening and closing
tags of an element, for example, <elementName>. The attribute-centric format relies on
attributes of an element in the element’s opening tag. They are assigned a value by the
equal sign, and the values are wrapped in double quotes, for example, <elementName
attribute="value”>. For instance, the sample SQL query in Listing 1-1 returns two rows,
with the result shown in Figure 1-1.

Listing 1-1. Simple SQL query

SELECT TOP (2) Category.Name AS CategoryName,
Subcategory.Name AS SubcategoryName,
Product.Name,
Product.ProductNumber AS Number,
Product.ListPrice AS Price
FROM Production.Product Product
INNER JOIN Production.ProductSubcategory Subcategory
ON Product.ProductSubcategoryID = Subcategory.Product
SubcategoryID
LEFT JOIN Production.ProductCategory Category
ON Subcategory.ProductCategoryID = Category.Product
CategoryID
WHERE Product.ListPrice > 0
AND Product.SellEndDate IS NULL
ORDER BY CategoryName, SubcategoryName;

https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks2014
https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks2014

CHAPTER 1 * INTRODUCING XML

CategoryName SubcategoryName Name Number Price
| Accessories | Bike Racks Hitch Rack - 4-Bike RA-H123 120.00
Accessories Bike Stands All-Purpose Bike Stand ST-1401 159.00

Figure 1-1. Result data set from sample SQL query

This is an example of what the relational data from Figure 1-1 might look like in an
element-centric XML format. Notice that all values are presented as XML elements in this
format demonstrated in Listing 1-2.

Listing 1-2. Showing element-centric XML

<Category>
<Category xmlns="http://schemas.microsoft.com/sqlserver/2004/07/Chaptero1/
ProductSchema">
<CategoryName>Accessories</CategoryName>
<Subcategory>
<SubcategoryName>Bike Racks</SubcategoryName>
<Product>
<Name>Hitch Rack - 4-Bike</Name>
<Number>RA-H123</Number>
<Price>120.0000</Price>
</Product>
</Subcategory>
<Subcategory>
<SubcategoryName>Bike Stands</SubcategoryName>
<Product>
<Name>All-Purpose Bike Stand</Name>
<Number>ST-1401</Number>
<Price>159.0000</Price>
</Product>
</Subcategory>
</Category>
</Category>

Converted relational data from Figure 1-1 might look like an attribute-centric XML
format demonstrated in Listing 1-3.

Listing 1-3. Showing attribute-centric XML

<Category CategoryName="Accessories">
<Subcategory SubcategoryName="Bike Racks">
<Product Name="Hitch Rack - 4-Bike" Number="RA-H123" Price="120.0000" />
</Subcategory>
<Subcategory SubcategoryName="Bike Stands">
<Product Name="All-Purpose Bike Stand" Number="ST-1401" Price="159.0000" />
</Subcategory>
</Category>

CHAPTER 1 * INTRODUCING XML

Comparing the element-centric XML data in Listing 1-2 to the attribute-centric XML
data in Listing 1-3, several differences can be clearly defined:

e Element-centric XML is bigger (in number of characters)
than attribute-centric XML.

e Element-centric XML supports element hierarchy.

e Element-centric XML can represent SQL NULLs with the
xsi:nil attribute (xsi:nil will covered in Chapter 2,
Recipe 2-5 “Handling Elements with NULL Values™).

We will provide a deeper analysis and show additional differences, use cases, and
demonstrations in Chapter 2, “Building XML

Entitizing XML Characters

XML elements are defined by left- and right-angled brackets (less-than and greater-than signs,
“<” and “>"). XML attribute values are wrapped in double quotation marks. Data containing
these special characters that are not part of the XML markup can cause issues during XML
parsing. To resolve these potential conflicts, XML defines a set of special character sequences,
known as predefined entities, which all XML parsers must honor. The character sequences,
which include the double quotation mark, ampersand, apostrophe, less-than sign, and

greater-than sign, and their associated XML entities are listed in Table 1-1.

Table 1-1. Listing Predefined Entities in XML

Character Entity Reference Description

" " double quotation mark

& & ampersand

' ' apostrophe (apostrophe-quote)
< < less-than sign

> > greater-than sign

The process when predefined entities are replaced with entity references is
known as entitizing. To demonstrate entitizing, I took the XML in Listing 1-4 then typed
(copy/paste) into a Notepad.

Listing 1-4. Sample XML with predefined entities

<char>
<ToXML Entity="Entity ampersand &; in XML data." />
<ToXML Entity="Entity less-than sign <; in XML data." />
<ToXML Entity="Entity greater-than sign >; in XML data." />
<ToXML Entity="Entity apostrophe '; in XML data." />
<ToXML Entity="Entity quotation mark "; in XML data." />
</char>

http://dx.doi.org/10.1007/978-1-4842-3117-3_2
http://dx.doi.org/10.1007/978-1-4842-3117-3_2

CHAPTER 1 * INTRODUCING XML

I then saved the file with an .xml extension. For instance, I call the file XML_Entity.
xml. When the file is created, I simply double-click on the file or open it in Internet
Explorer. As a result, the entity references will display as normal characters, as shown in
Figure 1-2.

<char>
<ToXML Entity="Entity ampersand in XML data.”/>
<TOXML Entity="Entity less-than sign[<;]in XML data."/>
<ToXML Entity="Entity greater-than signﬂin XML data."/>
<ToXML Entity="Entity apostr*ophem in XML data."/>
<ToXML Entity="Entity quotation markm in XML data."/>
</char>

Figure 1-2. Sample with XML entities expanded

Exploring the XML Data Type

XML support within the Microsoft SQL Server database was first introduced in SQL Server
2000. XML can consist of very long strings of data; therefore, it is very rare to encounter
XML data that will not fit in a VARCHAR (8000) or NVARCHAR (4000) Unicode column. Since
much XML data won't fit into these data types, SQL Server 2000 suggested that DBAs and
Developers utilize TEXT, and in some cases IMAGE, data types. Many found dealing with
these data types to be a nightmare, as they were difficult to work with. Also, when dealing
with XML on 2000 you had to utilize the COM-based stored procedures.

With the release of SQL Server 2005, the XML data type was provided, which made it
significantly easier to work with XML data, and the XML data can be stored in its native
format. The result of the XML data type returns a clickable hyperlink format when the
output is set to Result To Grid in SSMS. To review XML content, you can just click on the
hyperlink and SSMS will display the XML result in a separate XML document tab. The
XML document tab does not allow you to connect to SQL Server instances or execute any
SQL statements.

The XML data type is a convenient and well-designed data type that allows you to
store data and documents in the XML format. In some cases, other large SQL Server
data types can be used to store XML data, such as NVARCHAR (MAX), VARCHAR (MAX), or
VARBINARY (MAX). The old data types IMAGE, NTEXT, and TEXT can do the job as well but are
not as user friendly to work with.

For example, when XML data is stored as a document, and you do not need to query
this data in its entirety, you can use the NVARCHAR (MAX), VARCHAR (MAX), VARBINARY (MAX).
The best argument for using a LOB data type to store XML is when you need to store
the exact representation of the XML, since the XML data type will store the content
you provide, but it might alter insignificant whitespace and the order of attributes is
not guaranteed. Take a look at msdb.dbo.sysssispackages table where the packagedata
column stores server-side SSIS packages. SQL Server utilizes the IMAGE data type (I would
not recommend following Microsoft in this case) to store the SSIS package code. For
those who have never looked at SSIS code, it is XML data. Therefore, when I need to query
SSIS (I had several reasonable requests for such a task), I converted the packagedata
column to VARBINARY (MAX) and then cast it to and XML data type instance, as shown in
Listing 1-5.

CHAPTER 1 * INTRODUCING XML

Listing 1-5. Converting IMAGE data type into XML data type

SELECT CAST(CAST(packagedata as VARBINARY(MAX)) AS XML) AS SSISPackage
FROM msdb.dbo.sysssispackages;

Caution Legacy Large Object Binary data types IMAGE, NTEXT, and TEXT should not be
considered for any column implementation. Books Online do not reference these data types
because they are deprecated. However, some system tables still have it; even Microsoft
announced that IMAGE, NTEXT, and TEXT data types would be deprecated in the year 2008.

The XML data type has the following limitations:
e The storage is limited to 2.1 GB.
e It cannot be used as a table Primary Key.
e Itcannot be sorted by the ORDER BY clause.
e Itcannot be compared in the WHERE clause.
e Itcannotbe used in the GROUP BY clause.

e Itcannot be a parameter to any scalar built-in functions except
ISNULL, COALESCE, DATALENGTH, CAST, TRY_CAST,
CONVERT, CHOOSE, and IIF functions.

e The columns with XML data type cannot be part of a linked server
query.

e XML columns can only be indexed via an XML index; for
clustered and nonclustered table indexes, XML columns can be
included with the INCLUDE clause.

The XML data type has two forms:

e Untyped XML (the default), is an XML data type instance that does
not have an associated XML schema.

e Typed XML is an XML data type instance with an XML schema
bound to it.

1-1. Creating an Untyped XML Column
Problem

You want to define an untyped XML column in a table.

Solution

Define the designated column as XML data type upon creation. The example in Listing 1-6
demonstrates syntax on how to create a simple untyped XML column.

CHAPTER 1 * INTRODUCING XML

Listing 1-6. Syntax for creating an untyped XML column

CREATE TABLE dbo.UntypedXML

(
UntypedXML_ID INT IDENTITY(1, 1) NOT NULL PRIMARY KEY,
UntypedXMLData XML

)5

The example in Listing 1-7 demonstrates how insert a new row into to the table we
created in Listing 1-6.

Listing 1-7. Inserting a new row with XML data

INSERT INTO dbo.UntypedXML
(

)
SELECT N'<Category>

<Category xmlns="http://schemas.microsoft.com/sqlserver/2004/07/Chaptero1/
ProductSchema">
<CategoryName>Accessories</CategoryName>
<Subcategory>
<SubcategoryName>Bike Racks</SubcategoryName>
<Product>
<Name>Hitch Rack - 4-Bike</Name>
<Number>RA-H123</Number>
<Price>120.0000</Price>
</Product>
</Subcategory>
<Subcategory>
<SubcategoryName>Bike Stands</SubcategoryName>
<Product>
<Name>All-Purpose Bike Stand</Name>
<Number>ST-1401</Number>
<Price>159.0000</Price>
</Product>
</Subcategory>
</Category>
</Category>';

UntypedXMLData

The example in Listing 1-8 demonstrates how to declare an XML data type variable
and then insert it into the table we previously created.

Listing 1-8. Inserting new row via XML variable

DECLARE @xml XML = N'<char>
<ToXML Entity="Entity ampersand &; in XML data." />
<ToXML Entity="Entity less-than sign &1t;; in XML data." />
<ToXML Entity="Entity greater-than sign >; in XML data." />

CHAPTER 1 * INTRODUCING XML

<ToXML Entity="Entity apostrophe '; in XML data." />
<ToXML Entity="Entity quotation mark "; in XML data." />
</char>';

INSERT INTO dbo.UntypedXML
(

)
SELECT @xml;

UntypedXMLData

Note When we declare a variable as XML data type then assign XML to the variable,
SQL Server implicitly converts character data to XML data type. That applies to VARCHAR,
NVARCHAR, and VARBINARY data types.

The example in Listing 1-9 demonstrates how to create a stored procedure with an
XML data type parameter, which inserts into the table when it is called.
Listing 1-9. Stored procedure to insert XML data into a table

CREATE PROCEDURE dbo.usp_Insert UntypedXML
@UntypedXML XML

AS
INSERT INTO dbo.UntypedXML
(
UntypedXMLData
)
SELECT @UntypedXML;
GO
How It Works

When an XML schema is not bound to the column, variable, or stored procedure
parameter, the object created is untyped XML. However, untyped XML instances still
require the XML data it contains to follow the XML format per the W3C standard. When
a column is created as an untyped XML instance, the parser will verify incoming data
to ensure that the XML data is “well-formed,” or a fragment (with no root element) that
otherwise follows the rules for well-formedness. For example, all opened elements

are closed, the opened and closed elements are matched to each other, and no invalid
characters are found. Untyped XML objects are useful when the following applies:

e No XML schema exists for the data.

e The XML documents and data consist of different elements and
attributes, but still need to be stored in the same XML enabled
column. Listings 1-7 and 1-8 demonstrate this case.

10

CHAPTER 1 * INTRODUCING XML

e Anapplication verifies and then sends well-formed XML or XML
fragments to a table.

After a table with an untyped XML column is created, you can expand the table and
then expand columns under Object Explorer. The column list appears, showing the XML
data type distinguished with a dot inside parentheses, indicating that this is an untyped
XML column as shown in Figure 1-3.

=1 O dbo.UntypedXML
d Columns
{ UntypedXML_ID (PK, int, ull)
2l UntypedXMLData (XML(.J, null)

Figure 1-3. Untyped XML column in Table Designer

1-2. Creating an XML Schema in Visual Studio
Problem

You want to obtain or generate an XML schema to constrain the data in a typed XML
column.

Solution

To generate an XML schema using Microsoft Visual Studio, you need to use a version
from 2008 or newer. SQL Server Data Tools will work as well since it uses the Microsoft
Visual Studio Shell. You will then need an XML file. If you have the XML data, for
instance, created as a result from the FOR XML clause (more on this in Chapter 2), then
save the XML data as a file with extension .xml.

To load the XML file:

1. Start MS Visual Studio.

2. Goto the File menu.

3. Select the Open option.

4. Click File (shortcut CTRL + O). The dialog Open File will
appear.

5. Navigate to the XML file storage location.

6. Click the Open button, as shown in Figure 1-4.

11

http://dx.doi.org/10.1007/978-1-4842-3117-3_2

CHAPTER 1 * INTRODUCING XML

> Microsoft Visual Studio (Administrator)
‘File | Edit View Debug Tools Window Help

New v o] - P Attach.. =

Open Y | @ Analysis Services Database...

Close B Project/Solution... Ctrl+Shift+0
Close Project % Web Site... Shift+ Alt+ O
Save Selected ltems Ctrl+5 *9 Fitei. Ctrl«0

Save Selected lief

W Savenul y

1 [W « 5012016 » XMLFiles v & | [Search amiries 2|

Organize = New folder =~ e

& Music ~ Name ° Date modified Type

Pict — . <
:v: ke | Production_XML " XML File
- e_“) XML_Enti XML File
i, 0sDisk (C)

€ Network vil<] [| >
File name: |Production XML w| | XML Fites ("ami sk it xsd v |

[Open Ivl I Cancel |

Figure 1-4. Opening an XML file in Visual Studio

Once the file is loaded, Visual Studio will recognize the XML file format and change
the Menu options to add the XML Menu Options. To generate an XML schema, complete
the following steps:

1. Select the XML menu.

2. Click on Create Schema option, shown in Figure 1-5.

o Production_XMLxml - Microsoft Visual Studio (Administrator)
File Edit \View Project Debug XML & Tools Window Help

jéo‘olﬂ'aﬂ'lxﬂmi‘a\':m.rleSa:hema p Attach.. ~
' saLsever e N
SOL Server Object Explorer ~ [3 | S ————
=i<Category>
<CategoryName>Accessories</CategoryName>
= <Subcategorv>

Figure 1-5. Creating the XML Schema

The XML schema will be created in a separate tab. You can copy the XML schema
contents, or save the .xsd file (shortcut CTRL + S) for future use, as shown in Figure 1-6.

12

CHAPTER 1 * INTRODUCING XML

b Production XMLxsd - Microsoft Visual Studio (Administrator)

File | Edit View Project Debug XML Tools Window Help
New ’ P Attach... = & | [-
Open

»

[Rl Production XMLl
Add * lersion=”1.0" encoding="utf-8"?>
ema attributeFormDefault="unqualified” elementFormDefault="qu

Close " -
. :element name="Category™>
B Close Project <xs:complexType>
W Save Production XMLasd Ctrl+S SRELEEGICED:
i <xs:element name="CategoryMame" type="xs:string” /»
Save Production XMLosd As... <xs:ielement maxOccurs="unbounded” names="Subcategory”
Sdvancad Sava Nntinne cxs:onmnlpxTune>

Figure 1-6. Saving XML schema as an .xsd file

How It Works

The era of creating your XML schemas manually is over, from my point of view. There are
many ways to generate an XML schema automatically. In this recipe, I demonstrated two
methods to automatically create an XML schema. Both methods are based on Microsoft
products:

e MS Visual Studio (2008 and up)
e MSSQL Server (2005 and up)

For simplicity, I am reusing the XML data from Listing 1-2, as reproduced in
Listing 1-10.

Listing 1-10. Sample XML

<Category>
<Category xmlns="http://schemas.microsoft.com/sqlserver/2004/07/Chaptero1/
ProductSchema">
<CategoryName>Accessories</CategoryName>
<Subcategory>
<SubcategoryName>Bike Racks</SubcategoryName>
<Product>
<Name>Hitch Rack - 4-Bike</Name>
<Number>RA-H123</Number>
<Price>120.0000</Price>
</Product>
</Subcategory>
<Subcategory>
<SubcategoryName>Bike Stands</SubcategoryName>
<Product>
<Name>All-Purpose Bike Stand</Name>
<Number>ST-1401</Number>
<Price>159.0000</Price>
</Product>
</Subcategory>
</Category>
</Category>

13

CHAPTER 1 * INTRODUCING XML

When you have an XML file and need to create an XML schema from it, the easiest
and most convenient way to accomplish this task is to use Microsoft Visual Studio, as
demonstrated in the solution. An XML schema generated from the sample data XML data
is shown in Listing 1-11.

Listing 1-11. XML schema generated by Visual Studio

<?xml version="1.0" encoding="utf-8"?>
<xs:schema xmlns:tns="http://schemas.microsoft.com/sqlserver/2004/07/
Chapter01/ProductSchema” attributeFormDefault="unqualified"
elementFormDefault="qualified" targetNamespace="http://schemas.microsoft.
com/sqlserver/2004/07/Chapter01/ProductSchema” xmlns:xs="http://www.
w3.0rg/2001/XMLSchema" >
<xs:element name="Category">
<xs:complexType>
<Xs:sequence>
<xs:element name="CategoryName" type="xs:string" />
<xs:element maxOccurs="unbounded" name="Subcategory">
<xs:complexType>
<Xs:sequence>
<xs:element name="SubcategoryName" type="xs:string" />
<xs:element name="Product">
<xs:complexType>
<Xs:sequence>
<xs:element name="Name" type="xs:string" />
<xs:element name="Number" type="xs:string" />
<xs:element name="Price" type="xs:decimal" />
</xs:sequence>
</xs:complexType>
</xs:element>
</Xxs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

1-3. Creating an XML Schema from SSMS
Problem

You want to generate an XML schema from within SQL Server Management Studio
(SSMS).

14

CHAPTER 1 * INTRODUCING XML

Solution

An alternate way to create an XML schema is using the SQL Server FOR XML clause
with the XMLSCHEMA directive. The reason for demonstrating this option is to show an
alternative way to generate an XML schema with FOR XML clause result.

To generate an inline XSD (XML Schema Definition) XML schema in SQL Server
you need to add a FOR XML clause with XMLSCHEMA keyword to your query (the FOR
XML clause will be covered in greater detail in Chapter 2, “Building XML"). Optionally
the schema name can be specified inside XMLSCHEMA keyword parentheses. For
example, to add the ProductSchema schema to your XSD schema, specify the following:
XMLSCHEMA('http://schemas.microsoft.com/sqlserver/2004/07/Chaptero1/
ProductSchema’), as shown in Listing 1-12.

Listing 1-12. Creating XML schema query

SELECT TOP (2) Category.Name AS CategoryName,
Subcategory.Name AS SubcategoryName,
Product.Name,
Product.ProductNumber AS Number,
Product.ListPrice AS Price
FROM Production.Product Product
INNER JOIN Production.ProductSubcategory Subcategory
ON Product.ProductSubcategoryID = Subcategory.
ProductSubcategoryID
LEFT JOIN Production.ProductCategory Category
ON Subcategory.ProductCategoryID = Category.Product
CategoryID
WHERE Product.ListPrice > 0
AND Product.SellEndDate IS NULL
ORDER BY CategoryName, SubcategoryName
FOR XML AUTO, ELEMENTS, XMLSCHEMA('http://schemas.microsoft.com/
sqlserver/2004/07/Chaptero1/ProductSchema'), ROOT('Category');

To extract the XSD schema you need to perform the following steps:

e Runyour SQL statement with the XMLSCHEMA keyword.

e Click on the query result to open the XML with schema in XML
Editor, as shown in Figure 1-7.

= Results [1y Messages|
XML_F52E2B61-18A1-11d1-B105-00805F 499168
1 <Catggf;_|_[g> <xsd:schema tagg__a_}_hlf_rr_]?ﬁ_gaoa="hnp:Hscﬁaamas,mfcmsuft.comfsg_l i&merﬂﬂﬂd@z{(ii}

; Click to show in XML Editor
'tCl:cf(and hold to select this cell

Figure 1-7. Showing result in XML Editor

15

http://dx.doi.org/10.1007/978-1-4842-3117-3_2
http://schemas.microsoft.com/sqlserver/2004/07/Chapter01/ProductSchema
http://schemas.microsoft.com/sqlserver/2004/07/Chapter01/ProductSchema

CHAPTER 1 * INTRODUCING XML

e The XML Editor will show both the XSD part and the XML part.
We will be focusing on the <xsd:schema> element.

e Copy from the opening <xsd:schema> tag to the closing </
xsd:schema> tag.

e Openanew SSMS window paste the copied part, as shown in
Figure 1-8.

HeCategory>

= ‘tdl"gt'[r'thml.'bprJ(.t‘="Pr‘0ﬁU|‘_tSChema" xmlns:schema="ProductSchema™ xmlns:xsd="http://www
<xsd:import namespace="http://schemas.microsoft.com/sqlserver/2004/sqltypes™ schemalocation=

= <xsd:element name="Category">

= <xsd:complexType>|

= <xsd:sequence>

= <xsd:element name="CategoryName" minOccurs="@">

= <xsd:simpleType sqltypes:sqlTypeAlias="[AdventureWorks2012].[dbo].[Name]">

% <xsd:restriction base="sqltypes:nvarchar" sgltypes:localeld="1833" sqltypes:sqlCom

el nndl et ArkdiasmEaY.

<xsd:element name="Price” type="sqltypes:money” />
<fxsd:sequence>
</xsd:complexType>
</x=d:element>

</xsd:schema>

<Category xmlns="ProductSchema">
<CategoryName>Accessories</CategoryName>
- <Subcategory>
<SubcategoryName>Bike Racks</SubcategoryName>
= <Product>
<Name>Hitch Rack - 4-Bike</Name>

Figure 1-8. Extracting XSD schema part

How It Works

The FOR XML clause with the XMLSCHEMA keyword provides a mechanism to add your
XML Schema to your XML result. When the namespace needs to be associated with the
XML result then the namespace declaration should be specified after the XMLSCHEMA
keyword in parentheses. For example:

XMLSCHEMA("http://schemas.microsoft.com/sqlserver/2004/07/Chaptero1/
ProductSchema'), ROOT('Category')

After copying and pasting the inline XML schema from the XML result generated by
Listing 1-13, the resulting XML schema is demonstrated in Listing 1-14.

Listing 1-13. The XML schema from the FOR XML clause result

<xsd:schema targetNamespace="http://schemas.microsoft.com/sqlserver/2004/07/
Chaptero1/ProductSchema” xmlns:schema="http://schemas.microsoft.com/
sqlserver/2004/07/Chapter01/ProductSchema” xmlns:xsd="http://www.
w3.0rg/2001/XMLSchema" xmlns:sqltypes="http://schemas.microsoft.com/
sqlserver/2004/sqltypes” elementFormDefault="qualified">

16

CHAPTER 1 * INTRODUCING XML

<xsd:import namespace="http://schemas.microsoft.com/sqlserver/2004/
sqltypes" schemalocation="http://schemas.microsoft.com/sqlserver/2004/
sqltypes/sqltypes.xsd" />
<xsd:element name="Category">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="CategoryName" minOccurs="0">
<xsd:simpleType sqltypes:sqlTypeAlias="[AdventureWorks2012].
[dbo].[Name]">
<xsd:restriction base="sqltypes:nvarchar" sqltypes:
localeId="1033" sqltypes:sqlCompareOptions="IgnoreCase
IgnoreKanaType IgnoreWidth" sqltypes:sqlSortId="52">
<xsd:maxLength value="50" />
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element ref="schema:Subcategory" minOccurs="0"
maxOccurs="unbounded" />
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="Subcategory">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="SubcategoryName">
<xsd:simpleType sqltypes:sqlTypeAlias="[AdventureWorks2012].
[dbo].[Name]">
<xsd:restriction base="sqltypes:nvarchar"
sqltypes:localeId="1033" sqltypes:sqlCompareOptions="IgnoreCa
se IgnoreKanaType IgnoreWidth" sqltypes:sqlSortId="52">
<xsd:maxLength value="50" />
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element ref="schema:Product” minOccurs="0"
maxOccurs="unbounded" />
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="Product">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Name">
<xsd:simpleType sqltypes:sqlTypeAlias="[AdventureWorks2012].
[dbo].[Name]">
<xsd:restriction base="sqltypes:nvarchar"
sqltypes:localeld="1033" sqltypes:sqlCompareOptions="IgnoreCa
se IgnoreKanaType IgnoreWidth" sqltypes:sqlSortId="52">

17

CHAPTER 1 * INTRODUCING XML

<xsd:maxLength value="50" />
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element name="Number">
<xsd:simpleType>
<xsd:restriction base="sqltypes:nvarchar"
sqltypes:localeId="1033" sqltypes:sqlCompareOptions="IgnoreCa
se IgnoreKanaType IgnoreWidth" sqltypes:sqlSortId="52">
<xsd:maxLength value="25" />
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element name="Price" type="sqltypes:money" />
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>

You might have noticed the difference in the XML schema generation and contents
between Visual Studio and SQL Server Management Studio. Creating an XML Schema via
SQL Server tends to create a much larger XML schema. However, both variants deliver
an XML schema that can be used with the XML Schema Collection to validate XML data
against.

1-4. Binding XML to a Schema Collection
Problem

You have an XML schema that you want to bind to a table’s column to create a typed XML
column.

Solution

To make an XML schema eligible to be bound to a table’s column, XML variable, or
XML stored procedure’s parameter, the XML Schema Collection needs to be created, as
shown in Listing 1-14. To demonstrate the process, I am reusing the XML Schema from
Listing 1-11.

Listing 1-14. Creating the XML Schema Collection

CREATE XML SCHEMA COLLECTION dbo.TypedXML_ VisualStudio

AS

N'<?xml version="1.0"?>

<xs:schema xmlns:tns="http://schemas.microsoft.com/sqlserver/2004/07/
Chapter01/ProductSchema” attributeFormDefault="unqualified"
elementFormDefault="qualified" targetNamespace="http://schemas.microsoft.

18

CHAPTER 1 * INTRODUCING XML

com/sqlserver/2004/07/Chaptero1/ProductSchema™ xmlns:xs="http://www.
w3.0rg/2001/XMLSchema” >
<xs:element name="Category">
<xs:complexType>
<Xs:sequence>
<xs:element name="CategoryName" type="xs:string" />
<xs:element maxOccurs="unbounded" name="Subcategory">
<xs:complexType>
<Xs:sequence>
<xs:element name="SubcategoryName" type="xs:string" />
<xs:element name="Product">
<xs:complexType>
<Xs:sequence>
<xs:element name="Name" type="xs:string" />
<xs:element name="Number" type="xs:string" />
<xs:element name="Price" type="xs:decimal" />
</xs:sequence>
</xs:complexType>
</xs:element>
</Xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>";
GO

How It Works

The syntax for creating the XML Schema Collection is fairly simple. When the XML
schema is generated, the schema contents need to be added to an SQL Server XML
Schema Collection object. The syntax to create the schema collection (shown in
Listing 1-14) has several components:

e (CREATE XML SCHEMA COLLECTION - declarative statement

e dbo - relational schema (if not provided then the SQL
Server default will be assumed)

e XML Schema Collection name - any SQL Server valid
unique name

e AS <schema_contents> - The XML Schema contents that
can be constant, or scalar variable in xml, nvarchar,
varchar, or varbinary data type

19

CHAPTER 1 * INTRODUCING XML

To create an XML SCHEMA COLLECTION one of the following server- or
database-level permissions are required:

e CONTROL (server level)

e ALTER ANY DATABASE (server level)
e ALTER (database level)

e CONTROL (database level)

e ALTER ANY SCHEMA and CREATE XML SCHEMA COLLECTION
(database level)

After successful creation, your new XML Schema Collection can be found in the
SSMS Object Explorer under Programmability, Types, XML Schema Collection, as shown
in Figure 1-9.

= (@ Programmability
] (3 Stored Procedures
(3 Functions
i (3 Database Triggers
[(3 Assemblies
| L3 Types
3 System Data Types
#H (3 User-Defined Data Types
i (3 User-Defined Table Types
@ (3 User-Defined Types
= 3 XML Schema Collections
& & dbo.TestXMLSchema
& & dbo.TypedXML_SSMS
@ &% dbo.TypedXML_VisualStudio

fre]

Figure 1-9. Finding the XML Schema Collection

Note When the XML Schema Collection is bound to one or more columns, no changes
can be applied to the XML Schema Collection. To modify or drop the XML Schema Collection
you need to unbind it from the column(s) first.

1-5. Creating a Typed XML Column
Problem

You have created an XML Schema Collection, and now you want to bind it to a column to
create a typed XML column.

20

CHAPTER 1 * INTRODUCING XML

Solution

When the XML Schema Collection is successfully created, the code to bind your XML
Schema to a newly created table is shown in Listing 1-15.

Listing 1-15. Creating new table with typed XML column

CREATE TABLE dbo.TypedXML VS

(
TypedXML_ID INT IDENTITY(1, 1) NOT NULL PRIMARY KEY,
TypedXMLData XML(TypedXML VisualStudio)

)

GO

You can bind the XML Schema Collection to an existing XML column with the ALTER
TABLE .. ALTER COLUMN statement, as demonstrated in Listing 1-16.

Listing 1-16. Binding XML Schema Collection to the column

ALTER TABLE TypedXML VS
ALTER COLUMN TypedXMLData XML (TypedXML_VisualStudio);

How It Works

The mechanism to bind an XML Schema Collection to an XML column is straightforward.
The XML Schema Collection name needs to be identified as part of the XML data type, in
parentheses. The syntax is: column_name XML (XML_SCHEMA_COLLECTION_NAME).
For the new table, the XML Schema Collection can be bound to a column in the CREATE
TABLE DDL command (Listing 1-15). When the table contains an untyped XML column,
the ALTER TABLE command will complete the task (Listing 1-16).

When the XML Schema Collection is bound to a column, the XSD itself cannot be
modified or deleted. However, the table with the typed XML column can be dropped.
To disconnect the XSD from the column, you need to execute an ALTER TABLE DDL
command, where the XML data type does not have parentheses, as shown in Listing 1-17.

Listing 1-17. Disconnecting the XSD from the column
ALTER TABLE TypedXML_VS
ALTER COLUMN TypedXMLData XML;

After the XSD is unbound, the XML column becomes untyped.
A couple of questions and answers about a typed XML.
Why do I want to do this and what is the benefit?

e Ability to validate an XML data per the XML schema.

e Take advantage of storage and query optimizations based on type
information.

e Better advantage of type information within a compilation of the
queries.

21

CHAPTER 1 * INTRODUCING XML

What happens to XML data I insert into a typed XML column?

e Each insert validates by the XML schema; when validation fails,
then SQL Server raises an error and insert fails.

What happens if I have XML already existing in the table and apply an XML
schema to it?

e Ifatable with the XML column has existing XML, then bind XML
schema to the table fails when the XML does not conform to the
XML schema.

Summary

SQL Server 2000 first introduced XML functionality in the SQL database. Since that time,
XML technology has evolved into a comprehensive information technology platform.
SQL Server 2005 was delivered with the XML data type. In this chapter, you received an
introduction to XML. I explained the difference between the element and attribute,
which is very important to differentiate for future chapters. I defined and explained XML
schemas and introduced two ways how to generate an XML Schema. From my point
of view, with the availability of modern technology, there is no need to create the XML
Schema manually, since it is a complex and time-consuming process. Save your time, and
if you are dealing with the Microsoft tools MS Visual Studio, SQL Server Data Tools, and
SSMS, either one can generate the XML Schema automatically.

The next chapter of the book demonstrates how to build an XML out of a result set.

22

CHAPTER 2

Building XML

XML is represented in SQL Server using a complex data type that has special syntax and

well-defined format. It can be used when we need to construct XML-formatted output
or shred existing XML into relational format. In this chapter I will provide recipes for
building XML from a result set based on one or more tables, and for formatting and
presenting the result as XML output.

Introduced in SQL Server 2000, the FOR XML clause has evolved dramatically to
become a comprehensive solution for building XML output. FOR XML has to be the last
clause in a SELECT statement and has to appear after an ORDER BY clause when the
sorting has a place within a query.

The FOR XML clause has the following modes:

e RAW - Returns simple XML from one or more tables, in which each
row is represented with a <row> element. Attribute-centric XML
is generated by default, which means each of the row’s non-null
column values are represented as attributes of the <row> element.
If, however, you specify the ELEMENTS directive, each of the row’s
column values is represented as an element nested within the
<row> element. RAW mode does not support nested element
structure.

e AUTO - Returns simple XML structure from one or more tables.
AUTO mode is similar to RAW mode, except that it supports
nested elements when two or more tables are joined in the
query’s FROM clause.

e EXPLICIT - Allows you to explicitly construct the XML. EXPLICIT
mode acceses the XML in a universal table format behind the
scenes. This is a well-defined rowset format thay is very similar to
shredded XML. Constructing XML using EXPLICIT mode requires
a specific syntax to define the “shape” of the XML result; therefore
this mode can be complex to use. SQL Server 2008 introduced
PATH mode as a simplified alternative to EXPLICIT mode.

e PATH - Provides a simpler way to explicitly construct XML with a
mix of elements and attributes. This is a great alternative to the
EXPLICIT mode.

© Alex Grinberg 2018
A. Grinberg, XML and JSON Recipes for SOQL Server,
https://doi.org/10.1007/978-1-4842-3117-3_2

23

https://doi.org/10.1007/978-1-4842-3003-9_5

CHAPTER 2 * BUILDING XML

When you specify the FOR XML clause, you can also provide the following directives,
which control formatting options of the FOR XML clause modes:

e ELEMENTS - Returns element-centric XML. The default is attribute-
centric results, and this option applies to RAW, AUTO, and PATH
modes only.

e BINARY BASE64 - Retrieves binary data in Base-64-encoded
format.

e TYPE - Returns the result as an XML data type instance.

e ROOT - Extends the XML result with top-level (root) element,
which is a requirement of “well-formed” XML.

e XSINIL - Returns the element name within the XML result when
the value is NULL. The element is returned with an xsi:nil
attribute set to “true,” like this: <element xsi:nil = "true"/>.

e ABSENT - Opposite of the XSINIL directive. The ABSENT directive
is the default. When used, it specifies that NULLs should be
eliminated from the XML result.

e XMLSCHEMA - Extends the XML result with an inline W3C XML
Schema (XSD).

Fixing the “Unable to show XML’ Error

To review XML results of a query in SQL Server Management Studio (SSMS), you can
simply click on the hyperlinked XML result displayed in the Results pane. The XML
result will display in a new SSMS XML editor window. When we are dealing with very
large result sets, however, the XML might exceed the default limit for XML data (2 MB)
and throw a System.OutOfMemoryException with the message “Unable to show XML,” as
shown in Figure 2-1.

[Results | 'y Messages/
XML_F52E2B61-18A1-11d1-B105-00805F49916B
1 |cSaIesOrdarDe:ails><AdventureWorks2D12,53125.53!...]

& m
Microsoft SQL Server Management Studio w

g Unabie to show XML. The folowing error happened:
&Y Exception of type ‘System.OutOfMemoryException’ was thrown.

One solution s to Increase the number of characters retrieved from the server for XML data. To change this
setting, on the Tools menu, cick Options.

- o)

\

Figure 2-1. “Unable to show XML” error message

24

CHAPTER 2 * BUILDING XML

The error message recommends increasing the number of characters retrieved from
the server for XML data. As indicated, this option is available from the Options item in
the Tools menu. The default maximum for XML data is 2 MB. To change this setting go
to Tools in the menu bar and select Options... on the menu. Once you are in the Options
dialog, do the following:

1.

2
3.
4

Expand Query Results.
Expand SQL Server.
Click Result to Grid.

In the right pane, use the drop-down to change the Maximum
Characters Retrieved for XML data. The available settings are:
1 MB, 2 MB, 5 MB, or Unlimited.

Click OK to save your settings. Figure 2-2 shows the
Options dialog.

Search Options (Ctri+E)

Specify the options for displaying the result set in grid format.

b Environment :
b Ted Editor [include the query in the result set
b Query Execution [include column headers when copying or saving the results
4 Query Results [} Retain CR/LF on copy or save
4 SQL Server ‘o [Discard results after execution
General “
Results to Grid [[] Digplay results in 3 separate tab
Results to Text Switch to results tab after the query executes
Multiserver Results .
b Analysis Server M
b Designers o
P SQL Server AlwaysOn
b SQL Server Object Explorer

oK

| [_concs |

Figure 2-2. Changing XML data settings

If you would like to change the maximum size of your XML results for the current
query only, and do not want to save the SSMS settings permanently, click on the Query
menu and select Query Options.... Navigate to the Grid settings under Results and change
the Maximum Characters Retrieved XML data option as in the previous recipe.

25

CHAPTER 2 * BUILDING XML

2-1. Converting Relational Data to a Simple
XML Format

Problem

You want to convert a query result set to a simple XML format.

Solution

SQL Server provides the FOR XML clause to format query results as XML data. RAW mode
generates a simple XML format. For example, Listing 2-1 demonstrates RAW mode in a
FOR XML clause.

Listing 2-1. Demonstrating RAW mode within a FOR XML clause

SELECT Category.Name AS CategoryName,
Subcategory.Name AS SubcategoryName,
Product.Name,
Product.ProductNumber AS Number,
Product.ListPrice AS Price
FROM Production.Product Product
INNER JOIN Production.ProductSubcategory Subcategory
ON Product.ProductSubcategoryID = Subcategory.Product
SubcategoryID
LEFT JOIN Production.ProductCategory Category
ON Subcategory.ProductCategoryID = Category.Product
CategoryID
WHERE Product.ListPrice > 0
AND Product.SellEndDate IS NULL
ORDER BY CategoryName, SubcategoryName
FOR XML RAW;

How It Works

RAW mode converts each row from a query result set into a simple, structured XML
element. By default, RAW mode returns a <row> element for each data row, and all values
are mapped to attributes with the same column names (or column aliases, if specified)
as the source SQL query. This XML structure is commonly referred to as attribute-centric
XML. Listing 2-2 shows sample RAW mode output.

Listing 2-2. Sample RAW mode output

<row CategoryName="Components" SubcategoryName="Brakes" Name="Front Brakes"
Number="FB-9873" Price="106.5000" />
<row CategoryName="Components" SubcategoryName="Brakes" Name="Rear Brakes"
Number="RB-9231" Price="106.5000" />

26

CHAPTER 2 * BUILDING XML

<row CategoryName="Components" SubcategoryName="Pedals" Name="LL Road Pedal"
Number="PD-R347" Price="40.4900" />

<row CategoryName="Components" SubcategoryName="Cranksets" Name="LL
Crankset" Number="CS-4759" Price="175.4900" />

Caution Attribute-centric XML has a limitation, in that it requires unique attribute
names to be mapped to each element. Therefore, the SQL query must provide a unique
name for each column, in much the same way that you must provide unique column names
when creating an SQL view. Element-centric XML, however, does not have this limitation.

In a production environment, the default <row> element is generally not suitable or
business applicable to send to a client in your XML data. To replace a <row> element with
another element name that is friendlier and more business appropriate in your generated
XML data, RAW mode can accept a user-defined element name (a row tag name). You can
specify this row tag name in parentheses following the FOR XML RAW clause, like this: FOR
XML RAW(“ElementName’). Listing 2-3 demonstrates how to replace the default element
name with a user-defined name, and Listing 2-4 shows the XML result.

Listing 2-3. Demonstrating the row tag name option of the FOR XML RAW clause

SELECT Category.Name AS CategoryName,
Subcategory.Name AS SubcategoryName,
Product.Name,
Product.ProductNumber AS Number,
Product.ListPrice AS Price
FROM Production.Product Product
INNER JOIN Production.ProductSubcategory Subcategory
ON Product.ProductSubcategoryID = Subcategory.Product
SubcategoryID
LEFT JOIN Production.ProductCategory Category
ON Subcategory.ProductCategoryID = Category.Product
CategoryID
WHERE Product.ListPrice > 0
AND Product.SellEndDate IS NULL
ORDER BY CategoryName, SubcategoryName
FOR XML RAW('Product');

Listing 2-4. Result of FOR XML RAW query with row tag name specified

<Product CategoryName="Components" SubcategoryName="Brakes"

Name="Front Brakes" Number="FB-9873" Price="106.5000" />

<Product CategoryName="Components" SubcategoryName="Brakes"

Name="Rear Brakes" Number="RB-9231" Price="106.5000" />

<Product CategoryName="Components" SubcategoryName="Pedals"

Name="LL Road Pedal" Number="PD-R347" Price="40.4900" />

<Product CategoryName="Components" SubcategoryName="Cranksets" Name="LL
Crankset" Number="CS-4759" Price="175.4900" />

27

CHAPTER 2 * BUILDING XML

2-2. Generating XML Data with Table Names

as Element Names
Problem

You would like to simply construct XML results from a Single Table with element names
in the XML result that indicate the source table.

Solution

AUTO mode is very similar in functionality to RAW mode when the source query references
a single table. The only difference is that AUTO mode names each element representing a
row with the name of the table as specified in the source query. That is to say, when the
query has a schema and table name, like Production.Product, each row element will be
<Production.Product>. Listing 2-5 demonstrates AUTO mode for a single table.

Listing 2-5. Building XML with FOR XML AUTO for a single table

SELECT Product.Name,
Product.ProductNumber AS Number,
Product.ListPrice AS Price

FROM Production.Product

WHERE Product.ListPrice > 0
AND Product.SellEndDate IS NULL

ORDER BY Product.Name

FOR XML AUTO;

Listing 2-6 shows the XML result of this query.

Listing 2-6. Results of FOR XML AUTO for a single table

<Production.Product Name="Front Brakes" Number="FB-9873" Price="106.5000" />
<Production.Product Name="Rear Brakes" Number="RB-9231" Price="106.5000" />
<Production.Product Name="LL Road Pedal" Number="PD-R347" Price="40.4900" />
<Production.Product Name="LL Crankset" Number="CS-4759" Price="175.4900" />

Note The W3C XML standard allows the use of periods (.) in element and attribute
names.

AUTO mode, unlike RAW mode, does not support a row tag name option. Therefore,
you must provide a table alias to change the row tag element name. Listing 2-7
demonstrates how to use an alias to change the element name in AUTO mode.

28

CHAPTER 2 * BUILDING XML

Listing 2-7. Changing the element name by aliasing a table with FOR XML AUTO

SELECT Product.Name,
Product.ProductNumber AS Number,
Product.ListPrice AS Price

FROM Production.Product AS Product

WHERE Product.ListPrice > 0
AND Product.SellEndDate IS NULL

ORDER BY Product.Name

FOR XML AUTO;

Listing 2-8 shows the XML result of the FOR XML AUTO query with the aliased source
table name.

Listing 2-8. Result of single-table FOR XML AUTO query with source table aliased

<Product Name="Front Brakes" Number="FB-9873" Price="106.5000" />
<Product Name="Rear Brakes" Number="RB-9231" Price="106.5000" />
<Product Name="LL Road Pedal" Number="PD-R347" Price="40.4900" />
<Product Name="LL Crankset" Number="CS-4759" Price="175.4900" />

When two or more tables are joined in the source query of a FOR XML AUTO query, the
XML takes a different shape. The XML result is nested multiple levels deep with each level
of nested node named for the tables in the FROM clause in the order in which they are
named. As shown in Listing 2-9, construct the XML based on three tables.

Listing 2-9. Using the FOR XML AUTO clause to construct XML data with multiple
joined tables

SELECT Category.Name AS CategoryName,
Subcategory.Name AS SubcategoryName,
Product.Name,
Product.ProductNumber AS Number,
Product.ListPrice AS Price,
SellEndDate
FROM Production.Product Product
INNER JOIN Production.ProductSubcategory Subcategory
ON Product.ProductSubcategoryID = Subcategory.Product
SubcategoryID
LEFT JOIN Production.ProductCategory Category
ON Subcategory.ProductCategoryID = Category.Product
CategoryID
WHERE Product.ListPrice > 0
AND Product.SellEndDate IS NULL
ORDER BY CategoryName, SubcategoryName
FOR XML AUTO;

29

CHAPTER 2 * BUILDING XML

The XML result of this query is formatted as follows:
1. <Category> is the top-level element.
2. <Subcategory> is a child of the <Category> element.
3. <Product> is the child of the <Subcategory> element.

The hierarchical XML results of the FOR XML AUTO query with multiple joined tables
is shown in Figure 2-3.

~i<Category CategcryName:"Accessor‘ies">| *_[Parentelement“Categcry"
= <Subcategory SubcategoryName="Bike Racks">

<Product Name="Hitch Rack - 4-Bike" Number="RA-H123"™ Price="120.0000" />
o Subcatagoryy " H Child element "Subcategory” |
<Subcategory SubcategoryMame="Bike Stands">
<Product Name="All-Purpose Bike Stand" Number="ST-1481" Price="159.0000" />
</Subcategory> "Subcategory” child element
E <Subcategory SubcategorylName="Bottles and Cages"> "Product”
<Product Name="Water Bottle - 30 oz." Number="WB-HB98" Price="4.9900" >
<Product Name="Mountain Bottle Cage" Number="BC-M@@S" Price="9.9%900" />
<Product Name="Road Bottle Cage" Number="BC-R205" Price="8.9988" />
</Subcategory>
<Subcategory SubcategoryName="Cleaners">...</Subc ategor~y->|
<Subcategory SubcategoryName="Fenders">...</Subcategory
<Subcategory SubcategoryName="Helmets">...</Subcategory>
KSubcategory SubcategoryName="Hydration Packs">...</Subcategory>

[FH-F-F -

<Subcategory SubcategoryName="Tires and Tubes">...</Subcategory?|
</Category>
<Category CategoryName="Bikes">...</Category>|

=

]

<Category CategoryName="Clothing">...</Category?|
<Category CategoryName="Components">... <;’C&te[-‘0r‘y>:|

=

Figure 2-3. Hierarchical XML result when FOR XML AUTO mode is applied to multiple
Jjoined tables in a query

How It Works

AUTO mode provides an easy way to build XML. The SQL query engine analyzes your
query structure and builds a hierarchy using the names provided in the query to generate
element and attribute names — this is why this mode is called “AUTO.” As demonstrated
in the Solution section, when FOR XML AUTO is implemented, the SQL Server engine
returns hierarchical XML.

2-3. Generating Element-Centric XML
Problem

Both RAW and AUTO modes return attribute-centric XML by default. However, you want to
generate element-centric XML data when business rule requires it.

30

CHAPTER 2 * BUILDING XML

Solution

The FOR XML clause with the ELEMENTS option returns the XML result in element-centric
format. Listing 2-10 shows how to add the ELEMENTS directive to the FOR XML AUTO clause.

Listing 2-10. FOR XML AUTO query with ELEMENTS directive

SELECT Product.Name,
Product.ProductNumber AS Number,
Product.ListPrice AS Price

FROM Production.Product AS Product

WHERE Product.ListPrice > 0
AND Product.SellEndDate IS NULL

ORDER BY Product.Name

FOR XML AUTO, ELEMENTS;

The results of the FOR XML AUTO query with ELEMENTS directive is shown in
Listing 2-11.

Listing 2-11. Results of FOR XML AUTO query with ELEMENTS directive

<Product>
<Name>Chain</Name>
<Number>CH-0234</Number>
<Price>20.2400</Price>
</Product>
<Product>
<Name>Classic Vest, L</Name>
<Number>VE-C304-L</Number>
<Price»63.5000</Price>
</Product>

How It Works

The ELEMENTS option formats your XML result with columns nested as sub-elements of
each row element. This format is known as element-centric XML. The ELEMENTS option
can be specified with the FOR XML clause’s RAW, AUTO, and PATH modes. FOR XML EXPLICIT
mode does not support the ELEMENTS directive.

The ELEMENTS directive must be separated from the RAW, AUTO, and PATH mode
keyword by a comma. For example: FOR XML AUTO, ELEMENTS.

This simple change allows you to return the XML in an element-centric format
instead of the default attribute-centric format.

31

CHAPTER 2 * BUILDING XML

2-4. Adding a Root Element
Problem

You would like to add a root (top-level) element to your generated XML.

Solution

The ROOT option wraps your XML result in a top-level root element of your choosing.
Listing 2-12 demonstrates how to add a ROOT directive to the query.

Listing 2-12. Adding the ROOT directive to a FOR XML AUTO query

SELECT Product.Name,
Product.ProductNumber AS Number,
Product.ListPrice AS Price

FROM Production.Product AS Product

WHERE Product.ListPrice > 0
AND Product.SellEndDate IS NULL

ORDER BY Product.Name

FOR XML AUTO, ELEMENTS, ROOT;

Listing 2-13 shows the result of the FOR XML AUTO query with both the ELEMENTS and
ROOT directives.

Listing 2-13. Snippet of well-formed XML generated with ELEMENTS and ROOT
directives

<root>

<Product>
<Name>All-Purpose Bike Stand</Name>
<Number>ST-1401</Number>
<Price>159.0000</Price>

</Product>

<Product>
<Name>AWC Logo Cap</Name>
<Number>CA-1098</Number>
<Price»8.9900</Price>

</Product>

<Product>
<Name>Bike Wash - Dissolver</Name>
<Number>CL-9009</Number>
<Price»7.9500</Price>

</Product>

</root>

32

CHAPTER 2 * BUILDING XML

How It Works

The ROOT option specifies that your XML result will be wrapped in a single top-level root
element. By default, the ROOT directive generates a top-level element named <root>.
However, the default name <root> can also be replaced with a user-defined value in
parentheses. For example: FOR XML AUTO, ELEMENTS, ROOT('Products').When the root
element name is specified, the XML result uses the name you specify as the top-level root
element. In the previous example, the root element will be named <Products>.

2-5. Including Elements with NULL Values in
Your XML Data

Problem

By default, the XML that SQL Server generates excludes any columns with NULLs. You
would like to specifically include columns containing NULLs.

Solution

The XSINIL option of the ELEMENTS directive forces the XML result to include elements
in which the source columns contain NULLs. Listing 2-14 demonstrates how to add an
XSINIL option to your query.

Listing 2-14. Adding an XSINIL option to the FOR XML query

SELECT Product.Name,
Product.ProductNumber AS Number,
Product.ListPrice AS Price,
SellEndDate

FROM Production.Product AS Product

WHERE Product.ListPrice > 0

ORDER BY Product.Name

FOR XML AUTO, ELEMENTS XSINIL, ROOT('Products');

Listing 2-15 displays the result of using the XSINIL option.

Listing 2-15. Snippet of results of the XSINIL option query

<Products xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<Product>
<Name>Bike Wash - Dissolver</Name>
<Number>CL-9009</Number>
<Price>7.9500</Price>

<SellEndDate xsi:nil="true" />
</Product>

33

CHAPTER 2 * BUILDING XML

<Product>
<Name>Cable Lock</Name>
<Number>L0-C100</Number>
<Price>25.0000</Price>
<SellEndDate>2013-05-29T00:00:00</SellEndDate>
</Product>

</Products>

In the sample results, product number CL-9009 has a SellEndDate of NULL in the
database, so it is represented with an xsi:nil attribute set to “true” Product number
LO-C100, however, has a non-NULL SellEndDate value, so it has no xsi:nil attribute.

How It Works
The ELEMENTS directive supports two options:

1. XSINIL - this option forces the XML result to generate
elements for NULL values in the source data.

2. ABSENT - this option leaves any elements that contain NULL
values in the source data out of your XML result. This is the
default option for the ELEMENTS directive, and does not need
to be specified explicitly.

The XSINIL and ABSENT options are considered part of the ELEMENTS directive, and
they can be specified as such, when needed. Therefore, unlike directives, the XSINIL and
ABSENT options are separated from their ELEMENTS directive by a space, not a comma.

2-6. Including Binary Data in Your XML
Problem

You want to include the contents of a binary column in your XML data.

Solution

You may run into a situation in which you are querying a column that contains binary
data, and you want the binary data to be included in your XML result. Consider Listing
2-16, which is a query that attempts to return binary data in XML format.

Listing 2-16. Failing query to retrieve binary data in XML format

SELECT LargePhotoFileName,
LargePhoto

FROM Production.ProductPhoto

FOR XML AUTO, ELEMENTS;

34

CHAPTER 2 * BUILDING XML

When you try to execute this query it raises an error:

FOR XML AUTO requires primary keys to create references for ‘LargePhoto! Select
primary keys, or use BINARY BASE64 to obtain binary data in encoded form if no primary
keys exist.

This query fails because you did not include a primary key column in your result set.
Changing the query as shown in Listing 2-17 will resolve the issue.

Listing 2-17. Working query to retrieve binary data in XML format

SELECT LargePhotoFileName,
LargePhoto,
ProductPhotoID

FROM Production.ProductPhoto

FOR XML AUTO, ELEMENTS;

However, instead of the expected binary data, a reference to the primary key row is
returned, as shown in Listing 2-18.

Listing 2-18. Snippet of results of binary data query with reference to primary key row

<Production.ProductPhoto>
<LargePhotoFileName>racer02_black large.gif</LargePhotoFileName>
<LargePhoto>dbobject/Production.ProductPhoto[@ProductPhotoID="70"]/
@LargePhoto</LargePhoto>
<ProductPhotoID>70</ProductPhotoID>

</Production.ProductPhoto>

To include an actual representation of your binary data in your XML result, simply
apply the BINARY BASE64 directive to your FOR XML clause. This directive forces the XML
result to include binary data in Base64-encoded format. Listing 2-19 demonstrates the
BINARY BASEG64 directive of the FOR XML clause.

Listing 2-19. Using the BINARY BASE64 directive of the FOR XML clause

SELECT LargePhotoFileName,
LargePhoto
FROM Production.ProductPhoto
FOR XML AUTO, ELEMENTS, BINARY BASE64;

How It Works

The BINARY BASE64 directive encodes binary data in Base-64 format. When the query
returns a column of the varbinary data type, the BINARY BASE64 directive of the FOR XML
clause returns your binary data in Base-64-encoded in your XML result.

Each FOR XML mode acts on the binary data in your result set using specific rules:

e AUTO mode returns a reference to a binary column and row when
the primary key is included in your query result.

35

CHAPTER 2 * BUILDING XML

e RAWand EXPLICIT modes will raise an error when the query has a
column with binary data.

e Only PATH mode does not raise an error, and returns the XML
result with binary data when the BINARY BASE64 directive is not
specified.

For example, execute the following query:

SELECT LargePhotoFileName, LargePhoto
FROM [Production].[ProductPhoto]
FOR XML PATH;

And this query:

SELECT LargePhotoFileName, LargePhoto
FROM [Production].[ProductPhoto]
FOR XML AUTO, ELEMENTS, BINARY BASE64;

Both queries will return the same result. However, I would strongly recommend
including a BINARY BASE64 directive to all FOR XML modes when the binary data is part of
the result set. This is because you need to retrieve an actual datum, not the reference to
the data, as it could happen when the primary key is listed in the SELECT clause.

2-7. Generating Nested Hierarchical XML Data
Problem

You want to nest the results of an XML-generating subquery into your outer XML-
generating query, to create more complex hierarchical XML data.

Solution

You might want run into a situation that requires generating hierarchical XML that can
be generated via SQL correlated subqueries. As an example, a product category in the
AdventureWorks database can have multiple related subcategories. Assume that you
want to generate an XML result that lists all product categories, each with its product
subcategories nested within it.

Your first pass at a SQL query might look like Listing 2-20.

Listing 2-20. First attempt at creating hierarchical XML with a correlated subquery

SELECT Category.Name AS CategoryName,
SELECT Subcategory.Name AS SubcategoryName
FROM Production.ProductSubcategory Subcategory

WHERE Subcategory.ProductCategoryID = Category.Product
CategoryID

36

CHAPTER 2 * BUILDING XML

FOR XML AUTO
) Subcategory
FROM Production.ProductCategory Category
FOR XML AUTO, ROOT('Categories');

The result of this query results in XML entities like &1t; and > throughout your
XML data, as shown in Figure 2-4, instead of the expected properly nested XML elements.
This is because the XML being generated in the correlated subquery is treated as a string
data type instead of proper XML data.

CategoryMames"Accessories™ Subcategorys="&1t;Subcategory categorylame=" ;Bike Standsfquot;/Rgt;&1t;¢

ategorylame="Bikes" Subcategory="81t;Subcategory Subcate), ategoryName=Rquot ;Road Bikeslquot; /Rgt; &1t ;Subc
CategoryMame="Clothing” Subcategory="&1t;Subcategory Sub? itegoryName=" ; Capshquot ; /> &1t ;Subcategory
CategoryName="Components” Subcategory="&l1t;Subcategory Sub :ategoryName~8quot ;Bottom BracketsSquot; /> &)

Figure 2-4. Results of first attempt at creating hierarchical XML data

How can you return the query in XML format? You want proper tags, and not the
XML > and < entities.

To force the result set to be retuned in proper XML format, add the TYPE directive
to your FOR XML clauses. Listing 2-9 demonstrates this option. Listing 2-21 shows the
generated XML.

Listing 2-21. Implementing the TYPE directive

SELECT Category.Name AS CategoryName,

SELECT Subcategory.Name AS SubcategoryName
FROM Production.ProductSubcategory Subcategory
WHERE Subcategory.ProductCategoryID = Category.Product
CategoryID
FOR XML AUTO, TYPE
) Subcategory
FROM Production.ProductCategory Category
FOR XML AUTO, ELEMENTS, TYPE, ROOT('Categories');

The results of this updated query with the TYPE directive is shown in Listing 2-22.

Listing 2-22. Snippet of nested hierarchical XML generated with nested subquery and
TYPE directive.

<Categories>
<Category CategoryName="Accessories">
<Subcategory>

<Subcategory SubcategoryName="Bike Racks" />
<Subcategory SubcategoryName="Bike Stands" />
<Subcategory SubcategoryName="Bottles and Cages" />
<Subcategory SubcategoryName="Cleaners" />
<Subcategory SubcategoryName="Fenders" />

37

CHAPTER 2 * BUILDING XML

<Subcategory SubcategoryName="Helmets" />
<Subcategory SubcategoryName="Hydration Packs" />
<Subcategory SubcategoryName="Lights" />
<Subcategory SubcategoryName="Locks" />
<Subcategory SubcategoryName="Panniers" />
<Subcategory SubcategoryName="Pumps" />
<Subcategory SubcategoryName="Tires and Tubes" />
</Subcategory>
</Category>

</Categories>

How It Works

By default, the FOR XML clause returns an nvarchar (max) data type result. The XML
generated by the subquery is retuned as character data, instead of the required XML
format. When SQL Server converts XML data to character format, it properly entitizes
certain special characters, like the “<” and “>” characters (&41t; and 8gt;, respectively.)
The TYPE directive forces SQL to return the XML results in proper XML format, without
entitizing the contents. The TYPE directive can be used with all FOR XML modes.

2-8. Building Custom XML
Problem

You want fine-grained control to customize the format of your generated XML.

Solution

In previous recipes we focused on the RAW and AUTO modes that return either element-
centric or attribute-centric XML, and automatically generate names based on the source
table and column names (or aliases). But what if you want more control over your
element-centric or attribute-centric XML results? EXPLICIT mode gives you more control
over your XML result. Listing 2-23 demonstrates a query to generate your XML result with
a custom-defined structure.

Listing 2-23. Using EXPLICIT mode to control the format of your XML result

SELECT 1 AS Tag,
0 AS Parent,
Prod.Name AS [Categories!1!Category!ELEMENT],
NULL AS [Subcategories!2!Subcategory!ELEMENT],
NULL AS [Product!3!ProductName!ELEMENT],
NULL AS [Product!3!Color!ELEMENTXSINIL],
NULL AS [Product!3!Shelf],
NULL AS [Product!3!Bin],
NULL AS [Product!3!Quantity]

38

CHAPTER 2 * BUILDING XML

FROM Production.ProductCategory Prod
UNION ALL

SELECT 2 AS Tag,
1 AS Parent,
Category.Name,
Subcategory.Name,
NULL,
NULL,
NULL,
NULL,
NULL
FROM Production.ProductCategory Category
INNER JOIN Production.ProductSubcategory Subcategory
ON Category.ProductCategoryID = Subcategory.ProductCategoryID

UNION ALL

SELECT 3 AS Tag,
2 AS Parent,
ProductCategory.Name,
Subcategory.Name,
Product.Name,
Product.Color,
Inventory.Shelf,
Inventory.Bin,
Inventory.Quantity
FROM Production.Product Product
INNER JOIN Production.ProductInventory Inventory
ON Product.ProductID = Inventory.ProductID
INNER JOIN Production.ProductSubcategory Subcategory
ON Product.ProductSubcategoryID = Subcategory.ProductSubcategoryID
INNER JOIN Production.ProductCategory
ON Subcategory.ProductCategoryID = Production.ProductCategory.
ProductCategoryID
ORDER BY [Categories!1!Category!ELEMENT],
[Subcategories!2!Subcategory!ELEMENT],
[Product!3!ProductName!ELEMENT]
FOR XML EXPLICIT, ROOT('Products');

39

CHAPTER 2 * BUILDING XML

How It Works

EXPLICIT mode is one of the most complex FOR XML modes to use. All elements and
attributes need to be provided explicitly, and each child block must be linked to the
parent explicitly as well. When comparing EXPLICIT mode other modes, such as RAW and
AUTO, the queries with the EXPLICIT mode are much lengthier. The benefit of EXPLICIT
mode, however, is that it provides much greater control over the shape of the XML
generated by the query result.

To better understand how EXPLICIT mode works, I'll walk you through an example.
Let’s start with a base T-SQL query, like the one shown in Listing 2-24, which shows SQL
that we would like to convert to an XML structure.

Listing 2-24. SQL query we would like to convert to XML format

SELECT ProductCategory.Name Category,
Subcategory.Name Subcategory,
Product.Name ProductName,
Product.Color,
Inventory.Shelf,
Inventory.Bin,
Inventory.Quantity
FROM Production.Product Product
INNER JOIN Production.ProductInventory Inventory
ON Product.ProductID = Inventory.ProductID
INNER JOIN Production.ProductSubcategory Subcategory
ON Product.ProductSubcategoryID = Subcategory.ProductSubcategoryID
INNER JOIN Production.ProductCategory
ON Subcategory.ProductCategoryID = Production.ProductCategory.
ProductCategoryID

ORDER BY ProductCategory.Name, Subcategory.Name, Product.Name; The SQL in
Listing 2-24 returns the product list based on categories and subcategories. Therefore, we
need to make a decision and ask some questions:

1. How do we want the XML structured?
2. How many sibling levels does the XML need to have?

3. Which columns will be mapped to elements and which
should be attributes?

4. Do we need to preserve elements with NULL values?

In Figure 2-5 we show the results of the query in Listing 2-24, and begin the process
of drawing a road map for the XML result we want. Figure 2-5 demonstrates a sample of a
road map that will help us build the query using EXPLICIT mode.

40

CHAPTER 2 * BUILDING XML

Level 3 = Child of Level 2.
Level 1-Top Element. Level 2 = Child of

Child T root. I“e‘TI 2 I Elements Attributes

r V[] - .
Category Subcategory ProductName Cdlor IShelf Bin Quantity !
Accessories Lights Headlights - Weatherproof NULL N/A 0 216
Accessories Lights Taillights - Battery-Powered ~ NULL N/A 0 144
Accessories Locks Cable Lock NULL N/A 0 252
Accessories Panniers Touring-Panniers, Large Gray N/A 0 72
Accessories Pumps Minipump NULL N/A 0 288
Accessories Pumps Mountain Pump NULL NA 0 324
Accessories Tires and Tubes HL Mountain Tire NULL L 5 267
Accessories Tires and Tubes HL Mountain Tire NULL R 5 232

Figure 2-5. Results of query in Listing 2-23

Using this figure as a guide, we will define a logical structure that will model our
target XML structure. This logical structure is shown in Listing 2-25.

Listing 2-25. Proposed logical XML structure

<Products>
<Categories>
<Category> ELEMENT </Category>
<Subcategories>
<Subcategory> ELEMENT </Subcategory>
<Product Shelf = Attribute Bin = Attribute Quantity = Attribute>
<ProductName> ELEMENT </ProductName>
<Color> ELEMENT XSINIL </Color>
</Product>
</Subcategories>
</Categories>
</Products>

Following the road map in Figure 2-5 and the logical XML structure of Listing 2-25,
the resulting XML structure will be composed of five nested levels, which will contain:

e <Products> is the root element.

e <Categories> is a container data element that holds each
<Category> element and all its related <Subcategory> elements
directly.

e <Category> is a direct child of the <Categories> element and
will contain the category name. The <Subcategories> element
is a sibling of the <Category> element, and also a direct child
of the <Categories> element. This is a container element for
subcategory-specific data related to the sibling <Category>
element.

41

CHAPTER 2 * BUILDING XML

e <Subcategory> is a direct child of the <Subcategories> element.
This element holds the name of the current subcategory. The
<Product> element represents an individual product within a
subcategory. This element is a direct child of the <Subcategories>
element and a sibling of the <Subcategory> element. The
<Product> element will have multiple attributes assigned to it,
and it acts as a container for product-specific data elements.

e <ProductNames> is a data element that contains a product’s name.
The <Color> element contains a product’s color, when available.
The <Color> element is identified as XSINIL, which means we
want this element to appear in the result even when the source
column is NULL. The <ProductName> and <Color> elements are
siblings, and both are direct children of the <Product> element.

The next step is to build the query. The syntax for EXPLICIT mode has certain rules
and specifications that you will need to follow:

1. The query can have one or more SELECT statement blocks,
with UNION ALL linking all of them together.

2. Each SELECT statement block must contain two integer type
columns named Tag and Parent, respectively, as the first two
columns in the query. These columns define the structural
relationship between the parent and child levels. For example,
Listing 2-23 has multiple nested levels and the SELECT clause
establishes the hierarchy, as shown in the code snippet in
Listing 2-26.

Listing 2-26. Code snippet, Tag, and Parent columns define the XML hierarchy

SELECT 1 AS Tag,
0 AS Parent,

UNION ALL

SELECT 2 AS Tag,
1 AS Parent,

UNION ALL

SELECT 3 AS Tag,
2 AS Parent,

42

CHAPTER 2

In the first SELECT query, the Parent column starts the
hierarchy, with a value of 0. The Tag column specifies the
hierarchy level. In the second SELECT query the Tag value
becomes the Parent and increments to the next number. This
flip-flop mechanism is applied to each hierarchical level.

The next important rule establishes an XML structure. In
EXPLICIT mode, each column must be defined within the first
SELECT block, and EXPLICIT mode has a special syntax for
this. In Listing 2-23, you can see that all columns after the Tag
and Parent columns have a very specific style of alias, which
must be formatted as: [ElementName!TagNumber!AttributeN
ame!Directive].

An example from our query in Listing 2-23 is [Categories!1!Ca
tegory!ELEMENT]. This particular alias defines the structure
for the <Category> element of our XML, which contains the
category name. Here is the breakdown of this alias:

e Categories —a generic identifier for the element name.

e] -the tag number of the element, representing the nested
XML level. A value of 1 implies this is the top element
(excluding the root).

e Category -the value attribute’s name, unless an ELEMENT
directive is specified, in which case it is used as an element
name.

e ELEMENT -this directive specifies element-centric
representation. Attribute-centric is the default, therefore
there is no need to specify an attribute-centric representation.
If the ELEMENTXSINIL is used, the element will be included
even when the source value is NULL.

e Each alias section is separated by an exclamation point(!),
this naming convention is required as part of the rule.
Because each alias contains special characters (“!”), they
must be quoted. Here are some other aliases from
Listing 2-23:

e [Subcategories!2!Subcategory!ELEMENT] - Child

of Categories element (tag 2), represent
Subcategory values, element-centric

e [Product!3!ProductName!ELEMENT] - Child of
Subcategories element (tag 3), represent ProductName
value, element-centric

e [Product!3!Color!ELEMENTXSINIL] - Child of
Subcategories (tag 3), represent Color value,
element-centric with XSINIL directive

BUILDING XML

43

CHAPTER 2 * BUILDING XML

e [Product!3!Shelf]- Child of Subcategories (tag 3),
represent Shelf value, attribute-centric.

e [Product!3!Bin] - Child of Subcategories (tag 3),
represent Bin value, attribute-centric

e [Product!3!Quantity] - Child of Subcategories (tag
3), represent Quantity value, attribute-centric

4. The ElementName portion of the aliases must be the same
within a given TagNumber, even if the values are retrieved
from different tables. For example, an ElementName of
Product must be used consistently for TagNumber 3, as
shown here:

[Product!3!ProductName! ELEMENT] - table Product, column Name
[Product!3!Color!ELEMENTXSINIL] - table Product, column Color
[Product!3!Shelf] - table Inventory column Shelf
[Product!3!Bin] - table Inventory column Bin
[Product!3!Quantity] - table Inventory column Quantity

5. The SELECT blocks of your source query must all conform to
SQL's UNION ALL operator rule. Each SELECT statement must
have the same number of columns. When the column is not
needed, it must be filled with NULL values.

6. Sorting is an important consideration for EXPLICIT mode. The
ORDER BY clause finalizes the XML hierarchy. Therefore, the
sorting order needs to follow the parent-child sequence. The
column names in an ORDER BY clause must be the same as
aliases in the top SELECT query. For example:

ORDER BY [Categories!1!Category!ELEMENT],
[Subcategories!2!Subcategory!ELEMENT],
[Product!3!ProductName! ELEMENT]

It is clear that implementing EXPLICIT mode is significantly more complex
than implementing the other modes we've covered so far; however, EXPLICIT mode
provides the user with full control over the XML generation process. Unlike other
modes, this FOR XML mode can be extended with internal directives that allow
the user to control each individual XML element and attribute. Table 2-1 lists the
directives for the EXPLICIT mode.

44

CHAPTER 2 * BUILDING XML

Table 2-1. Listing the EXPLICIT mode directives

Directive Definition Syntax Example
ID, IDREF, IDREFS Enables intra-document links [Product!3!ProductList
and is similar to the primary key 1IDREFS]

and foreign key relationships in
relational databases.

CDATA If the directive is set to CDATA, [Product!3!!CDATA]
the contained data is not entity
encoded, but is put in the CDATA
section. The CDATA attributes
must be nameless.

HIDE Hides the node. This is useful [Product!3!Shelf!HIDE]
when you retrieve values only for
sorting purposes, but you do not
want them in the resulting XML.

ELEMENT Generates an element instead of [Product!3!ProductName
an attribute. IELEMENT]
ELEMENTXSINIL Generates an element with an [Product!3!Color!ELEME

xsi:nil="true” attribute for NULLs. NTXSINIL]
Similar to XSINIL directive.

XML Generates an element, just like the ~ [Product!3!Color!XML]
element directive. The difference
is that the xml directive does not
encode entities.

XMLTEXT If the xmltext directive is specified, ~ [Parent!1!!XMLTEST]
the column content is wrapped in a
single tag that is integrated with the
rest of the document.

2-9. Simplifying Custom XML Generation
Problem

EXPLICIT mode allows fine-grained control of your generated XML format, but is complex
to utilize. You want to generate custom-formatted XML, but you want an alternative that
is easier to use, but achieves results similar to EXPLICIT mode.

Solution

PATH mode can provide XML results that are similar to the results generated by the XML
using EXPLICIT mode. However, the mechanism used to generate the PATH mode XML is
much simpler than the EXPLICIT mode, which is a big positive. One of the limitations of
PATH mode is that it does not have as many directive options as EXPLICIT mode.

Listing 2-27 demonstrates the query from Recipe 2-9, implemented with PATH mode.

45

CHAPTER 2 * BUILDING XML

Listing 2-27. Generating custom XML generation with PATH mode

SELECT ProductCategory.Name AS "Category/CategoryName",
Subcategory.Name AS "Category/Subcategory/SubcategoryName",
Inventory.Shelf AS "Category/Subcategory/Product/ProductName/
@Shelf",
Inventory.Bin AS "Category/Subcategory/Product/ProductName/@Bin",
Inventory.Quantity AS "Category/Subcategory/Product/ProductName/@
Quantity"
Product.Name AS "Category/Subcategory/Product/ProductName",
Product.Color AS "Category/Subcategory/Product/Color",

FROM Production.Product Product
INNER JOIN Production.ProductInventory Inventory
ON Product.ProductID = Inventory.ProductID
INNER JOIN Production.ProductSubcategory Subcategory
ON Product.ProductSubcategoryID = Subcategory.ProductSubcategoryID
INNER JOIN Production.ProductCategory
ON Subcategory.ProductCategoryID = Production.ProductCategory.
ProductCategoryID

ORDER BY ProductCategory.Name, Subcategory.Name, Product.Name

FOR XML PATH('Categories'), ELEMENTS XSINIL, ROOT('Products');

How It Works

Compare Listing 2-23, illustrating EXPLICIT mode and Listing 2-27 illustrating PATH
mode. It is clear that the PATH mode does not utilize multiple SELECT statements and
UNION ALL to generate nested XML data. Instead the XML hierarchy is defined by XML
Path Language (XPath)-style column aliases, where steps in the path are separated by
forward slashes.

To generate XML using PATH mode, follow these rules:

1. The position should reflect the expected XML hierarchy,
that is, the child elements listed under parent elements. For
example:

SELECT ProductCategory.Name AS "Category/CategoryName",
Subcategory.Name AS "Category/Subcategory/
SubcategoryName",

2. Each child level is established in the XPath alias, by separating
them from the parent element with a slash, and adding the
child element name. For example:

Name AS "Category/CategoryName",

Name AS "Category/Subcategory/SubcategoryName",
Name AS "Category/Subcategory/Product/ProductName"”,

46

CHAPTER 2 * BUILDING XML

3. When an “@” symbol is present in the alias, it renders the
value as an attribute; otherwise it defines an element. This
snippet shows the “@” in action, defining attributes in the
XML output:

SELECT ...
Inventory.Shelf AS "Category/Subcategory/
Product/ProductName/@Shelf",
Inventory.Bin AS "Category/Subcategory/
Product/ProductName/@Bin",
Inventory.Quantity AS "Category/Subcategory/
Product/ProductName/@Quantity",

4. The ORDER BY clause does not have the same effect in PATH
mode as it does in EXPLICIT mode, and therefore it can be
omitted altogether. However, it is good practice to sort the
query according to the XML structure. For example:

ORDER BY ProductCategory.Name, Subcategory.Name, Product.Name

5. Asuggested naming convention is to provide the PATH with
an element name inside the parentheses. By default, the PATH
mode generates a <row> element, but that is not the best XML
design. For example:

FOR XML PATH('Categories')

6. When the XSINIL directive is implemented in the PATH
mode, then this directive is automatically applied to all
XML elements. However, in the EXPLICIT mode, the
ELEMENTXSINIL directive only affects the element that the
directive specifies.

7. Specifying the root element is good XML design practice. I
would highly recommend utilizing the ROOT(‘ElementName’)
option in all XML queries.

Wrapping up this recipe, I recommend analyzing your prospect XML then making
a choice of whether to use EXPLICIT or PATH mode. Both modes have advantages and
disadvantages: EXPLICIT mode is more complex to use, but it gives you better control
over the XML output. PATH mode is the opposite in the sense that it is easy to write the
code; however, you have a bit less control over the elements and attributes.

47

CHAPTER 2 * BUILDING XML

2-10. Adding Special Nodes to Your XML
Problem

You would like to add special nodes to your generated XML data, such as comments,
processing instructions, or custom text.

Solution

The FOR XML clause PATH mode supports XML Path Language (XPath) node tests.

The XPath syntax supports a subset of node test names that act as functions. These
functions add specific types of nodes to the resulting XML output. Listing 2-28 is a query
demonstrating multiple XPath node tests.

Listing 2-28. Demonstrating XPath node tests

SELECT ProductCategory.Name AS "Category/CategoryName",
N'Sales started ' + convert(nvarchar(12), Product.SellStartDate,
101) AS "Category/comment()",
N'The record for product number ' + Product.ProductNumber AS
"processing-instruction(xml:file)",

SELECT DISTINCT Location.Name "text()", N', cost rate $',
Location.CostRate "text()"
FROM Production.ProductInventory Inventory
INNER JOIN Production.Llocation Location
ON Inventory.locationID = Location.LocationID
WHERE Product.ProductID = Inventory.ProductID
FOR XML PATH('LocationName'), TYPE
) AS "Locations/node()",
Subcategory.Name AS "Category/Subcategory/SubcategoryName",
Product.Name AS "Category/Subcategory/Product/ProductName",
Product.Color AS "Category/Subcategory/Product/Color",
Inventory.Shelf AS "Category/Subcategory/Product/ProductName/
@Shelf",
Inventory.Bin AS "Category/Subcategory/Product/ProductName/@Bin",
Inventory.Quantity AS "Category/Subcategory/Product/ProductName/
@Quantity"
FROM Production.Product Product
INNER JOIN Production.ProductInventory Inventory
ON Product.ProductID = Inventory.ProductID
INNER JOIN Production.ProductSubcategory Subcategory
ON Product.ProductSubcategoryID = Subcategory.ProductSubcategoryID
INNER JOIN Production.ProductCategory
ON Subcategory.ProductCategoryID = Production.ProductCategory.
ProductCategoryID
ORDER BY ProductCategory.Name, Subcategory.Name, Product.Name
FOR XML PATH('Categories'), ELEMENTS XSINIL, ROOT('Products');

48

CHAPTER 2 * BUILDING XML

Caution XPath node test names are case sensitive. Therefore, all node test names
must be entered in lowercase, otherwise SQL will raise an error. For example when the
function text() is typed as Text(), an error similar to the following is thrown: Msg 6850,
Level 16, State 1 ... Column name ‘Text()’ contains an invalid XML identifier as required
by FOR XML, ...

How It Works

When XPath node tests are used in PATH mode, they add a special node to your XML
result. The node test is always located at the end of an XPath column alias. For example,
in the “Category/comment()” path or the “processing-instruction(xml:file)” path.
Additionally, the node test can be used as the column alias alone, without a hierarchy
path. Table 2-2 lists the supported FOR XML PATH XPath node tests.

Table 2-2. XPath node tests

Node type Node Returns Node Example

comment () Returns a comment node. element/comment () selects
all the comment nodes that
appear after the context node.

node() Returns anode of any type. element/node() selects all
Usfull to add subset XMLto the nodes that appear before
result. the context node.

processing-instruction Returns a processing processing instruction

(name) instruction node. (PI Name) selects all the

processing instruction nodes
within the context node.

text() Returns a text node. Useful ~ element/text() selects the
to combine more than text nodes that are children of
one column into one XML the context node.
element.

Reviewing the code in Listing 2-28, we see the following:

1. To generate a comment under the <CategoryName> element,
the path is provided in the alias with the comment() node
test. The resulting XML maps the data row into the special
comment tag <!--comment--> in your XML result. From our
sample code:

N'Sales started' + convert(nvarchar(12), Product.
SellStartDate, 101) AS "Category/comment()"

49

CHAPTER 2 * BUILDING XML

<Categories>
<Category>

<1--Sales started 05/30/2012-->

The processing-instruction(name) node test must have a
target name inside its parentheses. If the target name is not
provided, an error will be thrown. This function creates a
special XML node of the format <?name ?>. For example:
N'The record for product number ' + Product.
ProductNumber AS "processing-instruction(xml:file)"

The text() node test is very helpful when you need to
concatenate multiple columns into a single element. For
example:

SELECT DISTINCT Location.Name "text()", ', cost rate $',
Location.CostRate "text()"

The node() node test is useful when you need to insert values
in the XML data type. In Listing 2-28, the correlated subquery
performs two actions. Firstly, it concatenates the location
and cost rate columns; secondly, it produces an XML result,
because the product can have more than one associated
location. Figure 2-6 demonstrates all the XPath node test
functions in one XML result.

Generated by comment()

yName>

Generated by processing-instruction() .

</

Category>

<?xml_file The record for product nhumber R’.«'-T‘}BS?)I

Locations>

<LocationName>Subassembly, cost rate $12.2500</LocationNahe>

<LocationNaf¥iscellaneous Storage, cost rate $6.9966<ElcationNa

</Locations>

nﬂ

<Category>

<Subcategory> Generated by text()

Generated by node() Wheels</SubcategoryName>

<ProductName>Touring Rear Wheel</ProductName>
<Color>Black</Color>
<ProductName Shelf="V" Bin="7" Quantity="476" />
</Product>
</Subcategory>

</Category>
</Categories>

Figure 2-6. XML result with all XPath node test functions

50

CHAPTER 2 * BUILDING XML

Summary

This chapter discusses the four FOR XML modes: RAW, AUTO, EXPLICIT, and PATH. Each
mode is thoroughly explained and suggestions for the best mode to use in particular
situations, with tips on how to implement each mode. I also discussed directives, their
functions, and how each directive interacts with the various XML modes. If you need
to build a custom XML result, this chapter provided direction on how to build a robust
custom XML data.

The FOR XML clause provides the user with great and powerful options for efficiently
building XML results from relational data. The chart in Figure 2-7 illustrates the directives
supported by each of the FOR XML modes.

FOR XML Clause Directives Chart
—_ =
22|35z =
(7]
FOR XML S22 % 5 |¢&|g
S|z |2 |E |2 | F |8
E | Z |z | & =
k) = o = =
w - =] >
= | @ w =
o w
AuTO H H E HEH HEH B
EXPLICIT [| H N
PATH H H H E B BN
RAW H HE EHE E E E B

Figure 2-7. FOR XML directives available by mode

The next chapter demonstrates how to store the XML result on the storage (disk, SSD
drive, SAN, etc) and how to upload an XML file into a table.

51

CHAPTER 3

Manipulating XML Files

In Chapter 2, we discussed how to build XML from an SQL query result set. Before we
begin reviewing the options on how to shred XML data, we first need to know how to
store the XML result on the storage (disk, SSD drive, SAN, etc.) and how to upload an
XML file into a table. This chapter will demonstrate the various options to manipulate the
XML files.

3-1. Storing XML Result in a File from SQL
Problem

You want to store the XML result you generate in SQL as an .xml file.

Solution

The BCP (bulk copy program) utility allows the export of data into an XML file. When
the file path is eligible and the SQL Server account has enough privileges to store the file,
then the process can be executed from the stored procedure. Listing 3-1 demonstrates
how the stored procedure creates an XML file using the provided file path in the
@FilePath parameter.

Listing 3-1. Using the stored procedure to write an XML file by destination file path

CREATE PROCEDURE dbo.usp WriteXMLFile
@XML XML,
@FilePath nvarchar(200)

AS
BEGIN
SET NOCOUNT ON;
IF (OBIECT ID('tempdb..##XML') IS NOT NULL)
DROP TABLE ##XML;
CREATE TABLE ##XML (XMLHolder XML);
INSERT INTO ##XML
© Alex Grinberg 2018 53

A. Grinberg, XML and JSON Recipes for SOQL Server,
https://doi.org/10.1007/978-1-4842-3117-3_3

https://doi.org/10.1007/978-1-4842-3117-3_3
http://dx.doi.org/10.1007/978-1-4842-3117-3_2

CHAPTER 3 © MANIPULATING XML FILES

(

)
SELECT @XML;

XMLHolder

-- Prepare log table
DECLARE @cmd TABLE

(
name NVARCHAR(35),
minimum INT,
maximum INT,
config value INT,
run_value INT

);

DECLARE @run_value INT;

-- Save original configuration set
EXECUTE master.dbo.sp_configure 'show advanced options', 1;

RECONFIGURE;

INSERT INTO @cmd

(
name,
minimum,
maximum,
config value,
run_value

)

EXECUTE sp_configure 'xp_cmdshell';

SELECT @run_value = run_value
FROM @cmd;

IF @run_value = 0

BEGIN
-- Enable xp_cmdshell
EXEC sp_configure 'xp_cmdshell', 1
RECONFIGURE;

END;

DECLARE @SQL nvarchar(300) =

SET @SQL = 'bcp ##XML out "' + @FilePath + '\Categories '
+ FORMAT(GETDATE(), N'yyyyMMdd_hhmmss")

+ '.xml" -S "' + @@SERVERNAME + '" -T -c';
- REPLACE(REPLACE(REPLACE(CONVERT(varchar(ZO), GETDATE(),
120)) " ”)) " ' l): c))

54

-- for those who still using SQL Server 2008 R2 or below, use REPLACE

CHAPTER 3 © MANIPULATING XML FILES

instead of FORMAT. FORMAT function introduced in SQL 2012.

END;
GO

EXECUTE master..xp_cmdshell @SOL;

IF @run_value = 0
BEGIN

-- Disable xp_cmdshell
EXECUTE sp_configure 'xp_cmdshell', o;
RECONFIGURE;

END;

IF (OBJECT ID('tempdb..##XML') IS NOT NULL)

DROP TABLE ##XML;

SET NOCOUNT OFF;

How It Works

The stored procedure usp_WriteXMLFile, shown in Listing 3-1, has several important

components to successfully create an XML file from within SQL Server. Let’s break down
this stored procedure to follow how the XML file-writing process works:

1.

The parameter @FilePath is the XML file destination

path. This parameter makes the stored procedure flexible,
especially when running it in different environments, such as
development, staging, and production.

CREATE a global temporary table (##XML), then DROP it

in the end. Use a column name XMLHolder with the XML
data type to get XML data. It is a rare case to need to create

a global temporary table; however, the BCP command will
raise an error if a session-level temporary table is referenced.
Therefore, we can use either a permanent table or a global
temporary table. There is always a risk in implementing a
global temporary table, if the process part of the concurrent
process. The global temporary table is seen throughout the
entire server and if somebody else happens to use the stored
procedure at the same time, one of the user’s tables could be
overwritten and therefore receive inaccurate results. Please
reference the code samples for Chapter 3 where the stored
procedure usp_WriteXMLFileDynamicTable demonstrates
how to solve this problem.

INSERT the XML data into a global temporary table (##XML).

55

http://dx.doi.org/10.1007/978-1-4842-3117-3_3

CHAPTER 3 © MANIPULATING XML FILES

56

To run the BCP command from a stored procedure or SSMS,
the server instance needs to be configured for “xp_cmdshell”
option at value 1. This means that the instance allows the
xp_cmdshell extended stored procedure to run. There are
cases where due to security reasons, you may be required

to maintain the configuration for the server instance at

value 0 (disabled status). In this case, you would still need to
incorporate code that switches the server instance from value
0to 1, then back to 0 while creating the XML file. Since the
BCP command is able to create the XML file in milliseconds,
there is virtually no security risk during the milliseconds that
the server is set to value 0 to enable the xp_cmdshell stored
procedure to create the XML file.

e To preserve the original settings, the table variable @cmd
is created.

e The system stored procedure sp_configure uses the
parameter value ‘xp_cmdshell’ This result is inserted into the
table variable @cmd, which reflects the current status of the
‘xp_cmdshell’ option.

e The following statement SELECT @run_value = run_value
FROM @cmd populates the local variable @run_value to
preserve the xp_cmdshell option run_value for further
analysis.

e The conditional statement IF @run_value = 0 detects whether
or not the option value needs to be changed from 0 to 1.

The variable @SQL is created to compose the statement for
the BCP utility.

The final command depends on the instance and database

name and could be the following:

BCP ##XML out "C:\TEMP\Categories 20170310 164701.xml"
-S "APRESS\SQL2016" -T -c

Let’s take a closer look at all of the arguments and switches
that are required by BCP to create the XML file:

e BCP - the bulk copy utility executable name.

e ##XML - name of table with XML data.

e out - indicator that copies the data from the table and sends it
to the destination.

e “C:\TEMP\Categories_20170310_164701.xml” - the file path.
e -S“APRESS\SQL2016” - server name.

CHAPTER 3 © MANIPULATING XML FILES

e -T - specifies that the BCP command runs under a trusted
connection. To run the BCP with SQL Server credentials then
instead of -T, please use -U login_Name -P password options.

e -c-specifies that the output content is in the character
data type.

Caution The BCP arguments leading with a dash are case sensitive. For example, -T is an
option for a trusted connection; however, -t is the field terminator.

8. The statement exec master..xp_cmdshell @SQL runs the BCP
command

9. The statement IF @run_value = 0 conditionally detects
whether the option value needs to be changed from 1
back to 0.

10. To finalize the process, the ##XML table should be destroyed.

IF (OBIECT ID('tempdb..##XML') IS NOT NULL)
DROP TABLE ##XML;

To test the stored procedure, run following code:

DECLARE @x XML

SET @x = (
SELECT ProductCategory.Name AS "Category/CategoryName",
(
SELECT DISTINCT Location.Name "text()", ',
cost rate $',
Location.CostRate "text()"
FROM Production.ProductInventory Inventory
INNER JOIN Production.Llocation Location
ON Inventory.lLocationID = Location.
LocationID
WHERE Product.ProductID = Inventory.ProductID
FOR XML PATH('LocationName'), TYPE
) AS "Locations/node()",
Subcategory.Name AS "Category/Subcategory/SubcategoryName",
Product.Name AS "Category/Subcategory/Product/ProductName"”,
Product.Color AS "Category/Subcategory/Product/Color",
Inventory.Shelf AS "Category/Subcategory/Product/
ProductName/@Shelf",
Inventory.Bin AS "Category/Subcategory/Product/ProductName/
@®Bin",

57

CHAPTER 3 © MANIPULATING XML FILES

Inventory.Quantity AS "Category/Subcategory/Product/
ProductName/@Quantity"
FROM Production.Product Product
INNER JOIN Production.ProductInventory Inventory
ON Product.ProductID = Inventory.ProductID
INNER JOIN Production.ProductSubcategory Subcategory
ON Product.ProductSubcategoryID = Subcategory.
ProductSubcategoryID
INNER JOIN Production.ProductCategory
ON Subcategory.ProductCategoryID = ProductCategory.
ProductCategoryID
ORDER BY ProductCategory.Name, Subcategory.Name, Product.Name
FOR XML PATH('Categories'), ELEMENTS XSINIL, ROOT
('Products")

)

EXECUTE usp_WriteXMLFile @x, 'C:\TEMP'

When the stored procedure usp_WriteXMLFile execution is completed, the BCP
utility returns the completion status with the runtime in milliseconds. As shown in
Figure 3-1, my runtime to create the XML file was 15 milliseconds. The XML file is created
in the C:\TEMP directory. Figure 3-1 illustrates the BCP utility output.

output
| NULL
Starting copy...
NULL
1 rows copied.
Network packet size (bytes): 4096
CCIock Time (ms.) Total 15) Average : (66.67 rows per sec.)
NULL

Figure 3-1. Showing the BCP utility completion status

If you need to hide the completion output status, then add the following code to the
stored procedure before executing the xp_cmdshell extended stored procedure:

DECLARE @stat TABLE
(

)
INSERT INTO @stat

BCPStat VARCHAR(500)

58

CHAPTER 3 © MANIPULATING XML FILES

(
)

EXECUTE master..xp_cmdshell @SQL;

BCPStat

The @stat table variable absorbs the BCP completion output; therefore the stored
procedure does not return any messages.

Note Both Recipes “3-1 Storing XML Result in a File from SQL” and “3-3 Loading
XML from a Stored Procedure” implement the xp_cmdshell extended stored procedure. The
xp_cmdshell stored procedure is associated with security risk, which is why it's a disabled
SQL Server by default. Both recipes implement xp_cmdshell, which is self-detected to turn
the logic on and off to minimize the security risk. However, if for any reason you have a
problem utilizing xp_cmdshell in your environment, consider Recipe “3-5 Implementing a
CLR Solution” as an alternative to xp_cmadshell.

3-2. Creating XML from an SSIS Package
Problem

You want to develop an alternative to using the BCP utility to create an XML file from a
result set?

Solution

The BCP utility is a handy legacy command-line utility, but SSIS is Microsoft’s standard
ETL solution.The SSIS package can provide a comprehensive solution for the data
transformation processes. SSIS provides at least three options to perform the task of
creating an XML file:

1. Script task
2. Flat File Destination
3. Export Column transform

Each of those options is relatively easy to complete; however, my preference is Script
Task. I have several arguments to defend my preference:

e Script Task is an easy and fast solution for file manipulation.

e Inafewlines of code (either C# or VB.NET), you can provide the
task solution (even if you don’t have any .NET knowledge, simply
copy provided code).

59

CHAPTER 3 © MANIPULATING XML FILES

e Easyand productive debugging process.
e With the Script Task, you have full control over the process.
For a complete SSIS solution, we need to create three Control Flow tasks:

1. An Execute SQL Task called “Get XML Content,” to obtain the
XML result from the database.

2. Setan expression for the TimeStamp variable to get date and
time for the XML file name.

3. AScript Task named “Create XML File,” to write the XML file
to the destination.

Figure 3-2 Illustrates a simple SSIS package control flow.

RGN oo @ Pt

g? Get XML Content

l

-'lu) Create XML File

Figure 3-2. Showing SSIS package

To create the SSIS package, create a New Integration Services Project. Name the
package CreateXMLFile, and save the project. Then from the Tool Box drag and drop the
Execute SQL Task onto the package designer pane. If the Tool Box does not show up for
your new project, press the button in the upper-right corner, as shown in Figure 3-3.

Search Solution Explorer (Ctrl+;)
% CreateXMLFile
& Project.params
@ Connection Managers

4 fml SSIS Packages

Figure 3-3. Showing Tool Box button location

60

CHAPTER 3 © MANIPULATING XML FILES

1. We need to create three package-level variables. To create a
variable, right-mouse click on an empty area of the designer
pane. On the pop-up menu select “Variables” to load the
Variables dialog, as shown in Figure 3-4.

Logging...
Digital Signing...
Connections
Work Offline
Log Events

v DebugProgress Reporting

Figure 3-4. Variables option of the pop-up context menu

In the Variables dialog:
e (Click the “Add Variable” button.

e Type the variable name.

e Choose the appropriate data type (in our case, choose the String

data type).
e Provide the variable default when needed.
e Also, make sure that the variable has SSIS Package Scope.

Figure 3-5 Illustrates the Variables Form entries.

Variables 1. Add Varible Button l 3. Select Data type |
2 Type Varible Name |

DL O 7
Name Scope Data type Value Expression
@ | FileDestinationPath | CreateXMLFileSSIs String pE

CATEMP " =
& TimeStamp CreateXMLFileSSIS String . =]
@ XMLData_Content CreateXMLFilessls String E Pmt;'gl‘z Eef"”" &=l

Figure 3-5. Showing the Variables Form entries

Tip It's good practice to utilize variables in place of hard-coded values so you can have
more flexibility when executing a package.

61

CHAPTER 3 © MANIPULATING XML FILES

The variables above are created, and below is a description of their purp

e FileDestinationPath - to specify the destination folder. This
variable can be modified outside of the package, practically
providing the parameter functionality.

e TimeStamp - to obtain the file name time stamp.

e XMLData_Content - to store the XML result that will be written to
the file.

e Once the variables are created, we can place and configure the
Execute SQL Task “Get XML Content.” From the Tool Box, drag
and drop the Execute SQL Task onto the designer surface. To
configure the Execute SQL Task you can either double-click on

ose:

the task or right-click it and select “Edit...” from the context menu.

When the Execute SQL Task Editor shows up, we are ready to
configure the task. The task configuration requires the following:

a) First, we need to create or select an existing Connection to
SQL Server. On the Execute SQL Task Editor, select General
from the Editor options list located on the left side.

b) Click Connection.
c¢) Onthe right side select the drop-down arrow.

d) Click on <New connection> to open the Connection
dialog, or select an existing connection. Figure 3-6
illustrates the steps to select an existing connection, or
call the Configure OLE DB Connection Form.

1] Execute SQL Task Editor

| LW,

Genera' 4 General

Parameter Mapping MName Execute SQL Task
Result Set Description Execute SQL Task
Expressions 4 Options

TimeOut 0

CodePage 1252

TypeConversionMode Allowed

4 Result Set
ResultSet None

4 SQL Statement
ConnectionType

OLE 0

Configure the properties required to run SQL stat ts and stored procedures using the selected connection.

<New connection...>

SQLSourceType

SOLStatement

l

Figure 3-6. Showing steps to Configure OLE DB Connection Form
62

CHAPTER 3 © MANIPULATING XML FILES

Configure the OLE DB Connection Form by clicking the “New...” button. In the
Connection Manager dialog:

a) Select or enter the source server name from the Server name
drop-down list.

b) From the “Log on to the server” option, select the type of
authentication.

¢) From the “Connect to a database” option, select the database
name

d) Optionally, but recommended, click the Test Connection
button to confirm your configuration. Figure 3-7 illustrates the
Connection Manager dialog configuration steps.

a)
Server name: s

[aPResS\sQL2016

Leg on to the server

@®) Use Windows Authentication
(O Use SQL Server Authentication

User name:

Password:

[_1Save my password

Connect to a database

(® Select or enter a database namg
[Adventureworks2015

() Attach a database file:

I Browse,..

Logical name

Figure 3-7. Showing the Connection Manager Form configuration steps

63

CHAPTER 3 © MANIPULATING XML FILES

Once the connection is ready, the next step is to add the SQL query. Under the
Connection property, check the SQLSourceType property. By default, the value is
Direct input, but double-check that Direct input is selected. One of the most important
properties is SQLStatement. We will take the query that was demonstrated in Chapter 2
for this example. To configure the SQLStatement property, simply add the query from the
Listing 3-2 SQL query for SSIS package.

Listing 3-2. Listing Categories query for SSIS package

SELECT ProductCategory.Name AS "Category/CategoryName",
(
SELECT DISTINCT Location.Name "text()", ', cost rate $',
Location.CostRate "text()"
FROM Production.ProductInventory Inventory
INNER JOIN Production.Llocation Location
ON Inventory.locationID = Location.LocationID
WHERE Product.ProductID = Inventory.ProductID
FOR XML PATH('LocationName'), TYPE
) AS "Locations/node()",
Subcategory.Name AS "Category/Subcategory/SubcategoryName",
Product.Name AS "Category/Subcategory/Product/ProductName",
Product.Color AS "Category/Subcategory/Product/Color",
Inventory.Shelf AS "Category/Subcategory/Product/ProductName/@
Shelf",
Inventory.Bin AS "Category/Subcategory/Product/ProductName/@Bin",
Inventory.Quantity AS "Category/Subcategory/Product/ProductName/@
Quantity"
FROM Production.Product Product
INNER JOIN Production.ProductInventory Inventory
ON Product.ProductID = Inventory.ProductID
INNER JOIN Production.ProductSubcategory Subcategory
ON Product.ProductSubcategoryID = Subcategory.ProductSubcategoryID
INNER JOIN Production.ProductCategory
ON Subcategory.ProductCategoryID = Production.ProductCategory.
ProductCategoryID
ORDER BY ProductCategory.Name, Subcategory.Name, Product.Name
FOR XML PATH('Categories'), ELEMENTS XSINIL, ROOT('Products');

Finally, on the General menu, set the ResultSet property to XML. Figure 3-8 shows
the General menu configurations.

64

http://dx.doi.org/10.1007/978-1-4842-3117-3_2

CHAPTER 3 © MANIPULATING XML FILES

R E
i-_:: . Configure the properties required to run SO stat ts and stored procedures using the sel i cti
4
Parameter Mapping Name Get XML Content
Result Set escnption
Expressions 4 Options
TimeOut 0
CodePage 1252
TypeConversionMode Allowed
4 Result Set
ResultSet XML =]
4 SQL Statement
i OLEDB
APRESS\SQL2016 AdventureWorks2016 |
SQLSourceType Direct input 5)
SOl Statement SELECT ProductCategory.Name AS “Category/(
lsCueryStoredProcedure False
BypassPrepare True
ResultSet
Specifies the format of the query resuits.
Browse.. | | Build Query... [| Parse Query]
o [ew] [

Figure 3-8. Showing configurations for General menu

The query for the “Get XML Content” task does not have any parameters. To set the
proper parameters, click on the Result Set menu. The query that we set in the General
menu returns the XML as a scalar CLOB (Character Large Object) value. Therefore, the
returned result we will bind to one of the variables that were previously created. From
the Variable Name drop-down list, select the XMLData_Content variable. Set the Result
Name property to 0. Since we do not have a name for the result set, setting it to 0 will
choose the first column from the result set. Figure 3-9 illustrates the Result Set menu
configurations.

65

CHAPTER 3 © MANIPULATING XML FILES

1 Configure the properties required to run SQL stat ts and stored procedures using the selected connection.
Gs
s
General ’ | Result Name Variable Name r
Parameter lpping 0 l User:XMLData Content
" Resuteser | -
Epressions 1 <New variable...>
User:FileDestinationPath
User:TimeStamp

User:XMLData_Content

"~_,—If‘—u.,"~fmm-.‘-"#’d

Figure 3-9. Showing Result Set menu configurations

There are no Expressions set for the Execute SQL Task “Get XML Content.” Therefore,
press OK to complete the task configuration.

1. The next step is setting the expression for the TimeStamp
variable. In a real production environment, most XML file
names should have a timestamp. The timestamp has a
variety of format options, and the most appropriate should
be chosen based on client or business needs. For example,
the most often implemented format I've seen is yyyyMMdd_
HHmmss. To this value, SSIS packages must have a syntax
that is different from T-SQL, or even .NET applications. For
example, Listing 3-3 demonstrates SSIS syntax to get the date
timestamp.

Listing 3-3. Showing SSIS syntax

(DT_STR, 4, 1252) DATEPART("yyyy", GETDATE()) +

RIGHT("0" + (DT_STR, 2, 1252) DATEPART("mm", GETDATE()),2) +
RIGHT("0" + (DT_STR, 2, 1252) DATEPART("dd", GETDATE()),2) + " " +
RIGHT("0" + (DT_STR, 2, 1252) DATEPART("hh", GETDATE()),2) +
RIGHT("0" + (DT_STR, 2, 1252) DATEPART("mi", GETDATE()),2) +
RIGHT("0" + (DT_STR, 2, 1252) DATEPART("ss", GETDATE()),2)

66

CHAPTER 3 © MANIPULATING XML FILES

To set the variable expression:

e Right-mouse click on the package field. Select Variables from the
pop-up menu.

e Click the variable’s button in the Expression section to load the
Expression Builder Form.

e Place the code from Listing 3-3 into the Expression text box.

e Click the “Evaluate Expression” button to verify the expression’s

code.

e Click the OK button to finalize the setting. Figure 3-10 Illustrates
the setup of the expressions to the variable.

(& TimeStamp

E| FileDestinationPath [

Variables
Rl | Load the Expression Builder Form |
| Name Jatatype Value

Scope Data type Value Expression

® (23 Mathematical Functions
% [Sting Functions

@ [Date/Time Functions
(3 NULL Functions

® (3 Type Casts

[Operators

| Add the Expression |

(DT_STR. 4 1252) DATEPART(yyyy™, GETDATE() +

RIGHT("0" « (DT_STR. 2. 1252) DATEPART('mm", GETDATE().2) +
RIGHT("0" + (DT_STR. 2. 1252) DATEPART('dd". GETDATEQ).2) " +
RIGHT('0" « (DT_STR. 2. 1252) DATEPART('hh™. GETDATE().2) +

<| [m]>

Evaluated valua:

[1 Click to evaluate the Expression - I

Figure 3-10. Showing how to set the expression to the variable

67

CHAPTER 3 © MANIPULATING XML FILES

2. The Script Task “Create XML File,” as stated in its name, writes
the XML file to the destination file path, which is assigned
to the SSIS package via the FileDestinationPath variable that
has a public interface and is visible outside of the package.
The Script Task is a programming module where a developer
can write the functionality implementing C# and VB.NET
languages, which makes the Script Task very popular for SQL
Server developers. However, the Script Task could simplify
and extend SSIS packages functionalities. For the Script Task
“Create XML File,” several lines of code will need to be used to
complete the process. To configure the task:

e From the Tool Box, drag the Script Task to the development
field.

e Change the name to “Create XML File

e Linkthe “Get XML Content” task with the “Create XML File”
task. Click on the “Get XML Content” task, grab a green
arrow, drag over the “Create XML File” task, then release
the mouse. That creates a Precedence Constrain between
two tasks (this package does not need to configure the
Precedence Constrain). See Figure 3-11, illustrating the
Precedence Constrain initialization.

91; DataFlow @ Parameters If] Event

g“i Get XML Content

g‘a Get XML Content

Create XML Fil
L3 coenene

Create XML File
5
Figure 3-11. Creating Precedence Constrain between the tasks

e Toload the Script Task Manager, double-click on the “Create
XML File” task.

68

CHAPTER 3 © MANIPULATING XML FILES

e The Script Task Manager, by default, has the ScriptLanguage
set to Microsoft Visual C# 2015 (Microsoft Visual Basic 2015
is another option; however, this example will use C#), and
the EntryPoint property is set to “Main” under the Script Task
Editor (the function name that the script executes first).

e There are no changes for the variables in this task. Therefore,
click on the ReadOnlyVariables property to bind the variables
to the task. On the right side of the property, click the button
to load the package variable list. Place a check mark next to
the variables User::FileDestinationPath, User::TimeStamp,
User::XMLData_Content, then Click OK.

e Click on the Edit Script... button to load the programming
module. Figure 3-12 illustrates the Script Task Manager
properties.

0 Script Task Editor =i

T Access Microsoft Visual Studio Tools for Applications (VSTA) to write scripts using the Visual Basic 2015 or Visual C2 2015,
) and configure the task’s properti

Seript (4 Scrigt /
G:rleral_ ScriptLanguage Microsoft Visual C# 2015 g
Ecpressions EntryPoint Main (

ReadOnlyVariables User:FileDestinationPath, =TimeStamp, User:zXMLData_Cont

[w] | Name Type [~
m| System: Product Version Sting

|| System: ServerBxecutionlD nt64

O System:: Stad Time DateTime

™ User.-TimeStamp Sting

O System: UserName Suing

O System: VersionBuld int32

ID System: VersionComments String

O System::VersionGUID Sting

O System:VersionMajor nt32

0 System: VersonMinar 32 =
i User::XMLData_Content Sting

.D $Package: pXMLFisFath Sting

Figure 3-12. Showing Script Task Manager properties

69

CHAPTER 3 © MANIPULATING XML FILES

Tip Before you click the Edit Script... button, highlight and then copy all variables that
were selected. You will need those later in the code module. Also, keep in mind that variable
names are case sensitive when referenced in the code.

When the script editor window loads up, go to the Main() function. By default,
Main() contains the code shown in Listing 3-4.

Listing 3-4. Showing default code for the Main() function

public void Main()

{
// TODO: Add your code here

Dts.TaskResult = (int)ScriptResults.Success;

First, replace the value “TODO: Add your code here” with the saved variables list.
Keep the “//” as this indicates a comment. Next, declare two string variables and reassign
the values of the package variables (use your saved variables reference). The Main()
function variable strFilePath result will be the XML file path; therefore the package
variable FileDestinationPath is hard-coded as “Categories_" plus package variable
TimeStamp and “xml” as the file extension indicating the XML file destination path.

The second part of the Main() function actually writes the XML file to storage. We
need to create an instance of the StreamWriter object. The StreamWriter class belongs to
the System.IO namespace, which is not part of the default namespaces for a programming
module, which means that we have two options: add a “using System.IO;” statement
to the code or use the System.IO namespace as a full qualifier for referencing the
StreamWriter class. Hence, we need only one line of code to instantiate the StreamWriter
class. In the following example, we will use the second option in our code for the Main()
function. The code in Listing 3-5 demonstrates C# code to write the file.

Listing 3-5. Coding function to write the XML file

public void Main()

{

// User::FileDestinationPath,User::TimeStamp,User: :XMLData_Content
string strFilePath = Dts.Variables["User::FileDestina
tionPath"].Value.ToString() + @"\\Categories " + Dts.
Variables["User::TimeStamp"].Value.ToString() + ".xml";

string strXML = Dts.Variables["User::XMLData Content"].Value.To
String();
System.I0.StreamWriter file = new System.IO.Stream
Writer(strFilePath);
file.Write(strXML);
file.Close();
Dts.TaskResult = (int)ScriptResults.Success;
}

70

CHAPTER 3 © MANIPULATING XML FILES

To finalize the Script Task, save and close the script editor window. Click the OK
button for the Script Task. Your SSIS package is now ready to test.

To test the SSIS package, press the Start button. When SSIS completes successfully,
green circles with check marks will show up on each task. Figure 3-13 illustrates a
successful SSIS package completion.

Id Debug Format SSIS Tools Window Hel
b L % -| Development = P Start = '

TEETIT————
EECEERE st DotaFow & Parameters [EventHander:

E‘ri Get XML Content u

l-'-; Create XML File

Figure 3-13. Testing the SSIS package

To stop the SSIS package, press the red square button or click on the “Package
execution completed with success” URL at the bottom of the package. Figure 3-14
illustrates options to stop the package.

FlRsEseED-. 0 0 -&(ma-:
.‘-J-—-"‘r“r"“‘.“—l'—-—l""‘__j

Connection Managers
¥ APRESS\SQL2016.AdventureWorks2016

Figure 3-14. Showing the package switch to design mode options

Now the SSIS package development is completed and the XML file was created in the
specified destination, “C:\TEMP” folder.

71

CHAPTER 3 © MANIPULATING XML FILES

How It Works

The SSIS package “Get XML Content” Execute SQL Task submits a query to the SQL
Server. The Connection Manager provides a reference to the SQL Server instance and
the database name, as well as connection credentials, if necessary. The query result
is assigned to the package-level variable XMLData_Content. The expression for the
TimeStamp variable computes the date and time to provide uniqueness and prevent file
collision.

The “Create XML File” Script Task executes C# code to write the XML result out to
the file. The package variables provide the file content and the XML file path.

3-3. Loading XML from a Stored Procedure
Problem

You want to read one or more XML files from a source location utilizing T-SQL.

Solution

SQL Server has the ability to read the XML file content and write the XML into a table. The
mechanics between writing the file to the storage and writing the XML data into a table
from storage (load the XML) is different. When the file is written to storage, we deal with a
single XML output per file. However, when we load files, one or more files could be in the
source location. For this reason, the T-SQL code needs to solve the following issues:

e Obtain the file names with particular criteria; for example, all files
with the extension “xml”.

e Access each file and read the file content.
e Load (INSERT) the file content into a table.

Listing 3-6 demonstrates the solution for this problem.

Listing 3-6. Demonstrating stored procedure usp_LoadXMLFromFile

CREATE PROCEDURE dbo.usp_LoadXMLFromFile
@FilePath nvarchar(100)
AS
BEGIN
SET NOCOUNT ON;
-- Prepare log table
DECLARE @cmd TABLE
(
name NVARCHAR(35),
minimum INT,
maximum INT,
config value INT,
run_value INT

72

CHAPTER 3

)5
DECLARE @run_value INT,;

-- Save original configuration set
INSERT @cmd

(
name,
minimum,
maximum,
config value,
run_value

)

EXEC sp_configure 'xp_cmdshell';

SELECT @run_value = run_value

FROM @cmd;
IF @run_value = 0
BEGIN
-- Enable xp_cmdshell
EXEC sp_configure 'xp_cmdshell', 1;
RECONFIGURE;
END;
IF NOT EXISTS
(
SELECT *
FROM sys.objects
WHERE object id = OBJECT ID(N'[dbo].[XML]")
)
CREATE TABLE dbo. XML
(
ID INT NOT NULL IDENTITY(1,1) PRIMARY KEY,
XMLFileName NVARCHAR(300),
XML_LOAD XML,
Created DATETIME
)
ELSE

TRUNCATE TABLE dbo. XML;

DECLARE @DOS NVARCHAR(300) = N'',
@DirBaselocation NVARCHAR(500),
@FileName NVARCHAR(300),

@SOL NVARCHAR(1000) = N'';

DECLARE @files TABLE
(

MANIPULATING XML FILES

AND type in (N'U")

73

CHAPTER 3 © MANIPULATING XML FILES

tID INT IDENTITY(1,1) NOT NULL PRIMARY KEY,
XMLFile NVARCHAR(300)

);

-- Verify that last character is \
SET @DirBaselocation = IIF(RICHT(@FilePath, 1) = '\', @FilePath,
@FilePath + "\");

SET @DOS = 'dir /B /0:-D ' + @DirBaselocation;
INSERT @files
(

)
EXEC master..xp_cmdshell @DOS;

XMLFile

IF @run_value = 0

BEGIN
-- Disable xp_cmdshell
EXECUTE sp_configure 'xp_cmdshell', o;
RECONFIGURE;

END;

DECLARE cur CURSOR
FOR SELECT XMLFile

FROM @files

WHERE XMLFile like '%.xml';
OPEN cur;

FETCH NEXT
FROM cur
INTO @FileName;

WHILE @@FETCH_STATUS = 0
BEGIN

BEGIN TRY
SET @SQL = 'INSERT INTO XML SELECT ''' +
@DirBaselocation + @FileName
+ """, X, GETDATE() FROM OPENROWSET
(BULK N''' + @DirBaselocation + @FileName
+ """, SINGLE BLOB) as tempXML(X)';

EXECUTE sp_executesql @SQL;
FETCH NEXT
FROM cur

INTO @FileName;
END TRY

74

END;
GO

CHAPTER 3 © MANIPULATING XML FILES

BEGIN CATCH
SELECT @SQL, ERROR MESSAGE();
END CATCH

END;
CLOSE cur;

DEALLOCATE cur;
SET NOCOUNT OFF;

How It Works

The stored procedure usp_LoadXMLFromFile, shown in Listing 3-6, provides a solution

for loading XML data from one or more files. The stored procedure has one input

parameter, @FilePath, of nvarchar(100) data type. The parameter provides the location of
your XML source files.

1.

3.

The mechanism to enable/disable an extended stored
procedure xp_cmdshell is described in Recipe 3-1.
This process is the same for the stored procedure usp_
LoadXMLFromtFile.

We need to make sure that the destination table (_XML)
exists. If the table is not in a database, then the table needs

to be created. When the table exists, depending on the
business requirements, the data can be truncated or the table
can retain historical data. The following example shows a
truncated the table:

IF NOT EXISTS (SELECT * FROM sys.objects
WHERE object _id = OBJECT ID(N'[dbo].[XML]') AND
type in (N'U'))
CREATE TABLE XML

(
ID int IDENTITY(1,1) PRIMARY KEY
,XMLFileName nvarchar(300)
,XML_LOAD XML, Created datetime
)
ELSE

TRUNCATE TABLE _XML

Declare several variables for processing needs:

75

CHAPTER 3 © MANIPULATING XML FILES

@D0S nvarchar(300) = '' - prepare DOS command.
@DirBaselocation nvarchar(500) - verify and format
source path.

@FileName nvarchar(300) - to obtain the file name.

@SQL nvarchar(1000) = '' - prepare SQL for INSERT
process.
@files TABLE - to obtain all file name from source
location.

4. Verify that last character is a backslash (\). We need to make
sure that the stored procedure receives a valid path with \
as the last character. If the last backslash is missing, then we
need to add a backslash to the provided path. For example:

IIF(RIGHT(@FilePath, 1) = '\', @FilePath, @FilePath + '\');

The IIF function was introduced by SQL Server version 2012.
The function has three parameters:

I. Condition - RIGHT(@FilePath, 1) = "\"to check if the last
characterisa\.

II. True result - when the character is found, then do
nothing.

III. False result - when not found, then add a \ to the
parameter.

5. Prepare the Windows Command Shell command to
obtain a list of all files from the source location. The
Windows Command Shell command dir returns all files
and subdirectories for a specified path. However, the dir
command returns other information along with the file name.
“/B” indicates the use of bare format (file name only), and
“/0:-D” - specifies the sort order by date created, descending.

SET @D0OS = 'dir /B /0:-D ' + @DirBaselocation ;

6. The extended stored procedure xp_cmdshell executes the
Windows Command Shell command and inserts all available
files from the source location.

INSERT @files
EXEC master..xp_cmdshell @DOS;

7. Next, we need to iterate through each file with the extension

“xml” This can be accomplished by declaring a cursor for the
table variable and establishing a loop over the cursor.

76

10.

CHAPTER 3 © MANIPULATING XML FILES

DECLARE cur CURSOR
FOR SELECT XMLFile

FROM @files

WHERE XMLFile like '%.xml';
OPEN cur;

FETCH NEXT
FROM cur
INTO @FileName;

WHILE @@FETCH_STATUS = 0

Inside the WHILE loop, we need to compose the INSERT
statement for each file that reads the file content and inserts
the XML into the _XML table. For example:

INSERT INTO _XML

SELECT 'C:\TEMP\Categories.xml', X, GETDATE()
FROM OPENROWSET(BULK N'C:\TEMP\Categories.xml',
SINGLE BLOB) AS tempXML(X);

The key to the SQL code above is the OPENROWSET () function.
The BULK option specifies that we will be reading all of the
contents from the source file in bulk. Then there is a space
after BULK, followed by the file location. The SINGLE_BLOB
option specifies that the file content is returned as a single
column with the data type VARBINARY (MAX), which is a good
fit for XML data. The alias syntax AS tempXML(X) must be in
table(column) format:

e tempXML - table alias
e X - column alias

Other OPENROWSET options SINGLE_CLOB (returns
varchar(max)) and SINGLE_NCLOB (returns nvarchar(max))
are not a good fit for XML import data, because only SINGLE
BLOB supports all Windows encoding conversions.

The system stored procedure sp_executesql executes the
composed SQL.

EXECUTE sp_executesql @SOL;
The error handler allows the process to run and returns error

details with problematic SQL. Optionally, you can create a
table to log the errors.

Code sample to run the stored procedure:

EXEC dbo.usp_LoadXMLFromFile 'C:\Temp'

77

CHAPTER 3 © MANIPULATING XML FILES

However, the disadvantage is that you will lose the error handler logging, and if one
of the files that is being loaded fails, then the file will not be loaded.

3-4. Loading XML from SSIS Package
Problem

You want to load one or more XML files into the database using an SSIS ETL package.

Solution

SSIS provides a comprehensive set of tools to load XML files from a specified directory.

An SSIS package to load multiple XML files is more complex than the SSIS package
that writes an XML file, shown in Recipe 3-2, “Creating XML from an SSIS Package.” The
SSIS package LoadXMLFromFile is created based on the following business rules:

1. Check whether.xml files exist in the source directory.

2. Ifnofiles are found in the source location, stop package
execution.

3. Ifmatching files are found, truncate the destination table.

4. Load XML content from all available files with the .xml
extension.

5. Move all processed files into an Archive folder.
The LoadXMLFromFile SSIS package is composed of:

1. A “CheckIf File Exists” Script Task, which uses C# code to
verify whether any XML files exist in the source location.

2. The Precedence Constraint (green arrow between “Check
If File Exists” and “Truncate Table”) formula conditionally
verifies the FlaglsFileExist variable and plays the “STOP” or
“GO” role.

3. AnExecute SQL Task “Truncate Table” conditionally executes
T-SQL code to CREATE or TRUNCATE the table.

4. The “Load XML Content” Foreach Loop Container iterates
through the XML files.

5. The “Insert XML Data” Execute SQL Task executes a T-SQL
statement that inserts the XML file content into the _XML
table.

6. The “Archive File” File System Task moves the XML file into
the Archive folder. Figure 3-15 illustrates the SSIS package.

78

CHAPTER 3 © MANIPULATING XML FILES

LoadXMLFromFile.dtsx [Design] + X _
g4 DataFlow g@ Parameters T 1

1

r‘ Check If File Exists
-

H' 2
1x 3

g? Truncate Table /

)
v 4

ﬁﬂj Load XML Content /

g‘a Insert XML Data / °
T

@ Archive File

Figure 3-15. Showing “LoadXMLFromFile” SSIS package in design mode

The following SSIS package variables were created to provide package flexibility and
functionality:

1. ArchiveFile - Supplies the File System Task “Archive File,”
DestinationVariable property. Created with the expression
@[User::ArchiveLocation] + @[User::FileName].

2. ArchiveLocation - Provides the destination path to the archive
folder.

3. FileName - Mapped to the Foreach Loop Container “Load
XML Content.” Takes the XML file name from each iteration.

4. FlaglsFileExist - Is assigned a “true” or “false” value and
controls the Precedence Constraint expression.

5. SourceFile - Supplies the File System Task “Archive File,”
SourceVariable. Creates the expression
@|User:SourceLocation] + @[User::FileName].

6. SourceLocation - Provides the source path to source folder.

7. SQLScript - Composes T-SQL to insert the XML content into
the _XML table using the expression:

79

CHAPTER 3 © MANIPULATING XML FILES

"INSERT INTO XML

SELECT '" + @[User::Sourcelocation] + @[User::FileName] + "', X, GETDATE()
FROM OPENROWSET(BULK N'" + @[User::Sourcelocation] + @[User::FileName] +
"', SINGLE BLOB) as tempXML(X)"

Figure 3-16 illustrates the variable list.

Variables *OXx
CR-]

MName Scope Datatype Value Expression

1:;1 ArchiveFile LoadXMLFromFile String CATEMPVArchive\Catego... @[User:Archivelocation... E[
5 Archivelocation LoadXMLFromFile String CATEMP\Archive\ ‘:_[
@ FileName LoadXMLFromFile String Categoriesxml =
& FlaglsFileExist LoadXMLFromFile Boolean False E
(s SourceFile LoadXMLFromFile String CATEMP\Categoriesxml| @[User:Sourcel.ocation]... El
& Sourcelocation LoadXMLFromFile String CATEMP\ |
% SQLScript LoadXMLFromFile String INSERT INTO _XML SELEC... “INSERT INTO _XML SEL... EI

Figure 3-16. Showing the SSIS package variable list

Now we will discuss the configuration of tasks. In this recipe, I will not go into much
detail because this topic was thoroughly covered in Recipe 3-2.

1. Script Task “Check If File Exists.” This time the Script Task
checks whether the source location has files with extension
xml. No other task can provide this functionality. Two
variables are mapped to the task:

e SourceLocation - ReadOnlyVariable.

e FlaglsFileExist - ReadWriteVariable. The code could modify
the variable value. Figure 3-17 illustrates the variables.

80

CHAPTER 3 © MANIPULATING XML FILES

[_-S Access Microsoft Visual Studio Tools for Applications (VSTA) to write scripts using the Visual Basic 2015 or Visual C= 2015,
e and configure the task's ot

| 4 Script

Scriptlanguage Microsoft Visual C= 2015 ‘

Hptessiing EntryPoint Main
ReadOnlyVariables User=Sourcelocation &
ReadWriteVariables UserzFlaglsFileExist |

’J‘_Jmf"': QMr‘J‘PH" I

Figure 3-17. Demonstrating the Script Task variables mapping

Click on the Edit Script command button. Add the following
code into the Main() function:

Dts.Variables["User::FlagIsFileExist"].Value

= (System.I0.Directory.GetFiles(Dts.Variab
les["User::Sourcelocation"].Value.ToString(), "*.xml").
Length != 0);

Save and then Close the code window. Click the OK command
button to complete the settings.

2. Precedence Constraint (green arrow between “Check If
File Exists” and “Truncate Table”). To load the Precedence
Constraint Editor, double-click on the arrow. On the
Precedence Constraint Editor:

e Select the Evaluation operation: Expression

e For the Expression property type the expression:
@[User::FlaglsFileExist] == true

Click OK to save the settings. Figure 3-18 illustrates the
Precedence Constraint Editor.

81

CHAPTER 3 © MANIPULATING XML FILES

A precedence ¢ int defines the workflow bet two executables. The precedence constraint can be
based on a combination of the execution results and the evaluation of expressions.

Bnstraint options
Evaluation operation: | Expression

Value Success

(E,p,m‘mm |@{User::ﬁeglsFileExist] ==true

Multiple constraints

If the constrained task has multiple constraints, you can choose how the constraints interoperate to
control the execution of the constrained task.

® Logical AND. All constraints must evaluate to True

) Logical OR. One constraint must evaluate to True

Figure 3-18. Showing Precedence Constraint Editor settings

3. Execute the SQL Task “Truncate Table” Open the Execute SQL
Task Editor on the General menu:

e For the Connection property, add a new connection. Specify
the destination server and database.

e Add the following code to the SQLStatement property:

IF NOT EXISTS (SELECT * FROM sys.objects
WHERE object id = OBIECT ID(N'[dbo].[XML]")
AND type in (N'U"))
CREATE TABLE _XML

(
ID int IDENTITY(1,1) PRIMARY KEY
,XMLFileName nvarchar(300)
,XML_LOAD XML, Created datetime
)

ELSE
TRUNCATE TABLE _XML

82

CHAPTER 3 © MANIPULATING XML FILES

Click OK to complete the settings. Figure 3-19 illustrates the
Execute SQL Task Editor.

'L_'J Configure the properti quired to run SQL and stored Jures using the selected connection.

General | | 4 Genenal -
Parameter Mapping Name Truncate Table
Recult Set De=crinting Fuacute SO Tazk

onnectionT OLEDB
Connection APRESS\SQL2016.AdventureWorks2016]
IF NOT EXISTS (SELECT * FROM sys.objects wr{___ﬁl

4 SQL Statement

Figure 3-19. Showing Execute SQL Task settings

4. The “Load XML Content” Foreach Loop Container. Open the
Foreach Loop Editor and click on the Collect menu:

e Select an Expression then load the Expression Property
Editor.

e Select the Directory property and add the expression:
@|[User:SourceLocation].

e C(lick OK to complete the settings. Figure 3-20 illustrates the
Expression Property Editor. The expression value is reflected
in the Folder property.

83

CHAPTER 3 © MANIPULATING XML FILES

Property expressions:

[Propedy Expression

Lok || Cemcd |

Figure 3-20. Showing the Expression Property Editor

e Inthe Files property, type the target file name pattern, which
is a Windows filename pattern. It utilizes Windows filename
wildcards in the pattern. Since we are searching for all XML
files to iterate, use the extension pattern *.xml to filter out all
files other than XML files.

e To Retrieve the file name property, select the Name and
extension. Figure 3-21 illustrates the Collection menu.

84

CHAPTER 3 © MANIPULATING XML FILES

im] The Foreach Loop cantainer allows execution iteration over an rati

T e B
W Enumerator Foreach File Enumerator
Variable Mappings =]
Expressions @[User:Sourcelocation]

Figure 3-21. Demonstrating Collection menu settings

5. Click the Variable Mapping menu. Select the FileName
variable from the drop-down list. Figure 3-22 illustrates the
Variable Mapping menu. Click OK to complete the settings.

85

CHAPTER 3 © MANIPULATING XML FILES

=) The Foreach Loop container allows ftion iteration over an e
G . Select variables to map to the collection value.
Mappings || | Vorible indes
iRk User:FileName w0

<New Variable...>
User:ArchiveFile
:Archivelocation

I P———

Figure 3-22. Mapping FileName variable

6. The “Insert XML Data” Execute SQL Task. Open the Execute
SQL Task Editor. The General tab will be displayed by default.

e Select the existing Connection that was in the previous
Execute SQL Task.

e Inthe SQLStatement property, type “exec sp_executesql 2"
The question mark specifies that the task will have an input
variable as a parameter.

Figure 3-23 illustrates the General menu.

86

CHAPTER 3 © MANIPULATING XML FILES

B
L-;g Configure the prop quired to run SOL and stored procedures using the selected connection.
| General [Name Insert XML Data ~
Parameter Mapping Description Execute SQL Task
Result Set 4 Options
Expressions TimeOut o
CodePage 1252
TypeConversionMode Allowed
4 Result Set
ResultSet None -
4 SQL Statement
ConnectionT OLEDB
[[Connection APRESS\SQL2016.AdventureWorks2016 |
SQLSourceT: Direct input
exec sp_executesql ? el
IsQueryStoredProcedure False
BypassPrepare True bl
SQLStatement
Specifies the query to be run by the task.
Browse... | I Build Query... l | Parse Query |
Lok [oma [[He |

Figure 3-23. Showing General menu settings

Click on the Parameter Mapping menu.

e Select the User::SQLScript variable from the drop-down
list. The SQLScript variable composes the INSERT T-SQL
statement through an expression formula. When the Foreach
Loop Container “Load XML Content” assigns the file name
to the FileName variable, then the SQLScript expression
formula constantly recomposes the new T-SQL code as
it loops through all the files in the specified directory, as
demonstrated in the following example:

INSERT INTO _XML

SELECT 'C:\TEMP\Categories.xml', X, GETDATE()

FROM OPENROWSET (BULK N'C:\TEMP\Ca'L‘egories.xml', SINGLE_BLOB)
as tempXML(X)

87

CHAPTER 3 © MANIPULATING XML FILES

For the Direction property select Input
For the Data Type property select NVARCHAR
For the Parameter Name Property, type 0

For the Parameter Size Property, type 1000. Figure 3-24
illustrates the Parameter Mapping menu.

Click OK to complete the settings.

and stored procedures using the selected connection.

Figure 3-24. Showing Parameter Mapping menu settings

88

File System Task “Archive File”: open the File System Task
Editor. On General menu:

Set the Operation property to “Rename file.”
IsSourcePathVariable property set to “True.”

For the SourceVariable property select the “User::SourceFile”
variable.

Set the IsDestinationPathVariable property to “True.”

For the DestinationVariable property select
“User::ArchiveFile” variable.

Set the OverwriteDestination property to “True.

Click OK to complete the settings. Figure 3-25 illustrates the
File System Task Editor.

CHAPTER 3 © MANIPULATING XML FILES

»
1 Configure the properties required to perform file system operations, such as creating, moving, or deleting files or
J directories.
General 4 Destination Connection
Expressions IsDestinationPathVariable True
DestinationVariable UserzArchiveFile
OverwriteDestination True
4 General
Name Archive File
Description File System Task

|] o

4 Source Connection

IsSourcePathVariable True
SourceVariable User=SourceFile
.Operltlon
Select an operation to perform.
ok || cace | | Hep

Figure 3-25. Showing File System Task settings

Irecommend setting the File System Task property (located on the right side of SSIS
IDE) DelayValidation to True in order to prevent an error in case the package loads and the
default file name does not exist in the source location. Figure 3-26 illustrates the property.

Solution Explorer

Archive File Task
EXR
El Execution

| DelayValidation True |
Disable False

ELGLID wadlinm g

IE Forced Execution Value

A " Adall n ll

Figure 3-26. Showing settings for the property DelayValidation

89

CHAPTER 3 © MANIPULATING XML FILES

Congratulations, the SSIS package LoadXMLFromFile configuration is completed! Be
sure to save your work. Figure 3-27 shows your successfully completed SSIS Package.

5 £
() Hj Foreach Loop Container ~
(3 checkif Fie busts
-

| Q@
I U? Insert XML Data

o, ¥

!
s Archive File U

g‘a Execute SQL Task

Figure 3-27. Showing succeeded SSIS Package

How It Works

The SSIS package starts the process by inspecting the files with an .xml extension in
the source location indicated by the SourceLocation variable. The default value can be
modified outside the package. The code is as follows:

Dts.Variables["User::FlagIsFileExist"].Value = (System.IO.Directory.
GetFiles(Dts.Variables["User: :Sourcelocation"].Value.ToString(), "*.xml").
Length = 0);

returns count of the files (if any). Comparison condition /=0 returns
boolean values; true - when count greater than 0 or false - when count equal
0. The result value assignes to FlagIsFileExist variable.

The expression @/[User::FlagIsFileExist] == true in the Precedence Constraint
conditionally inspects the User::FlaglsFileExist variable value. When the expression
returns true then the package goes to the next task. When the expression returns a
negative result (false), the package execution is terminated.

The “Truncate Table” Execute SQL Task removes the old value and prepares the
table _XML for a new set of rows.

90

CHAPTER 3 © MANIPULATING XML FILES

As the package progresses, the Foreach Loop Container is configured to inspect the
source location and retrieve all available files with .xml extension. The Foreach Loop
Container iterates the list of filenames and assigns each filename to the User::FileName
variable on each iteration.

The expression formula for the variable SQLScript changes the INSERT T-SQL
statement each time the FileName variable receives a new value. The “Insert XML Data”
Execute SQL Task sends the INSERT T-SQL statement to the SQL Server instance.

The File System Task sends the processed files from the source location to the
archive location.

An alternative to the File System Task is the Script Task, which is my personal
preference for those DBAs who feel uncomfortable with the C# programing language
used in the Script Task. Therefore, the File System Task is a set task, and there is no code
involved with the configuration of the task. For those who prefer more control over the
process of moving the files, I would suggest implementing the Script Task instead of the
File System Task. To configure the Script task, please complete the following steps:

e Dragand drop the Script Task inside the Foreach Loop Container
“Load XML Content.

e Double-click on the Script Task to open the Script Task Editor.
e For the ScriptLanguage property, select Microsoft Visual C#.

e For the ReadOnlyVariable property, add the variable
User::ArchiveFile and User::SourceFile (highlight and copy the
variable’s name).

e Click the Edit Script... button.

e Goto Main() function and add following code:

string from = Dts.Variables["User::SourceFile"].Value.
ToString();

string to = Dts.Variables["User::ArchiveFile"].Value.
ToString();

System.I0.File.Move(from, to); // move a file

e Save and close the C# Visual Studio

e (lick the OK button to complete the configuration.

Asyou can see from this example, with a little bit of minor coding, you now have full
control over moving the files from the source location to the archive directory.

The SSIS package can be deployed through the SQL Server Agent job, which will
run automatically on a customized schedule. The package can also be executed from the
stored procedure. Listing 3-7 demonstrates how to execute the SSIS package from the
stored procedure.

91

CHAPTER 3 © MANIPULATING XML FILES

Listing 3-7. Showing the code to execute the SSIS package from a stored procedure

DECLARE @Sourcelocation VARCHAR(200) = 'C:\\TEMP\\';
DECLARE @Archivelocation VARCHAR(200) = 'C:\\TEMP\\Archive\\';

SET @SQLQuery = 'DTEXEC /FILE ~"C:\SQL2016\Chapter3\CreateXMLFile\
CreateXMLFile\LoadXMLFromFile.dtsx"" '

SET @SQLQuery = @SQLQuery + ' /SET \Package.Variables[Sourcelocation].
Value; "'+ @Sourcelocation + '*"

/SET \Package.Variables[Archivelocation].Value;*"'+ @Archivelocation + '*"';
EXEC master..xp_cmdshell @SQLQuery;

3-5. Implementing a CLR Solution
Problem

You want to create SQL Server objects to write and read XML files that that do not
implement extended stored procedures and provide more secure functionalities.

Solution

The CLR (Common Language Runtime) functions could extend T-SQL functionality and
operate the same way as a SQL Server user-defined object (user-defined functions, for
this recipe solution). However, CRL objects require a dll (dynamic link library) file format
(extension .dll) that is used for Windows program codes and procedures. For this recipe,
the code demonstrates using Visual Studio C#. Listing 3-8 demonstrates the code for the
C# file.

Listing 3-8. Creating WriteXMLFile and ReadXMLFile SQL Server CLR functions

using System;

using System.Data;

using System.Data.SqlClient;
using System.Data.SqlTypes;

using Microsoft.SqlServer.Server;
using System.IO;

public partial class XMLFileETL
{
[SqlFunction]
public static SqlString WriteXMLFile(SqlString XMLContent,
SqlString DirPath,
SqlString FileName,
SqlBoolean DateStamp)

/* Parameters:
XMLContent: Contains XML document.

92

CHAPTER 3 © MANIPULATING XML FILES

DirPath: The directory path to write to.
FileName: The file name.
DateStamp: Determines add datetime stamp to the file or not.

*/
try
{
string strXMLFile = "";
// Check input parameters for NULL.
if (!XMLContent.IsNull &&
IDirPath.IsNull &&
IFileName.IsNull)
{
// Build File Path string
string strStamp = (DateStamp) ? " " + DateTime.Now.To
String("yyyyMMdd HHmmss") : "";
strXMLFile = DirPath.Value + "\\" + FileName.Value +
strStamp + ".xml";
// Initialize a new instance of the StreamWriter class
using (var newFile = new StreamWriter(strXMLFile.Value))
{
// Write the file.
newFile.WritelLine(XMLContent);
}
// Return the file path on success.
return strXMLFile;
}
else
// Return warning when any of input value is NULL.
return "Input parameters with NULL detected";
}
catch (Exception ex)
{
// Return null on error.
return ex.Message.ToString();
}
}
[SqlFunction]

public static SqlString ReadXMLFile(SqlString FilePath)
{

// Parameters:

// FilePath: The file path to the XML file.

try

{

// Declare local variable

string fileContent = "";

93

CHAPTER 3 © MANIPULATING XML FILES

// Check paremeter for null.
if (!FilePath.IsNull)

{
// Initialize a new instance of the StreamReader class for
the specified path.
var fileStream = new FileStream(FilePath.Value, FileMode.
Open, FileAccess.Read);
using (var streamReader = new StreamReader(fileStream))

fileContent = streamReader.ReadToEnd();

}

}

// Return XML document
return fileContent;

}

catch (Exception ex)

// Send exception message on error.
return ex.Message.ToString();

};
To register the C# code file:

e Create folder “Chapter3”

e Save the XML_ETL.cs file (the file available in the book code
samples) the in “Chapter3” folder.

e Open Windows Command Line (cmd.exe) and then run the
command line that is shown in Listing 3-9. The cmd.exe output is
shown in Figure 3-28.

Listing 3-9. Eemonstrating the Command Line to register the dll.

C:\Windows\Microsoft.NET\Framework\v3.5\csc.exe /target:library /out:C:\
Chapter3\ReadWriteXML.d11l C:\Chapter3\XML_ETL.cs

:\>C:\Windows\Microsoft NET\Framework\u3.5\csc.exe /target:library /out:c:\ChaJ'
ter3\ReadWriteXML.dll C:\Chapter3\XML_ETL.cs |
icrosoft (R) Uisual C# 2008 Compiler version 3.5.30729.5420

or Microsoft (R) .NET Framework version 3.5

opyright (C) Microsoft Corporation. All rights reserved.

Figure 3-28. Showing the command-line result

94

http://dx.doi.org/10.1007/978-1-4842-3117-3_3
http://dx.doi.org/10.1007/978-1-4842-3117-3_3

CHAPTER 3 © MANIPULATING XML FILES

Listing 3-10 demonstrates the T-SQL solution to configure the server and database.
Created scalar functions are shown in Figure 3-29.

Listing 3-10. Creating CLR functions

-- Enable CLR
USE master
GO
sp_configure 'clr enabled', 1;
GO
RECONFIGURE
GO
-- Configure
USE AdventureWorks
GO

ALTER DATABASE AdventureWorks SET TRUSTWORTHY ON;

Go
-- Create Assembly
CREATE ASSEMBLY ReadWriteXML
FROM 'C:\Chapter3\ReadWriteXML.d1l'
WITH PERMISSION SET = EXTERNAL_ACCESS;
Go

-- Create functions
CREATE FUNCTION dbo.WriteXMLFile(
@Content nvarchar(MAX),
@irPath nvarchar(500),
@FileName nvarchar(100),
@ateStamp bit)
RETURNS nvarchar(MAX) WITH EXECUTE AS CALLER
AS
EXTERNAL NAME ReadWriteXML.XMLFileETL.WriteXMLFile;
GO

CREATE FUNCTION dbo.ReadXMLFile(@FilePath nvarchar(500))
RETURNS nvarchar(MAX) WITH EXECUTE AS CALLER

AS

EXTERNAL NAME ReadWriteXML.XMLFileETL.ReadXMLFile;

GO

95

CHAPTER 3 © MANIPULATING XML FILES

=) (3 Programmability
+ [Stored Procedures
-] (@ Functions
+ [Table-valued Functions
- (3 Scalar-valued Functions
% dbo.ReadXMLFile
% dbo.WriteXMLFile
3 Aggregate Functions
+ (3 System Functions

* Metabhess Tolo e aas

Figure 3-29. Showing created CLR functions

How It Works

The CLR project combines reading and writing XML files. It is more practical to have
several C# functions in one class rather creating one class per function. Therefore, both
read and write functionality is wrapped into one C# class object. To create a C# file, MS
Visual Studio C# or VB is the tool to use. Covering how to create Visual Studio project is
beyond the scope of this this book. There are many resources available that explain how
to create CRL projects in great detail.

The top part of the C# code lists namespaces or libraries that are necessary to
recognize code functions and methods. The using method adds a namespace to a class.
When a new project starts, a class lists default namespaces. The System.IO namespace
that contains reading and writing as part of the file’s functionality is not part of the default
list. Therefore, you must add the System.IO namespace manually. A CLR class must
have a partial type. The procedure attribute specifies a SQL Server target object. For
example: a user-defined function is the [SQLFunction] attribute, a stored procedure is
[SQLProcedure], etc. A CLR procedure type must be public static.

The WriteXMLFile function returns a created file full path on success and an error
message on failure or when a NULL parameter value is detected.

The function has four input parameters:

e XMLContent - required, data type SQLString, Contains XML
document.

e DirPath - required, data type SQLString, the directory path to
write to.

e FileName - required, data type SQLString, the file name.

e DateStamp - required, data type SQLBoolean, determines
whether to add a datetime stamp to the file or not.

96

CHAPTER 3 © MANIPULATING XML FILES

After validating the input parameters, the next step is to build up a file path. First, the
parameter DateStamp needs to check whether a datetime stamp will be part of the file
name, then concatenate the parameters and the variable:

string strStamp = (DateStamp) ? " "
+ DateTime.Now.ToString("yyyyMMdd HHmmss") : "";
strXMLFile = DirPath.Value + "\\" + FileName.Value + strStamp + ".xml";
As a final point - write an XML file with the provided path:

using (var newFile = new StreamWriter(strXMLFile.Value))

{
}

newFile.WritelLine(XMLContent);

The ReadXMLFile function returns XML file content on success and an error
message on failure. The function has one parameter:

e FilePath - required, data type SQLString, the file path
to the XML file.

When the FileStream function establishes a connection to the XML file, then the
StreamReader function reads the entire file and the ReadXMLFile function returns the
XML document:

var fileStream = new FileStream(FilePath.Value, FileMode.Open,
FileAccess.Read);
using (var streamReader = new StreamReader(fileStream))

{
fileContent = streamReader.ReadToEnd();

}

return fileContent;

If you develop a CRL procedure with Visual Studio, then you could build the solution
to create a dll file or run a Command Line to build and register a dll file:

C:\Windows\Microsoft.NET\Framework\v3.5\csc.exe /target:library /out:C:\
Chapter3\ReadWriteXML.dll C:\Chapter3\XML_ETL.cs

When the dll file is ready then we are moving to the SSMS to:

1. Make sure that the ‘clr enabled’ option is enabled:
sp_configure 'clr enabled', 1

2. Swith to user database and SET TRUSTWORTHY ON.

97

CHAPTER 3 © MANIPULATING XML FILES

3. Create an assembly that sets the reference to dll:

CREATE ASSEMBLY ReadWriteXML FROM
'C:\Chapter3\ReadWriteXML.d11"
WITH PERMISSION SET = EXTERNAL_ACCESS

For the assembly, after the name and dll file path are specified, you need to set the
PERMISSION_SET argument that has three options:

e SAFE - preferred, used when a dll cannot access external system
resources, for example, the registry, files, environment variables,
or the network.

e EXTERNAL_ACCESS - the dll can access to the registry, files,
and environment variables. However, these cannot be accessed
outside an instance of SQL Server.

° UNSAFE - unrestricted access.

The ReadWriteXML.dll accesses to files; therefore, the EXTERNAL_ACCESS option is
set to the PERMISSION_SET for the assembly of ReadWriteXML. Once the ASSEMBLY is
created, the functions can now be created. For example:

CREATE FUNCTION dbo.ReadXMLFile(@FilePath nvarchar(500))
RETURNS nvarchar (MAX) WITH EXECUTE AS CALLER

AS

EXTERNAL NAME ReadWriteXML.XMLFileETL.ReadXMLFile

In the CREATE FUNCTION section after the schema and name, you need to list all
of the parameters to match to the function in the C# dll. Make sure that the positions and
the data types are the same. The RETURNS section must match the data type as well. The
EXTERNAL NAME has three references, for example:

EXTERNAL NAME ReadWriteXML.XMLFileETL.ReadXMLFile

1. The ASSEMBLY name
2. CLRclass name
3. CLR function name
Listing 3-11 demonstrates the execution of T_SQL for the WriteXMLFile functions.
The result is shown in Figure 3-30.
Listing 3-11. Executing the WriteXMLFile functions

SELECT dbo.WriteXMLFile(N'<Category>
<CategoryName>Accessories</CategoryName>
<Subcategory>

<SubcategoryName>Bike Racks</SubcategoryName>
<Product>
<Name>Hitch Rack - 4-Bike</Name>

98

CHAPTER 3 © MANIPULATING XML FILES

<Number>RA-H123</Number>
<Price>120.0000</Price>
</Product>
</Subcategory>
<Subcategory>
<SubcategoryName>Bike Stands</SubcategoryName>
<Product>
<Name>All-Purpose Bike Stand</Name>
<Number>ST-1401</Number>
<Price>159.0000</Price>
</Product>
</Subcategory>
</Category>', 'C:\Chapter3', 'CategoriesXML', 0) NewFilePath

NewfFilePath

} C:\Chapter3\CategoriesXML.xml
Figure 3-30. Showing the function result

Listing 3-12 demonstrates the execution of T_SQL for the ReadXMLFile functions.
The result is shown in Figure 3-31.

Listing 3-12. Executing the ReadXMLFile functions

SELECT cast(dbo.ReadXMLFile('C:\Chapter3\CategoriesXML.xml"') as xml) XMLFile

XMLFile > |
| <Category><CategoryName>Accessories</CategoryName=> CSubcateqorV)‘iSubcaleqorvl\'l’ lame...

Figure 3-31. Showing the function result

The CRL procedures provide a secure way to extend SQL Server functionality.
However, programming skills are preferred when dealing with CLR procedures.

Summary

This chapter demonstrates a variety of solutions detailing how to write the XML result
into a file, and how to load the XML file (or files) from the source location. Please be
aware that this is not the only solution, since in today’s world, such tasks could be
completed using other technologies, such as PowerShell, .NET applications (either C#
or VB.NET), among others. However, these are excellent solutions to compiling SSIS
packaged using SQL Server the T-SQL code.

In the next chapter the recipes will cover how to convert an XML document into rows
and columns, also known as “XML Shredding”

99

CHAPTER 4

Shredding XML

Converting XML data into relational columns and rows is not an easy process. The
OPEXML function was introduced to shred XML data in SQL Server 2000, and then XML
shredding was improved by the XPath language (also known as XQuery) in SQL Server
2005. Since then, the process of querying XML data became a solid solution to deliver
results. This chapter will demonstrate how to query XML data as a single unit and return
the retrieved data across a table’s column.

4-1. Shredding XML with Internal ENTITY

Declarations
Problem

You want to return a rowset result out of the XML data that is passing to a stored
procedure as a parameter or retrieved out of the table as the single XML value.

Solution

The OPEXML function provides a comprehensive solution to query XML data assigned
to VARCHAR, NVARCHAR, and XML data typed variable and parameters. The T-SQL code
in Listing 4-1 demonstrates the solution. A sample set of data can be found in the
AdventureWorks database.

Listing 4-1. Shredding the XML with the OPENXML function

DECLARE @xml nvarchar(max),

@idoc int,

@ns varchar(200) =
N'<root xmlns:df="http://schemas.microsoft.com/sqlserver/2004/07/
adventure-works/ProductModelManuInstructions” />';

SELECT @xml = cast(Instructions as nvarchar(max))
FROM [Production].[ProductModel]
WHERE ProductModelID = 7;

© Alex Grinberg 2018 101
A. Grinberg, XML and JSON Recipes for SOQL Server,
https://doi.org/10.1007/978-1-4842-3117-3_4

https://doi.org/10.1007/978-1-4842-3003-9_5

CHAPTER 4 * SHREDDING XML

EXECUTE sp_xml:preparedocument @idoc OUTPUT, @xml, @ns;

SELECT StepInstruction,
LaborStation,
LaborHours,
LotSize,
MachineHours,
SetupHours,
Material,
Tool
FROM OPENXML(@idoc, 'df:root/df:Location/df:step’, 2)
WITH (
LaborStation INT '../@LocationID',
LaborHours REAL '../@LaborHours',
LotSize INT '../@LotSize ',
MachineHours REAL '../@MachineHours ',
SetupHours REAL '../@SetupHours ',
Material VARCHAR(100) 'df:material’,
Tool VARCHAR(100) 'df:tool’,
StepInstruction VARCHAR(2000) '.'

);
EXECUTE sp_xml:removedocument @idoc;

The query output is shown in Figure 4-1.

Step Instruction LaborStati.. LaborHo., LotSi.. MachineHo.. SetupHours | Matena Tool

| inset sluminum shast M5-2341 into the T-5AF [ID 25 100 3 o5 sluminum sheet M. T-85Aframing
Aetach Trim Jig TJ-26t0 the upper and lowerrg.. 10 25 100 3 05 NULL Trim Jg TJ-26
Using a router with a carbide tp 15, route the al 0 25 100 3 05 NULL router wih a carbide t
Inser the frame into Forming Tool FT-15andpre.. 10 25 100 3 03 NULL Fonning Tool FT-15
When finished. inspect the forms for defects per il 25 100 3 05 NULL NULL
Ramove the frames from the tool and place the 10 25 100 3 05 NULL NULL
Assge gl fomepenogpects (gnbid - pulipmn L LTB P il g G PN g WL e
Fod W od b ¥ U L " Ji.
Inspect Front Decaieur. 50 3 1 NULL 025 NULL NULL
Inspect Rear Deraifeur. 50 3 1 NULL 0.25 NULL NULL
Pedorm final nspection per angnesting specic. 60 4 1 NULL NULL NULL NULL
Complete all required cenification forms 60 4 1 HULL NULL NULL NULL
Move to shipping. &0 4 1 NULL NULL NULL NULL

Figure 4-1. Showing the process output

How It Works

Before we shred the XML, the first step is to determine the XML structure and which

elements and attributes will be a part of the result set. This can be done on the

AdventureWorks database executing SQL to analyze the XML data as shown in Listing 4-2.

102

CHAPTER 4 © SHREDDING XML

Listing 4-2. Query to retrieve sample XML instructions for one product model

SELECT Instructions
FROM Production.ProductModel
WHERE ProductModelID = 7;

The XML result is too large to display in a book page. For this reason, the XML
snippet in Listing 4-3 has been formatted for demonstration purposes.

Listing 4-3. XML Snippet demonstrating the result data

<root xmlns="http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/
ProductModeIManuInstructions">
Adventure Works CyclesFR-210B Instructions....
<Location LaborHours="2.5"
LotSize="100" MachineHours="3" SetupHours="0.5" LocationID="10">
Work Center 10 - Frame Forming...
<step>Insert
<material>aluminum sheet MS-2341</material> into the
<tool>T-85A framing tool</tool>.
</step>

</Location>
</root>

The <root> element has a namespace that must be part of the XML initialization of
the OPENXML function. Therefore, several variables were declared. The purpose for these
variables is the following:

1. @xml XML - Retrieve the XML data as a single unit from the
table.

2. @idoc INT - Store the returned document handle from the
sp_xml:preparedocument system stored procedure to allow
OPENXML to access the XML data.

3. @nsVARCHAR(200) - Store the XML namespace to supply to
the sp_xml:preparedocument system stored procedure, and
the parameter xpath_namespaces to specify the namespace
declaration.

Note When XML has a namespace, the namespace cannot be avoided. The OPENXML
function will not return the result set when the namespace is not declared and specified
in the sp_xml:preparedocument system stored procedure. The namespaces help to avoid
name conflict and uniquely identify the elements and attributes in the XML data.

103

CHAPTER 4 * SHREDDING XML

The value assigned to the @ns variable needs more clarification. In Listing 4-1, the
namespace declaration in the <root> element is a little different from the one assigned to
the @ns variable. The root element namespace looks like Listing 4-4.

Listing 4-4. Namespace declaration in the <root> element

<root xmlns="http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/
ProductModeIManuInstructions">

The @ns variable namespace declaration in the sample code looks slightly different,
as shown in Listing 4-5.

Listing 4-5. @ns variable namespace declaration

<root xmlnssdf="http://schemas.microsoft.com/sqlserver/2004/07/adventure-
works/ProductModelManuInstructions” />

The value of the variable @ns has an extra part xmins:df=..., where the df (short for
“default”) can specify any alias. The most commonly used alias is ns. The namespace is
used as a reference to the elements of the OPENXML function. In simple terms, it’s the same
reference as if the ProductModel table were referenced without the schema “Production.”
We must use Production.ProductModel to provide a reference to the table; otherwise
SSMS will throw an error: “object not found.” The main difference is that the XML parser
will not raise an error and will simply ignore the elements and the element’s attributes.
Therefore, no results will be returned.

The code in Listing 4-6 builds on Listing 4-2 by assigning the result to an XML
variable:

Listing 4-6. Assigning XML sample data to an XML variable

SELECT @xml = Instructions
FROM Production.ProductModel
WHERE ProductModelID = 7;

The system stored procedure sp_xml:preparedocument uses the MSXML parser
(Msxmlsql.dll) to parse the XML data, and returns a numeric (INT data type) value that
provides a pointer (variable @doc) to access the XML.

The stored procedure sp_xml:preparedocument has three parameters:

1. @hdoc INT OUTPUT - required, integer data type.

2. @xmltext NTEXT - required, can be any texual data type
(VARCHAR, NVARCHAR, XML, TEXT, or NTEXT). The data type used
must be implicitly convertible to the legacy NTEXT data type;
so VARBINARY is not allowed.

3. @xpath_namespaces NTEXT - optional, can be any texual data
type (VARCHAR, NVARCHAR, XML, TEXT, NTEXT, or XML). Note the
type conversion restrictions on this parameter are the same as
for the @xmltext parameter.

104

CHAPTER 4 © SHREDDING XML

When the XML document is loaded into the memory after the stored procedure
sp_xml:preparedocument is executed and retuned, the XML document handler (memory
pointer) returns the value by outputting value into an @doc variable, as demonstrated in
Listing 4-7.

Listing 4-7. Calling the sp_xml:preparedocument procedure
EXECUTE sp_xml:preparedocument @doc OUTPUT, @xml, @ns;
Now the process is ready to convert the XML document into a relational result set.
The query that returns the result set has three parts:
e SELECT clause - delivers the result to the user.

e OPENXML function - provides access to the XML document and
sets the XPath to the startup element.

e WITH construct - defines the table that describes each element
and attribute that form the XML data.

The XML shredding process starts with the OPENXML function. The OPENXML
function has three input parameters:

1. @idoc INT - [required] is an internal representation of
an XML document that is created by executing the sp_
xml:preparedocument stored procedure.

2. @rowpattern NVARCHAR - [required] is the XPath pattern that
identifies the startup element

3. @flags BYTE - [optional] indicates the mapping for the XML
document. The flag values are listed in Table 4-1.

Table 4-1. Listing values for the @flags parameter

Flag Description

0 Defaults to attribute-centric mapping.

1 Specifies attribute-centric mapping of the data.
2 Specifies element-centric mapping of the data.
8

Can be combined with flag 1 or flag 2, with the bitwise OR operator. This
flag indicates that the consumed data should not be copied to the overflow
property @mp:xmltext.

The OPENXML function is part of the FROM clause because the XML data is the data
source. Listing 4-1 demonstrated the OPENXML function set with the values in the FROM
clause: FROM OPENXML(@idoc, 'df:root/df:Location/df:step’, 2).

105

CHAPTER 4 * SHREDDING XML

The first parameter is straightforward output from the stored procedure sp_
xml:preparedocument, where we provide the function with output that is stored in the
variable. The XPath pattern is not intuitive, and requires detailed XML structure analysis.
Let’s remove the data from the XML that is shown in Sample 4-1, to isolate and analyze
the structure, as shown in Listing 4-8.

Listing 4-8. Showing snippet of bare XML structure

<root>
<Location>
<step>
<material></material>
<tool></tool>
</step>
<step>
<material></material>
<tool></tool>
</step>
</Location>
</root>

The rule that I am using to properly define XPath and shred the XML is this:

e When the same child element is listed more than once, the XPath
pattern must point to that element.

e The hierarchy for the <step> element is: root/Location/step.

e This analysis is very important to specify an efficient XPath for
the OPENXML function. The query from Listing 4-1 returns the
result where the LaborStation attribute (property of the Location
element) with value “10” has 6 steps in this particular example,
however the number of steps can vary. The element hierarchy
from Listing 4-8 is root/Location/step/, so both <material> and
<tool> are the child step elements, and they each contain a single
text node. Therefore, XPath root/Location/step will satisty the
@rowpattern parameter for an OPENXML function. Later, we will
provide a precise path for each element and attribute data cell in
the WITH construct.

For the optional parameter @flags we have provided a value of 2, because the XPath
final point <step> is an element, and the <Location> element has several attributes that
will be part of the result set. This combination of element-centric and attribute-centric
properties is the best scenario for @flags = 2.

The WITH construct provides the specification for the resulting output. The XML
is hierarchical data, so in order to retrieve a specific element and attribute, we need to
provide a precise source data location. In most cases the source data is located outside of
the location that is specified for the @rowpattern parameter.

106

CHAPTER 4 © SHREDDING XML

The hierarchical structure of XML data can be compared to the Windows folder/file
structure. Imagine navigating the folder structure. In simple terms, if you need to copy
several files from different folders into a new folder, then you are navigating from one
folder to another to collect all needed files. Therefore, the WITH construct builds the table
that will return the collected data from elements and attributes. Unlike the tables, the
WITH construct has a column name, datatype, and the XML item location path. The WITH
construct from Listing 4-1, reproduced in Listing 4-9, defines the shape.

Listing 4-9. WITH clause defining XML structure

WITH (
LaborStation INT '../@LocationID',
LaborHours REAL '../@LaborHours',
LotSize INT '../@LotSize ',
MachineHours REAL '../@MachineHours ',
SetupHours REAL '../@SetupHours ',
Material VARCHAR(100) 'df:material’,
Tool VARCHAR(200) 'df:tool’,
StepInstruction VARCHAR(2000) '.'

The LocationID, LaborHours, LotSize, and MachineHours are attributes of the
<Location> element (see Listing 4-3), which is the parent of the <step> element. To
retrieve the data from these attributes, we need to move one level up from the <step>
element, because the OPENXML function is set to the <step> element, which is one step
below. In order to have XML read the proper step and account for it reading one step
below, you must move one step above. The “LaborStation” is an alias for the LocationID
attribute, and the data type is INT because LocationID is a whole number. The path
structure for !./@LocationID’ value means:

e “./”-move one level up from current location.
e “@” - specifies that this is an attribute.
e LocationID - is the original attribute name.

The same mechanism applies to other LaborHours, LotSize, and MachineHours
attributes.

The <material> and <tool> elements are both children of the <step> element.
Therefore, we need to move down to access the elements’ data, for example:

e Material - element alias.
e VARCHAR(100) - presented data type.

e ‘df:material’ - df: namespace reference, and material is the
element name.

The last column is StepInstruction, where the data type is VARCHAR(2000), and ‘.’
means that the current context node is the final element from the XPath rowpattern
parameter.

107

CHAPTER 4 © SHREDDING XML
The SELECT clause returns the following columns, which are aliased in the WITH

construct:

e StepInstruction - alias for the <step> element.

e LaborStation - alias for the LocationID attribute.

e LaborHours - alias for the LaborHours attribute.

e LotSize - alias for the LotSize attribute.

e MachineHours - alias for the MachineHours attribute.

e SetupHours - alias for the SetupHours attribute.

e Material - alias for the <material> element.

e Tool - alias for the <tool> element.

Finally, we need to deallocate the XML document from the memory. The stored
procedure sp_xml:removedocument removes the XML document when we set the XML
handler to the required parameter:

EXECUTE sp_xml:removedocument @idoc;

Caution SQL Server does not provide garbage collection for XML documents
processed by the sp_xml: preparedocument stored procedure. The XML document is stored
in the internal cache of SQL Server, and the MSXML parser uses one-eighth of the total
memory available for SQL Server. Therefore, memory deallocation must be set explicitly by
the sp_xml:removedocument stored procedure. Otherwise, the server will have a memory
leak problem and will periodically restart the procedure, which requires server memory.

4-2. Migrating OPENXML into XQuery
Problem

You need to find an alternative to OPENXML function to shred the XML documents.

Solution

SQL Server 2005 introduced the XML data type and XQuery language support via five
XML data type methods: nodes(), value(), query(),exist(), and modify(). These methods
allow comprehensive manipulation of XML data. For the XML data type, the legacy
stored procedures sp_xml:preparedocument and sp_xml:removedocument are obsolete
(see Solution 4-1 for details), and are unused. Listing 4-10 shows how to migrate the
OPENXML () function process to XQuery code using the nodes() and value() methods.

108

CHAPTER 4 © SHREDDING XML

Listing 4-10. Migrating OPENXML into XQuery
DECLARE @xml XML;

SELECT @xml = Instructions
FROM [Production].[ProductModel]
WHERE ProductModelID = 7;

WITH XMLNAMESPACES('http://schemas.microsoft.com/sqlserver/2004/07/

adventure-works/ProductModelManuInstructions' as df)

SELECT RTRIM(LTRIM(REPLACE (instruct.value('.', 'VARCHAR(2000)'), CHAR(10),

""))) AS StepInstruction,
instruct.value('../@LocationID', 'INT') AS LaborStation,
instruct.value('../@LaborHours', 'REAL') AS LaborHours,
instruct.value('../@LotSize', "INT') AS LotSize,
instruct.value('../@MachineHours', 'REAL') AS MachineHours,
instruct.value('../@SetupHours', 'REAL') AS SetupHours,
instruct.value('df:material[1]', 'VARCHAR(100) ') AS Material,
instruct.value('df:tool[1]"', 'VARCHAR(100) ') AS Tool

FROM @xml.nodes('df:root/df:Location/df:step') prod(instruct);

Caution All XQuery methods are case sensitive; therefore, to avoid an error, the
methods nodes(), value(), query(), exist(), and modify() must be used in lowercase only.

How It Works

The OPENXML function was introduced in SQL Server 2000 where the XML data type was
nonexistent at the time. Therefore, each XML document needed to be converted from
data types such as VARCHAR, NVARCHAR, BINARY, IMAGE, TEXT, and NTEXT, into an internal
format that could be manipulated by MSXML. This was accomplished with the sp_
xml:preparedocument stored procedure.

Since SQL Server 2005, when the XML data type was implemented, the XML
shredding and the building process were dramatically simplified. The XQuery language
works with the XML data type directly. Therefore, extra steps to prepare XML data are
no longer necessary when the shredding process is based on the XML data type, or
the XML data can be explicitly converted to the XML data type using the CAST() and
CONVERT() functions.

The difference between the CONVERT and CAST functions is that the CONVERT
function is not part of an ANSI-SQL specification, whereas CAST is. However, most
importantly, CONVERT has a third optional parameter that provides additional
functionality to the conversion process, such a controlling whitespace handling or
applying an inline Document Type Definition (DTD). The following is a description of
XML Style Parameter Values for the CONVERT function:

e 0 - (default) Discard insignificant whitespace in the XML and
does not allow the use of an internal DTD.

109

CHAPTER 4 * SHREDDING XML

e 1 - Preserve insignificant whitespace in the XML. However, does
not allow the use of an internal DTD.

e 2 - Discards insignificant whitespace and enable limited
internal DTD

e 3 -Preserve insignificant whitespace and enable limited
internal DTD.

Listing 4-2 demonstrates the solution to migrate the OPENXML function into the
XQuery language. The first line declares the XML variable, as shown in Listing 4-11.

Listing 4-11. Declaring an XML variable
DECLARE @xml XML;

Next, we assign the XML data value to the variable, as shown in Listing 4-12.

Listing 4-12. Populating the XML variable

SELECT @xml = Instructions
FROM Production.ProductModel
WHERE ProductModelID = 7;

To shred an XML document that has an xml namespace (as in Listing 4-2), we need
to declare the instance of the XML namespace. The SQL Server WITH XMLNAMESPACES
clause allows us to list and instantiate the XML namespaces. The declaration syntax for
the WITH XMLNAMESPACES clause combines the WITH and XMLNAMESPACES keywords. Always
make sure that a semicolon (;) precedes the WITH construct when writing this T-SQL code.

Tip It's a good practice to have all SQL statements terminated with a semicolon (;). The
WITH XMLNAMESPACES clause, like the WITH CTE clause, must always be separated from
preceding statements by a semicolon. Otherwise, SQL Server will throw an error.

To match the legacy syntax from Listing 4-1, this example creates the same xml
namespace name, with “df,; as shown in Listing 4-13.

Listing 4-13. Declaring the XML namespace with prefix “df”
WITH XMLNAMESPACES('http://schemas.microsoft.com/sqlserver/2004/07/

adventure-works/ProductModelManuInstructions' as df)

However, when the XML document has only a single XML namespace, the
namespace can be declared as DEFAULT with no explicit namespace prefix requirements
for the XML namespace. Listing 4-14 demonstrates shredding of the XML document with
the default xml namespace.

110

CHAPTER 4 © SHREDDING XML

Listing 4-14. Shredding the XML document with DEFAULT xml namespace and
again with “df” prefix

WITH XMLNAMESPACES(DEFAULT 'http://schemas.microsoft.com/sqlserver/2004/

07/adventure-works/ProductModelManuInstructions")

SELECT RTRIM(LTRIM(REPLACE(instruct.value('."', 'varchar(2000)'),

CHAR(20), '"))) AS StepInstruction
instruct.value('../@LocationID', 'int') AS LaborStation,
instruct.value('../@LaborHours', 'real') AS LaborHours,
instruct.value('../@LotSize"', 'int') AS LotSize,
instruct.value('../@MachineHours', 'real') AS MachineHours,
instruct.value('../@SetupHours', 'real') AS SetupHours,
instruct.value('material[1]', 'varchar(100) ') AS Material,
instruct.value('tool[1]"', 'varchar(100) ') AS Tool

FROM @xml.nodes('root/Location/step') prod(instruct);

WITH XMLNAMESPACES('http://schemas.microsoft.com/sqlserver/2004/07/

adventure-works/ProductModelManuInstructions' as df)

SELECT RTRIM(LTRIM(REPLACE(instruct.value('.', 'varchar(2000)'), CHAR(10),

""))) AS StepInstruction,
instruct.value('../@LocationID', 'int') AS LaborStation,
instruct.value('../@LaborHours', 'real') AS LaborHours,
instruct.value('../@LotSize', 'int') AS LotSize,
instruct.value('../@MachineHours', 'real') AS MachineHours,
instruct.value('../@SetupHours', 'real') AS SetupHours,
instruct.value('df:material[1]", 'varchar(100) ') AS Material,
instruct.value('df:tool[1]"', 'varchar(100) ') AS Tool

FROM @xml.nodes('df:root/df:Location/df:step') prod(instruct);

To return the table structured result set from the XML document, we need to provide
an element path and then denote the element and attribute values. The nodes() method
is similar to the OPENXML function for providing the element reference; however the
differences are the following:

Set access to XML document from the variable using OPENXML

FROM OPENXML(@doc, 'df:root/df:Location/df:step', 2)
Compare to set access to the XML variable using nodes() method
FROM @xml.nodes('df:root/df:Location/df:step') prod(instruct)
1. The main differences between the XML data type nodes()
method and the OPENXML function that XQuery is expecting

the XML data type; therefore, the XML handler (@doc variable)
is not needed.

2. The mapping @flags parameter is not used by the nodes()
method.

111

CHAPTER 4 * SHREDDING XML

The element location path is the same for both the OPENXML function and nodes
methods. It is important to note that the nodes() method requires a fully qualified alias,
such as fable(column). In Listing 4-14 the alias is prod(instruct). Within my personal SQL
scripts, I use the T(C) alias, which is short and simple, but in a production environment I
would recommend being more specific than T(C).

To construct XML output the OPENXML function must use the WITH() construct while,
when using XQuery, the value() method denotes the element and attribute values and
the WITH() construct is not used. The major difference between the WITH() construct and
the value() method is that the WITH() construct syntax sequence is ALIAS + DATATYPE
+ ITEM, while the value() method all is the reverse: ITEM + DATATYPE + ALIAS; for
example:

Part of OPENXML out put specification
WITH (
LaborStation INT '../@LocationID',
LaborHours REAL '../@LaborHours',
LotSize INT '../@LotSize ',
MachineHours REAL '../@MachineHours ',
SetupHours REAL '../@SetupHours ',
Material VARCHAR(100) 'df:material’,
Tool VARCHAR(100) 'df:tool’,
StepInstruction VARCHAR(2000) '.'
)
Compare to XQuery out put specificationSELECT instruct.value('.',
"varchar(2000)") AS StepInstruction,
instruct.value('../@LocationID', 'int') AS LaborStation,
instruct.value('../@LaborHours', 'real') AS LaborHours,
instruct.value('../@LotSize"', "int') AS LotSize,
instruct.value('../@MachineHours', 'real') AS MachineHours,
instruct.value('../@SetupHours', 'real') AS SetupHours,
instruct.value('df:material[1]", 'varchar(100) ') AS Material,
instruct.value('df:tool[1]", 'varchar(100) ') AS Tool

The value() method has two parameters:

1. The XPath path indicating the element or attribute.

2. The target data type from conversion.

Both parameters are NVARCHAR; therefore, the values must be surrounded by single
quotes, and value() method must be based on the column alias that is specified in the
nodes() method. If references are not specified, the error “Msg 195, Level 15, State 10, Line
‘value’ is not a recognized built-in function name” will be thrown.

Another important difference between the OPENXML() WITH clause and the value()
method is that the value() method requires a singleton atomic value, indicated by a one-
based index reference (“[1]”) for element references. For example:

instruct.value('df:material[1]", VARCHAR(100)') AS Material

112

CHAPTER 4 © SHREDDING XML

The singleton atomic value indicated has a one-based array index (most modern
programming languages implement a zero-based array index). That provides the ability
for the XML data to list the same element name multiple times. For example, the XML has
the element Address listed several times:

<Address>Line 1</Address>
<Address>Line 2</Address>
<Address>Line 3</Address>

In this case, in order to display all three Address lines, the value() method code
would look like the following:

c.value('Address[1]', 'VARCHAR(100)') AS Linel
c.value('Address[2]', 'VARCHAR(100)') AS Line2
c.value('Address[3]', 'VARCHAR(100)') AS Line3

When the singleton is missing then the compiler will throw the error: “Msg 2389,
Level 16, State 1, Line # XQuery [value()]: ‘value()’ requires a singleton (or empty
sequence).” Therefore, make sure the singleton atomic value always provides for an
element when using the value() method.

4-3. Shredding XML from a Column
Problem

Shredding the XML documents that is shown in previous recipes (4-1 and 4-2) is a cursor
process required to navigate from one XML value to another. You need to shred the XML
across the table’s column without opening the cursor.

Solution

Recipes 4-1 and 4-2 are based on shredding the XML content of a single XML variable one
at a time. However, in many situations we need to shred the XML across an entire table or
at least multiple rows, as demonstrated in Listing 4-15.

Listing 4-15. Showing the XML from table Sales.Store column Demographics

<StoreSurvey xmlns="http://schemas.microsoft.com/sqlserver/2004/07/
adventure-works/StoreSurvey">
<AnnualSales>800000</AnnualSales>
<AnnualRevenue>80000</AnnualRevenue>
<BankName>United Security</BankName>
<BusinessType>BM</BusinessType>
<YearOpened>1996</YearOpened>
<Specialty>Mountain</Specialty>
<SquareFeet>21000</SquareFeet>

113

CHAPTER 4 * SHREDDING XML

<Brands>2</Brands>

<Internet>ISDN</Internet>

<NumberEmployees>13</NumberEmployees>
</StoreSurvey>

The XML data type allows you to shred the XML data from not only an XML variable,
but also directly from an XML type column in a table. Listing 4-16 demonstrates how to
query the XML column.

Listing 4-16. Showing the XQuery code to return the result set from the XML column

WITH XMLNAMESPACES(default 'http://schemas.microsoft.com/sqlserver/2004/07/

adventure-works/StoreSurvey ")

SELECT details.value('AnnualSales[1]', "MONEY') AS AnnualSales,
details.value('AnnualRevenue[1]', "MONEY') AS AnnualRevenue,
details.value('BankName[1]', 'VARCHAR(50)') AS BankName,
details.value('BusinessType[1]', 'VARCHAR(10)') AS BusinessType,
details.value('YearOpened[1]', "INT') AS YearOpened,
details.value('Specialty[1]', 'VARCHAR(50)') AS Specialty,
details.value('SquareFeet[1]', "INT') AS SquareFeet,
details.value('Brands[1]", 'VARCHAR(10)') AS Brands,
details.value('Internet[1]', 'VARCHAR(10)') AS Internet,
details.value('NumberEmployees[1]", 'SMALLINT') AS NumberEmployees

FROM Sales.Store

CROSS APPLY Demographics.nodes('StoreSurvey') survey(details);

The results are shown in Figure 4-2.

AnrualSales AnnualRevenue BankName BusnessType YearOpened Specialy SquareFeet Brands Intemet NumberEmg
80000000 80000.00 Untted Sacurty BM 1596 Mourtan 21000 2 ISDN 13
800000.00 80000 00 intemational Bank BM 1991 Tourng 18000 4e T 14
800000.00 80000.00 Primary Bark § Reserve BM 1999 Road 21000 2 DSL 15
800000.00 80000.00 intemational Securty BM 1954 Mountan 18000 2 DsL 16
800000.00 80000.00 Guardian Bank BM 1987 Tourng 21000 4 DsL 17
300000 00 30000 00 intemational Eank BM 1582 Road 9000 AW T2 8
300000 00 30000 00 Prmary Bank & Reserve BM 1550 Mountan 7000 AW ™]
800000 00 80000 00 intemational Securty BM 1985 Mountan 17000 4 DSL 10
300000000 300000.00 Primary Bank & Reserve 0S 1879 Mountan 72000 4 DSL 66
150000000 150000.00 intemational Securty 0s 1574 Road 39000 4 m 40

15000000 P00 Primary Bapk 8 S0 ge Sl cmmaliiln. b St g0 gt o~ DSpaeatd

Figure 4-2. Resulting from XQuery process

How It Works

The XML document from the table Sales.Store, column Demographics demonstrated
in Listing 4-17 is relatively simple. The XML has the root element <StoreSurvey>, and
all subsequent elements are children of this XML root. This is a one-level deep XML
structure. Such a structure is common in production environments, because database

114

CHAPTER 4 © SHREDDING XML

designers prefer to keep a simple XML structure within a column, when possible for
performance reasons. Therefore, to convert XML data into rows, we need to provide
areference to the root element in the nodes() method. After that, the value() method
displays each element in a separate column, as shown previously in Figure 4-2.

To navigate over the table’s column, SQL Server 2005 introduced two operators:

1. CROSS APPLY - allows a table-valued function to be invoked
on each row returned by an outer-table expression of a
query. The XML nodes() method is treated as a table-valued
functionin terms of CROSS APPLY.

2. OUTER APPLY - equivalent to LEFT OUTER JOIN, when the
result set returns all rows from the outer-table expression
of a query.

The solution is in Listing 4-16, implementing CROSS APPLY operator for the
query. However, the OUTER APPLY operator returns the same result set, because the
Demographics column does not have any rows containing NULL values.

Let’s compare the differences between shredding the XML value based on the XML
variable in Listing 4-17, and the table’s column demonstrated in Listing 4-15.

Listing 4-17. Shredding XML variable
DECLARE @x XML;

SELECT @x = Demographics FROM Sales.Store WHERE BusinessEntityID = 292;

WITH XMLNAMESPACES(default "http://schemas.microsoft.com/sqlserver/2004/07/

adventure-works/StoreSurvey"')

SELECT details.value('AnnualSales[1]', "MONEY') AS AnnualSales,
details.value('AnnualRevenue[1]', 'MONEY') AS AnnualRevenue,
details.value('BankName[1]', 'VARCHAR(50)') AS BankName,
details.value('BusinessType[1]', 'VARCHAR(10)') AS BusinessType,
details.value('YearOpened[1]', "INT') AS YearOpened,
details.value('Specialty[1]', 'VARCHAR(50)') AS Specialty,
details.value('SquareFeet[1]"', "INT') AS SquareFeet,
details.value('Brands[1]', 'VARCHAR(10)') AS Brands,
details.value('Internet[1]', 'VARCHAR(10)') AS Internet,
details.value('NumberEmployees[1]", 'SMALLINT') AS NumberEmployees

FROM @x.nodes('StoreSurvey') survey(details);

The major SQL code differences are seen in Listing 4-18. When we reference the
variable in the FROM clause the nodes() method applied to a variable returns a rowset
that represents the result of shredding a single document. This is as opposed to CROSS
APPLY against a table, which shreds the XML from each row of the table and generates a
single rowset. Listing 4-17 shows the code difference between shredding an XML variable
and column.

FROM @x.nodes('StoreSurvey') survey(details);

115

CHAPTER 4 * SHREDDING XML

Shredding XML from a variable, and compare to:

FROM Sales.Store CROSS APPLY Demographics.nodes('StoreSurvey')
survey(details);

Shredding XML from a column

The SELECT clause is identical for both the variable and column shredding processes.
To retrieve an element value, the value() method needs to be given the XPath path
indicating the element name with a singleton index indicator and the data type. For
example: details.value('SquareFeet[1]', "INT') AS SquareFeet.

It is always good practice to list the column alias in the SELECT clause. We do not
receive an error when the alias is missing, and personally, I prefer not to receive a result
with the default column name “(No column name).”

Caution The XML elements and attributes are case sensitive; therefore, when
the elements and attributes are referenced in the value() method then the case must
be identical to the XML document. Otherwise, for XML type columns, the parser will
throw an error. For example, when the element AnnualSales is specified as details.
value(‘annualsales[1]’, ‘money’) then you will receive the error: Msg 2263, Level
16, State 1, Line 2 XQuery [Sales.Store.Demographics.value()]: There is no element
named “{http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/
StoreSurvey}:annualsales” in the type element “({http://schemas.microsoft.com/
sqlserver/2004/07/adventure-works/StoreSurvey}:StoreSurvey,#anonymous)”.
If the XML value stores the columns as untyped XML then the shredding result of the
incorrectly specified item will be NULL. The same applies to the XML variable. | keep
warning my readers about XML case sensitivity because it is the most common mistake
for those who are new to XQuery. SQL Server T-SQL does not raise any errors when we
type the function CASE, for instance, in lower, upper, or mixed case. However, XQuery
does not provide us with such a convenient luxury and we must follow the case rules.
However, when an SQL Server instance or a database is installed in any type of binary
collation, then object name metadata (tables, columns, etc.) is case sensitive.

4-4. Dealing with Legacy XML Storage
Problem

You want to process XML data that has been stored in a table column as a data type other
than XML.

116

http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/StoreSurvey}:annualsales
http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/StoreSurvey}:annualsales
http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/StoreSurvey}:StoreSurvey,#anonymous
http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/StoreSurvey}:StoreSurvey,#anonymous

CHAPTER 4 © SHREDDING XML

Solution

Over the last two decades SQL Server has changed dramatically. One of the biggest
modifications was delivered in SQL Server 2005. Microsoft introduced a revolutionary
RDBMS product to the IT market. The NTEXT, TEXT, and IMAGE data types were

deprecated. However, in legacy databases, XML documents could be stored in columns of
VARCHAR, NVARCHAR, VARBINARY, IMAGE, TEXT, and NTEXT data types. In this case the column
has to be converted to the XML data type.

Note There are several cases when you would store data in a column type other than
XML, for example: XML data contains internal DTDs or ENTITY declarations and Business
requirement to store XML data exactly as it was received, including insignificant whitespace.
However, NTEXT, TEXT, and IMAGE data types should not be considered. Use VARCHAR,
NVARCHAR, VARBINARY instead.

As an example, SQL Server continues to use the IMAGE data type to store SSIS
packages in the msdb.dbo.sysssispackages table, shown in Figure 4-3. All SSIS packages
are XML documents.

= [dbo.sysssispackages
= 3 Columns
¢ name (PK, sysname(nvarchar(128)), not null)
=] id (uniqueidentifier, not null)
[E] description (nvarchar(1024), null)
=] createdate (datetime, not null)
¢ folderid (PK, uniqueidentifier, not null)
=] ownersid (varbinary(85), not null) (
| =] packagedata (image, not null) |
=] packageformat (int, not null)
[Z] packagetype (int, not null)
=] vermajor (int, not null)
[Z] verminor (int, not null)
=] verbuild (int, not null)
2] vercomments (nvarchar(1024), null)
[Z] verid (uniqueidentifier, not null)
=] isencrypted (bit, not null)
(5] readrolesid (varbinary(85), null)
=] writerolesid (varbinary(85), null)

Figure 4-3. Showing msdb.dbo.sysssispackages structure

117

CHAPTER 4 * SHREDDING XML

Let’s set this scenario: you have an assignment to find all servers where backup
databases were run by the SQL Server Maintenance Plan, and list all databases that
were used in the plan. This task is easy to do for a few servers. You also need to inspect
several hundred SQL Server instances. Instead of logging in to each instance and opening
each individual Maintenance Plan, you can shred the packagedata column from the
sysssispackages table, as shown in Listing 4-18, as this is a much more efficient process.

Listing 4-18. Shredding SSIS package code

WITH XMLNAMESPACES ('www.microsoft.com/SqlServer/Dts' AS DTS,
"www.microsoft.com/sqlserver/dts/tasks/sqltask’ AS SQLTask),

Package

AS

(

SELECT name,

CAST(CAST(packagedata AS VARBINARY(MAX)) AS XML) AS package
FROM msdb.dbo.sysssispackages
WHERE packagetype = 6

)

SELECT Package.name as MaintenancePlanName,
PKG.value('@SQLTask:DatabaseName', 'NVARCHAR(128)') AS DatabaseName,
PKG.value('(../@SQLTask:BackupDestinationAutoFolderPath)’,

"NVARCHAR(500)") AS BackupDestinationFolderPath

FROM Package

CROSS APPLY package.nodes('//DTS:0bjectData/SQLTask:SqlTaskData/

SQLTask:SelectedDatabases"') SSIS(PKG);

The result of shredding the SQL Server Maintenance Plan SSIS package is shown in
Figure 4-4.

jRes.ls _:JHQW

MaintenancePlanName DatabaseName BackupDestination FolderPath
1 | Ful_Backup | AdventureWorks2016 C:\SQLBackup
2 Ful_Backup AdventureworksDW2016 C:\SQLBackup
3 Ful_Backup Nothwind C:\SQLBackup

Figure 4-4. Result of shredding the maintenance plan

How It Works

As Imentioned in the Solution, the packagedata column is an IMAGE data type and cannot
be processed by the nodes() method directly. Therefore, the column must be converted to
the XML data type. This is why the solution query has an XMLNAMESPACES declaration block
and a CTE named Package to convert the packagedata column into the XML data type for
further shredding.

118

CHAPTER 4 © SHREDDING XML

These SQL Maintenance Job SSIS packages contain two namespaces, so the
XMLNAMESPACES declaration has to include them both:

1. 'www.microsoft.com/SqlServer/Dts' - <DTS:Executable>
top element.

2. ‘www.microsoft.com/sqlserver/dts/tasks/sqltask’ -
<SQLTask:SqlTaskData> child element.

The Package CTE prepares the packagedata column for the XQuery shredding
process. The CTE returns the SSIS package’s name and explicitly converts the
packagedata column to the XML data type. The IMAGE data type cannot be converted
explicitly in the XML data type. The first step is to explicitly convert the IMAGE data
type to VARBINARY (MAX), which is eligible to be converted into XML, for example:
CAST(CAST(packagedata AS varbinary(MAX)) AS XML).

The packagetype column has five possible values.

e 0-defaultvalue

e 1-SQLServer Import and Export Wizard
e 3-SQL Server Replication

e 5-SSIS Designer

e 6 - Maintenance Plan Designer or Wizard

In this example, we are focusing on Maintenance Plans; therefore, we can filter the
result to packagetype = 6 in the WHERE clause.

The final part of the solution query shreds the Maintenece Plan XML and delivers
the result set. Before we process the values in the SELECT clause, we need to establish
an element path in the XML data. As we process the table and column, the CROSS APPLY
operator helps navigate through the values. The nodes() method does not have a full path
to the source element. The SSIS XML is large; therefore, “//” provides a shortcut path to
the source element and matchs an expression pattern within the XML document. You can
also use a leading wildcard “%” in a WHERE clause. The element path ‘//DTS:ObjectData/
SQLTask:SqlTaskData/SQLTask:SelectedDatabases’ tells you to ignore the leading
elements and match the rightmost part in the XML structure. Remember that the double-
part alias is required for the nodes() method, so SSIS(PKG) is the table(column) alias.

The SELECT clause along with Package.name column returns two values from the
XML data, part of the XML demonstrated in Sample 4-6:

1. PKG.value(‘@SQLTask:DatabaseName; ‘'NVARCHAR(128)")
as DatabaseName, is the SQLTask:DatabaseName attribute
of the SQLTask:SelectedDatabases element. To process an
attribute within the value() method the “@” character directs
you to the method that the value is the attribute, and no
singleton is required.

2. PKG.value(‘(../@SQLTask:BackupDestinationAuto
FolderPath); ‘NVARCHAR(500)’) can be used as the
BackupDestinationFolderPath.

119

http://www.microsoft.com/SqlServer/Dts
http://www.microsoft.com/sqlserver/dts/tasks/sqltask

CHAPTER 4 * SHREDDING XML

The SQLTask:BackupDestinationAutoFolderPath is an attribute as well. However,
the nodes() method is set to the SQLTask:SelectedDatabases element that is the child of
SQLTask:SqlTaskData element. Therefore, to access the SQLTask:BackupDestinationAuto
FolderPath attribute, we need to step up one XML level to SQLTask:SqlTaskData element.
The step operator “./” completes the process.

Listing 4-19. Demonstrating a formatted snippet of the source XML

<DTS:0bjectData>
<SQLTask:SqlTaskData ... SQLTask:BackupDestinationAutoFolderPath=
"C:\SQLBackup">
<SQLTask:SelectedDatabases
SQLTask:DatabaseName="AdventureWorks2016" />
<SQLTask:SelectedDatabases
SQLTask:DatabaseName="AdventureworksDW2016" />
<SQLTask:SelectedDatabases SQLTask:DatabaseName="Northwind" />
</SQLTask:SqlTaskData>
</DTS:0bjectData>

4-5. Navigating Typed XML Columns
Problem

You want to fix the “Cannot implicitly atomize or apply ‘fn:data()’ to complex content
elements” error encountered when shredding a typed XML column.

Solution

When you attempt to shred a typed XML column, as shown in Listing 4-20, the XPath
paths might generate errors.

Listing 4-20. First attempt at shredding a typed XML column

WITH XMLNAMESPACES('http://schemas.microsoft.com/sqlserver/2004/07/

adventure-works/ProductModelManuInstructions' as df)

SELECT ProductModellID,
instruct.value('.', 'VARCHAR(2000)') AS StepInstruction,
instruct.value('../@LocationID', "INT') AS LaborStation,
instruct.value('../@LaborHours', 'REAL') AS LaborHours,
instruct.value('../@LotSize', "INT') AS LotSize,
instruct.value('../@MachineHours', 'REAL') AS MachineHours,
instruct.value('../@SetupHours', 'REAL') AS SetupHours,
instruct.value('df:material[1]", 'VARCHAR(100) ') AS Material,
instruct.value('df:tool[1]", 'VARCHAR(100) ') AS Tool

FROM Production.ProductModel

CROSS APPLY Instructions.nodes('df:root/df:Location/df:step")

prod(instruct);

120

CHAPTER 4 SHREDDING XML
This code, however, generates an error similar to the following:

Msg 9314, Level 16, State 1, Line 2

XQuery [Production.ProductModel.Instructions.value()]: Cannot implicitly
atomize or apply 'fn:data()' to complex content elements, found type
"df{http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/Product
ModelManuInstructions}:StepType' within inferred type 'element(df{http://
schemas.microsoft.com/sqlserver/2004/07/adventure-works/ProductModelManuInst
ructions}:step,df{http://schemas.microsoft.com/sqlserver/2004/07/adventure-
works/ProductModelManuInstructions}:StepType)'.

To fix this error we have to introduce the XQuery data accessor function fn:string()
to prevent the error when the value() method access a singleton atomic instance using
the “./” step operator, as shown in Listing 4-21.

Listing 4-21. Applying the fn:string() function to fix Msg 9314 error

WITH XMLNAMESPACES('http://schemas.microsoft.com/sqlserver/2004/07/

adventure-works/ProductModelManuInstructions' as df)

SELECT ProductModellD,
instruct.value('fn:string(.)", 'varchar(2000)') AS StepInstruction,
instruct.value('fn:string(../@LocationID)', 'int') AS LaborStation,
instruct.value('fn:string(../@LaborHours)"', 'real') AS LaborHours,
instruct.value('fn:string(../@LotSize)", 'int') AS LotSize,
instruct.value('fn:string(../@MachineHours)', 'real') AS
MachineHours,
instruct.value('fn:string(../@SetupHours)', 'real') AS SetupHours,
instruct.value('df:material[1]", 'varchar(100) ') AS Material,
instruct.value('df:tool[1]"', 'varchar(100) ') AS Tool

FROM Production.ProductModel

CROSS APPLY Instructions.nodes('df:root/df:Location/df:step")

prod(instruct);

The query result is demonstrated in Figure 4-5.

PFroductModeliD Step Instruction LzborStation LaborHours LotSize MachineHours SetupHours Matenal Tool

48 Atachthe gips. 50 35 1 0 0 wips NULL

43 Inspect per sp 50 35 1 1]] NULL NULL

53 Visualy exami... 50 0.5 1 0 0 left and right pedals NULL

53 Applyasmala . 50 05 1 0 a grease NULL
50 1

5_’31’...‘- e dgrot geiin, 20 o sl g, B & J“*‘UMM

67 Putthe Seaty,.. 50 1 1 0 uids Seatpost Lug (Pr. NULL
67 Insert the Pinc... 50 1 1 0 025 Pinch Bok (Frodu.. NULL
67 Atachthe HL.. 50 1 1 0 025 HL Seat (Preduct... NULL
67 Inspect persp... 50 1 1 0 025 NULL NULL

Figure 4-5. Result of shredding typed XML column with fn:string() function

121

CHAPTER 4 * SHREDDING XML

How It Works

SQL Server XQuery implements three data accessor functions:
o fu:string() - extracts the string values of the elements or attributes.

e fn:data() - extracts scalar (typed) values from the elements or
attributes.

e text() - returns a single value from the elements or attributes.

Asyou can see, these three functions are very similar in functionality. To examine
each function’s functionality, let’s analyze the result of Listing 4-22, where the XML
partially simulates the XML from the column Instructions.

Listing 4-22. Analyzing the data accessor functions. A query() method covered in the
next Recipe 4-6, “Retrieving a Subset of Your XML Data”

DECLARE @x XML = ‘<top>
<level1>1</level1>
<level2>2¢/level2>
</top>
<!-- second reference to <top> element -->
<top><level3>3</level3></top>"';

SELECT @x.query('/top/levell/text()') Text Function,
@x.query('fn:data(/*)"') Data_Function,
@x.query('fn:string(/*[1])") String_Function;

The results of this query are shown in Figure 4-6.

Text Function Data Function String Function
1 123 12

Figure 4-6. Showing data accessor function results

The code in Listing 4-22 and its result, shown in Figure 4-6, demonstrate the data
accessor functions:

e text() function returns single value “1” from the element <levell>.
e fn:data() function concatenated.

e fnstring() function requires singleton, and returns values for
levell and level2 elements.

122

CHAPTER 4 © SHREDDING XML

For the solution in Listing 4-22 the fn:string() function is most appropriate, because
of the local element reference: instruct.value(‘fn:string(.)’, ‘varchar(2000)’). For example,
fn:data(),returns an error, and text() function returns a partial value for the Instructions
column, as shown in Listing 4-23.

Listing 4-23. Demonstrating result difference between text() and fn:string() functions

WITH XMLNAMESPACES('http://schemas.microsoft.com/sqlserver/2004/07/
adventure-works/ProductModelManuInstructions' as df)
SELECT instruct.value('./text()[1]', 'varchar(2000)') AS Step Instruction
by text,

instruct.value('fn:string(.)", 'varchar(2000)') AS Step Instruction_
by string
FROM Production.ProductModel

CROSS APPLY Instructions.nodes('df:root/df:Location/df:step")
prod(instruct);

The result of Listing 4-23 is shown in Figure 4-7.

Step Instruction by text() Step Instruction by string()
1 Insert | Insert aluminum sheet MS-2341 into the T-8..
Altach Altach Tnm Jig TJ-26 to the upper and lower .
Using a Using a router with a carbide tip 15, route the...
Insert the frame into Insert the frame into Forming Tool FT-15 an
When finished, inspect the for... When finished, inspect the forms for defects .
Remove the frames from the tool and placet.. Remove the frames from the tool and place themin the Co...
Assemble all frame componen... Assemble all frame components following bl
Weld all frame components to... Weld all frame components together as show,
Inspect all weld joints per Adve... Inspect all weld joints per Adventure Works C,
Using the Using the standard debur tool, remove all exc...
Using Using Acme Polish Cream, polish all weld are
Altach Attach a maximum of 20 frames to paint harn,
|t gpanamame, _pa, 2

Figure 4-7. Difference between text() and fn:string() functions

4-6. Retrieving a Subset of Your XML Data

Problem

You want to return a specific subset from your XML document and maintain the XML format.

Solution

The query() method allows you to retrieve a specific part of an XML instance. Listing 4-24
demonstrates how to query the execution plans from SQL Server’s Dynamic Management
Views (DMVs) and retrieve the Statements section out of the execution plans.

123

CHAPTER 4 * SHREDDING XML

Listing 4-24. Returning SQL Statements XML from the Execution Plan

SELECT TOP (25)
@@SERVERNAME as ServerName,
gs.Execution count as Executions,
gs.total worker time as TotalCPU,
gs.total physical reads as PhysicalReads,
gs.total_logical reads as LogicalReads,
gs.total_logical writes as LogicallWrites,
gs.total elapsed time as Duration,
gs.total worker time/qs.execution_count as [Avg CPU Time],
DB NAME(qt.dbid) DatabaseName,
qt.objectid,
OBJECT NAME(qt.objectid, qt.dbid) ObjectName,
gp.query plan as XMLPlan,
query plan.query('declare default element namespace
"http://schemas.microsoft.com/sqlserver/2004/07/showplan”;
//Batch/Statements') as SQLStatements
FROM sys.dm_exec_query stats qs
CROSS APPLY sys.dm exec_sql text(gs.sql handle) as qt
CROSS APPLY sys.dm exec_query plan(plan_handle) as gp
WHERE qt.dbid IS NOT NULL
ORDER BY TotalCPU DESC;

How It Works

Among XQuery methods, the query() method is straightfordard and simple to use.

To return the subset of an XML instance, you need to specify an XML variable or column,
and the path to the target element or attribute. The guery() method returns an instance
of the XML data type. For example, to return Features XML out of the ProductDescription
XML instance assigned to the untype variable demonstarted in Listing 4-25, the result is
shown in Figure 4-8.

Listing 4-25. Returning Features subset fromthe XML

DECLARE @x XML ='<ProductDescription>
<Manufacturer>
<Name>AdventurelWorks</Name>
<Copyright>2002</Copyright>
<ProductURL>HTTP://www.Adventure-works.com</ProductURL>
</Manufacturer>
<Features>
<Warranty>
<WarrantyPeriod>3 years</WarrantyPeriod>
<Description>parts and labor</Description>
</Warranty><Maintenance>
<NoOfYears>10 years</NoOfYears>

124

CHAPTER 4 © SHREDDING XML

<Description>maintenance contract available
through your dealer or any AdventureWorks retail
store.</Description>
</Maintenance>
</Features>
<Picture>
<Angle>front</Angle>
<Size>small</Size>
<ProductPhotoID>118</ProductPhotoID>
</Picture>
</ProductDescription>';

SELECT @x.query('ProductDescription/Features');
The result is shown in Listing 4-26.

Listing 4-26. Resulting of query() method

<Features>
<Warranty>
<WarrantyPeriod>3 years</WarrantyPeriod>
<Description>parts and labor</Description>
</Warranty>
<Maintenance>
<NoOfYears>10 years</NoOfYears>
<Description>maintenance contract available through your dealer or any
Adventurelorks retail store.</Description>
</Maintenance>
</Features>

Listing 4-25 demonstrates returning results from an XML variable that does not
contain any namespaces. Therefore, no XMLNAMESPACES are specified for the query()
method. However, for typed XML the query() method is required to declare a namespace,
as demonstrated in the Solution section of this recipe, in Listing 4-24. The solution
uses the default syntax to declare a namespace, because the execution plan XML only
references a single namespace:

query plan.query('declare default element namespace "http://schemas.
microsoft.com/sqlserver/2004/07/showplan”;
//Batch/Statements') as SQLStatements

Alternatively, Listing 4-27 has two namespaces defined in the XML instance.
Therefore, each namespace has to be declared individually, as shown.

125

CHAPTER 4 * SHREDDING XML

Listing 4-27. Declaring multiple namespaces in XQuery, in the query() method

SELECT name,
CAST(CAST(packagedata AS varbinary(MAX)) AS XML) AS package,
CAST(CAST(packagedata AS varbinary(MAX)) AS XML).query('declare
namespace DTS="www.microsoft.com/SqlServer/Dts";
declare namespace SOLTask="www.microsoft.com/sqlserver/dts/tasks/sqltask";
//DTS:0bjectData//SQLTask:SqlTaskData/SQLTask: Selected
Databases') as SQLStatements
FROM msdb.dbo.sysssispackages
WHERE packagetype = 6;

To declare the namespaces, you can use either the internal XQuery format of the
query() method or the XMLNAMESPACES syntax, as shown in Listing 4-28.

Listing 4-28. Using XMLNAMESPACES instead of XQuery namespace declaration in the
query() method

WITH XMLNAMESPACES('www.microsoft.com/SqlServer/Dts' as DTS,

"www.microsoft.com/sqlserver/dts/tasks/sqltask' as SQLTask)

SELECT name,
CAST(CAST (packagedata AS varbinary(MAX)) AS XML) AS package,
CAST(CAST(packagedata AS varbinary(MAX)) AS XML).query
('//DTS:0bjectData//SQLTask:SqlTaskData/SQLTask:SelectedDatabases")
as SQLStatements

FROM msdb.dbo.sysssispackages

WHERE packagetype = 6;

To finalize this recipe, I would like to demonstrate one more example when the
subset of the XML instance is returned with user-defined root element, Listing 4-29. The
syntax for this is query(‘<Root>{/XMLPath/}</Root>’).

Listing 4-29. Returning query() function result with user-defined root element

WITH XMLNAMESPACES('www.microsoft.com/SqlServer/Dts' as DTS,

"www.microsoft.com/sqlserver/dts/tasks/sqltask' as SQLTask)

SELECT name,
CAST(CAST(packagedata AS varbinary(MAX)) AS XML) AS package,
CAST(CAST(packagedata AS varbinary(MAX)) AS XML).query('<Root>
{//DTS:0bjectData//SQLTask:SqlTaskData/SQLTask:SelectedDatabases}
</Root>") as SQLStatements

FROM msdb.dbo.sysssispackages

WHERE packagetype = 6;

You can pick your own preference on which syntax to use for the query() method.

126

CHAPTER 4 © SHREDDING XML

4-7. Finding All XML Columns in a Table
Problem

You want to find XML documents that can be stored with a data type other than XML.

Solution

I'have never been in the situation where I needed to detect the XML document on the
client side; however, the client is not sure where XML is stored. Simply relying on the XML
data type is not a good strategy. As explained in Recipe 4-4, the XML documents could
store the columns with XML, VARCHAR, NVARCHAR, VARBINARY, IMAGE, TEXT, and NTEXT data
types. Therefore, I developed a SQL script that dynamically “sniffs” the XML document
across all columns within a database, as shown in Listing 4-30.

Listing 4-30. Detecting the XML document across the tables and columns
SET NOCOUNT ON;
DECLARE @SOL nvarchar(1000),

@tb1Name nvarchar(200),

@clmnName nvarchar(100),
@DType nvarchar(100);

IF (OBJECT ID('tempdb.dbo.#Result')) IS NOT NULL
DROP TABLE #Result;

CREATE TABLE #Result

(
XMLValue XML,
TopElement NVARCHAR(100),
tb1Name NVARCHAR(200),
clmnName NVARCHAR(100),
DateType NVARCHAR(100)

);

IF (OBJECT ID('tempdb.dbo.#XML')) IS NOT NULL
DROP TABLE #XML;

CREATE TABLE #XML

(
Val XML,

TopELmn VARCHAR(100)
)5

DECLARE cur

127

CHAPTER 4 * SHREDDING XML

CURSOR FOR
SELECT XMLClmn = 'WITH CTE AS
(SELECT TOP 1 '+ CASE t.name WHEN "IMAGE' THEN ' TRY_CONVERT(XML, CAST(' +
QUOTENAME(c.name) + ' AS VARBINARY(MAX))) AS tst, '
ELSE ' TRY_CONVERT(XML, ' + QUOTENAME(c.name) + ') as tst, ' END +
QUOTENAME (c.name) + ' FROM '
+ QUOTENAME (s.name) +'.' + QUOTENAME(o.name) +

WHERE '+ CASE t.name WHEN 'IMAGE' THEN ' TRY_CONVERT(XML, CAST(' +
QUOTENAME(c.name) + ' AS VARBINARY(MAX)))'
ELSE ' TRY_CONVERT(XML, ' + QUOTENAME(c.name) + ') ' END +' IS NOT
NULL
)
SELECT TOP (1) tst,
c.value("''fn:local-name(.)[1]"", ''VARCHAR(200)'') AS TopNodeName
FROM CTE CROSS APPLY tst.nodes(''/*'') AS t(c);',

s.name + '."' + o.name AS TableName,
c.name AS ColumnName,
t.name

FROM sys.columns c
INNER JOIN sys.types t

ON c.system type id = t.system type id
INNER JOIN sys.objects o

ON c.object_id = o.object_id

AND o.type = 'u’
INNER JOIN sys.schemas s

ON s.schema_id = o.schema_id
WHERE (t.name IN('xml','varchar', 'nvarchar', 'varbinary') AND
c.max_length = -1)

OR (t.name IN ('image', 'text', 'ntext'));

OPEN cur;

FETCH NEXT

FROM cur

INTO @SOL, @tblName, @clmnName, @DType;

WHILE @@FETCH_STATUS = 0
BEGIN

INSERT INTO #XML
EXEC(@SOL);

INSERT #Result
SELECT Val, TopElmn, @tblName, @clmnName, @DType
FROM #XML;

TRUNCATE TABLE #XML;

128

CHAPTER 4 © SHREDDING XML

FETCH NEXT FROM cur INTO @SQOL, @tblName, @clmnName, @DType;
END

DEALLOCATE cur;

SELECT XMLValue,TopElement,tblName,clmnName,DateType
FROM #Result;

DROP TABLE #Result;
DROP TABLE #XML;

SET NOCOUNT OFF;

To demonstrate the result, the SQL script is executed against the msdb database, as
shown in Figure 4-8.

XMLValue TopElement tbiName cimnName DateType
i_ <xs:schema xmins xs="hitp /www schema dbo syscollector_collect parameter_schema xml
<xsl stylesheet xmins xsi;"rl‘nb M. stylesheet dbo.syscollector_collect perameter_formatter el
<ns TSQLQueryCollector xmins ns TSQLQueryCollector dbo syscollector_collecti parameters aml
<DTAXML xmins xsi="hitp /i w. DTAXML dbo.DTA_input TuningOptions ntexd
<DTS:Executabie xmins DTS="ww Executable dbo sysssispackages packagedata image
<Operator><TypeClass>Bool</Ty Operator dbo.syspolicy_condition expression nvarchar
<DTAXML xmins xsi="hitp /iwwww . DTAXML dbo DTA_output TuningResults ntext

Figure 4-8. Results from the msdb database

Important This solution uses the TRY_CONVERT() function, which is only available on
SQL Server 2012 and later.

How It Works

The solution is based on several logical processes:

e The FROM clause obtains from the system tables (sys.columns, sys.
types, sys.objects, and sys.schemas) data about the columns, their
tables, and schemas that have the possibility to store XML data.

e The WHERE clause filters out the data types. Hypothetically, the XML
documents could be found in the columns with the XML, VARCHAR,
NVARCHAR, VARBINARY, IMAGE, TEXT, and NTEXT data types. The XML
documents are lengthy by nature. Therefore, the data types VARCHAR,
NVARCHAR, and VARBINARY are expected to have a length of -1, that
is MAX in the data type length specification. Other data types IMAGE,
TEXT, and NTEXT do not need to have this additional length filter.

129

CHAPTER 4 * SHREDDING XML

e The SELECT clause dynamically builds verification SQL. The key
function is TRY_CONVERT () has been available since SQL Server
2012. We are taking advantage of the TRY_CONVERT () behavior:
when a data type fails to covert to specified type, then the function
returns NULL. For example, CAST() and CONVERT () functions
return an error (Msg 9420, XML parsing: line 1, character 2,
illegal xml character) when the conversion fails. Therefore, any
data value that fails to convert to the XML data type is filtered
out. As explained in Recipe 4-4, the IMAGE data type cannot be
converted directly to XML. Therefore, the CASE expression uses
two conversion verifications; first for IMAGE data type, as shown
in Listing 4-31, and the second for the VARCHAR, NVARCHAR,
VARBINARY, TEXT, and NTEXT data types, shown in Listing 4-32.

Listing 4-31. Verifying IMAGE data type

WITH CTE AS
(
SELECT TOP (1) TRY_CONVERT(XML, CAST(packagedata AS VARBINARY
(MAX))) AS tst,
packagedata
FROM dbo.sysssispackages
WHERE TRY CONVERT(XML, CAST(packagedata AS VARBINARY(MAX)))
IS NOT NULL
)
SELECT TOP (1) tst,
c.value('local-name(.)[1]", 'VARCHAR(200)"') AS TopNodeName
FROM CTE
CROSS APPLY tst.nodes('/*") AS t(c);

Listing 4-32. Verifying VARCHAR, NVARCHAR, VARBINARY, TEXT, and NTEXT data types

WITH CTE AS
(
SELECT TOP (1) TRY_CONVERT(XML, expression) as tst,
expression
FROM dbo.syspolicy conditions internal
WHERE TRY_CONVERT(XML, expression) IS NOT NULL
)
SELECT TOP (1) tst,
c.value('fn:local-name(.)[1]"', 'VARCHAR(200)') AS TopNodeName
FROM CTE
CROSS APPLY tst.nodes('/*") AS t(c);

130

CHAPTER 4 © SHREDDING XML

This is how the code works:

e The cursor executes each SQL script generated in SELECT clause.
e The temp table #XML gets returned rows.

e The temp table #Result gets the row from #XML table and the
variables from the cursor.

e Clean up #XML table to prepare for next row verification.
e Destroying the cursor.
e Returning the collected data.

e Dropping the temp tables.

This is the description of the process. However, I would like take a closer look at the
CTE external SELECT block from Listing 4-32:

SELECT TOP (1) tst,

c.value('fn:local-name(.)[1]", 'VARCHAR(200)") AS TopNodeName
FROM CTE
CROSS APPLY tst.nodes('/*') AS t(c);

The column zst, which stands for fest, returns the XML value when it is successfully
converted to the XML data type. The column TopNodeName returns the first available
element name, that is, the root element. The fn:local-name() function returns an element
name by the provided argument. The dot (the current context node)is the argument to
the fn:local-name() function, and nodes() method set to “/*” (shortcut for child::node()
and /node() axis), which is a wildcard for a single element. Therefore, the XML parser of
this combination means - return the first available name out of the XML document.

We can get different effects when the node() method is set with “//*” (shortcut
for descendant-or-self axis), which means to look and visit every element in the XML
data. This can be compared to the T-SQL filter, for example, WHERE ColumnName
LIKE ‘%text%!. This way the parser navigates through all the elements within the XML
data, as shown in Listing 4-33. The fn:local-name() function with a single dot as the
argument returns the current element name, for example, details.value(‘local-name(.)
[1]] “'VARCHAR(100)’). With a parent axis step (double dot), it returns the element
that resides one level up, that is, parent, for example, details.value(‘local-name(..)[1]]
‘VARCHAR(100)’), as shown in Figure 4-9.

Listing 4-33. Displaying all the elements from the XML data
WITH ALLELEMENTS

AS

(
SELECT TOP 1 Demographics
FROM Sales.Store

)

131

CHAPTER 4 * SHREDDING XML

SELECT

details.value('local-name(..)[1]"', 'VARCHAR(100)') AS
ParentNodeName,

details.value('local-name(.)[1]", 'VARCHAR(100)"') AS NodeName
FROM ALLELEMENTS

CROSS APPLY Demographics.nodes('//*") survey(details);

Results of retrieving all elements from XML data are shown in Figure 4-9.

ParentNodeName NodeName

StoreSurvey
StoreSurvey AnnualSales
StoreSurvey AnnualRevenue
StoreSurvey BankName
StoreSurvey BusinessType
StoreSurvey YearOpened
StoreSurvey Specialty
StoreSurvey SquareFeet
StoreSurvey Brands
StoreSurvey Internet
StoreSurvey NumberEmployees

Figure 4-9. Resulting dynamically returning XML elements

4-8. Using Multiple CROSS APPLY Operators
Problem

You want to shred a typed XML column, but you want to navigate the XML using multiple
CROSS APPLY operators.

Solution

In Recipe 4-5, “Navigating Typed XML Columns,” I demonstrated how to shred a typed
XML column with navigation “./” Implementing multiple CROSS APPLY operators could
provide an alternate to XML navigation, as shown in Listing 4-34.

132

CHAPTER 4 © SHREDDING XML

Listing 4-34. Demonstrating multiple CROSS APPLY operator solution

WITH XMLNAMESPACES('http://schemas.microsoft.com/sqlserver/2004/07/

adventure-works/ProductModelManuInstructions' as df)

SELECT ProductModellD,
step.value('fn:string(.)", 'varchar(2000)') AS StepInstruction,
instruct.value('@LocationID', 'int') AS LaborStation,
instruct.value('@LaborHours', 'real') AS LaborHours,
instruct.value('@LotSize', 'int') AS LotSize,
instruct.value('@MachineHours', 'real') AS MachineHours,
instruct.value('@SetupHours', 'real') AS SetupHours,
step.value('df:material[1]', 'varchar(100) ') AS Material,
step.value('df:tool[1]", 'varchar(100) ') AS Tool

FROM Production.ProductModel
CROSS APPLY Instructions.nodes('df:root/df:Location') prod(instruct)
CROSS APPLY instruct.nodes('df:step') ins(step);

The query result is shown in Figure 4-10.

Pred.. Step Instruction LaborStation LaborHours LotSize MachineHo.. SetupHo.. Matenial Tool

10 Inspect Front Derailleur 50 3 1 1] 025 NULL MULL

10 Inspect Rear Derailleur 50 3 1 0 0.25 NULL NULL

10 Perform final inspe. . 60 4 1 0 0 NULL NULL
el SR . e &7 aal W LR B S Y ST B
a4 Innate .o Wbk . REs St o 3 .] AL AL

44 Spin the wheel and enswre the b.. 50 3 1 0 0 NULL NULL

44 Inflate the tube to 35 PSI 50 3 1 0 0 NULL NULL

47 Insert aluminums.. 10 1 100 2 01 aluminums.. T-50 Tube F_.
47 Aftach Trim Jig TJ-.. 10 1 100 2 01 NULL Trim Jig TJ-8
47 Route the aluminum sheet folow. . 10 1 100 2 01 NULL NULL

Figure 4-10. Result of applying multiple CROSS APPLY operators

How It Works

The key to using multiple CROSS APPLY operators is applying one CROSS APPLY to the
results of the second CROSS APPLY, as in our sample code:

FROM Production.ProductModel
CROSS APPLY Instructions.nodes('df:root/df:Location') prod(instruct)
CROSS APPLY instruct.nodes('df:step') ins(step)

The first CROSS APPLY references the XML Instruction column of the ProductModel
table to create a base result set to feed to the second CROSS APPLY:

CROSS APPLY Instructions.nodes('df:root/df:Location') prod(instruct)

133

CHAPTER 4 * SHREDDING XML

The second CROSS APPLY takes the results of the first CROSS APPLY via its instruct
column alias:

CROSS APPLY instruct.nodes('df:step') ins(step)

Finally, the SELECT clause uses the instruct alias to retrieve the parent elements, and
the step alias to reference child elements. The solutions in Recipes 4-5 and 4-8 produce
absolutely the same result set, but the syntax in the SELECT and FROM clauses is different.

Summary

The ability to shred XML data is a very important aspect of manipulating XML in SQL
Server. Many of the built-in SQL Server processes use XML; for example:

e Execution Plans

e Extended Events

e DDL triggers

e SSIS and SSRS code behind

The XQuery language simplifies SQL Server and the tasks performed by DBAs and
Developers by allowing dynamic and powerful programmatic XML exploration and
manipulation, utilizing operational time more efficiently.

134

CHAPTER 5

Modifying XML

XML XQuery has the ability to modify an XML instance for the XML variable and XML
columns. The XQuery modify() method provides the ability to add, delete, and update
the XML elements, attributes, and their values. This chapter will discuss and demonstrate
real case scenarios to apply the modify() method for XML instances.

5-1. Inserting a Child Element into Your XML
Problem

You want to insert a child element into an existing XML instance.

Solution

You may encounter a situation in which you need to insert an XML element into an
existing XML instance. Consider the simple XML data shown in Listing 5-1.

Listing 5-1. Simple XML data

<Root>
<ProductDescription ProductID="1" ProductName="Road Bike">
<Features />
</ProductDescription>
</Root>

SQL Server provides XML Data Modification Language (XML DML) support via the
XML data type modify() method. XML DML is an extension to the W3C XQuery standard,
as XQuery lacks data manipulation statements and functions. Listing 5-2 shows how to
use the modify() method’s XML DML insert statement to insert a new element into a
specific location within your existing XML data. The result is demonstrated in Figure 5-1.

© Alex Grinberg 2018 135
A. Grinberg, XML and JSON Recipes for SOQL Server,
https://doi.org/10.1007/978-1-4842-3117-3_5

https://doi.org/10.1007/978-1-4842-3117-3_5

CHAPTER 5 © MODIFYING XML

<Root>
<ProductDescription ProductID="1" ProductName="Road Bike">
<Features>
¢Maintenance>3 year parts and labor extended maintenance is availableff"airtcnarrnﬂ
</Features>

</ProductDescription>

</Root>

Figure 5-1. Result of inserting a child element into existing XML data

Listing 5-2. Inserting the first child element for the Features element

DECLARE @XMLDoc xml;
SET @XMLDoc =
'<Root>
<ProductDescription ProductID="1" ProductName="Road Bike">
<Features>
</Features>
</ProductDescription>
</Root>";

SET @XMLDoc.modify('insert <Maintenance>3 year parts and labor extended
maintenance is available</Maintenance> into (/Root/ProductDescription/
Features)[1]');
SELECT @XMLDoc;

The result of the XML DML insert statement is shown in Figure 5-1.

How It Works

The XML modify() method’s XML DML language is comparable to the T-SQL DML INSERT,
UPDATE, and DELETE methods, but with many additional options. This makes sense because
XML DML must take XML structure into account when modifying your XML instance. The
modify() method alters an XML document not only by value, but also amends its elements
and attributes. Therefore, the modify() method can be logically considered a combination
of a subset of T-SQL's DML and DDL languages. We will discuss these other XML DML
statements and additional options in other recipes of this chapter.

This recipe demonstrates how to add a new child element, Maintenance, to the
parent element Features in the XML instance. The Features element does not have any
child elements in the original XML instance, shown in Listing 5-1. We do not need to
provide a specification for the child element position to the modify() method since the
Maintenance element is the first child of the Features element. The solution to insert a
new element with the values provided in Listing 5-2 follows this pattern:

1. insertis the keyword specifying an “insert” pattern.

2. <Maintenance> 3 years parts and labor extended maintenance
is available</Maintenance> - is the element value pattern,
indicating the element we wish to insert.

136

CHAPTER 5

into is the keyword the target XPath path indicating where we
will insert the element within the XML.

(/Root/ProductDescription/Features)[1] is the insert target
XPath path. Note that a singleton instance is a required
component for the target XPath. When the singleton is not
provided (via the [1] index in this case), the XML DML parser
will throw the following error:

MODIFYING XML

Msg 2226, Level 16, State 1, Line 10XQuery [modify()]: The target of
"insert' must be a single node, found 'element(Features,xdt:untyped) *'

The modify(@xml:dml) method takes one argument. Therefore, all @xml:dml
patterns sent to the method are submitted as a single string value, as shown in Listing 5-2:

modify('insert
<Maintenance>3 year parts and labor extended maintenance is available
</Maintenance>

into (/Root/ProductDescription/Features)[1]');

5-2. Inserting a Child Element into an Existing
XML Instance with Namespace

Problem

You want to insert a child element into an XML instance that contains a namespace.

Solution

When an XML instance contains an XML namespace, you need to declare the XML
namespace within the modify() method. Listing 5-3 builds on the solution in Recipe 5-1
to demonstrate.

Listing 5-3. Declaring an XML namespace within the modify() method

DECLARE @XMLDoc xml;
SET @XMLDoc =
'<Root xmlns="http://schemas.microsoft.com/sqlserver/2004/07/adventure-
works/ProductModelManuInstructions">
<ProductDescription ProductID="1" ProductName="Road Bike">
<Features>
</Features>
</ProductDescription>

</Root>";

137

CHAPTER 5 © MODIFYING XML

SET @XMLDoc.modify('declare namespace ns="http://schemas.microsoft.com/
sqlserver/2004/07/adventure-works/ProductModelManuInstructions”;

insert <ns:Maintenance>3 year parts and labor extended maintenance is
available</ns:Maintenance> into (/ns:Root/ns:ProductDescription/ns:Features)
[11");

SELECT @XMLDoc;

Showing the XML rusult:<Root xmlns="http://schemas.microsoft.com/
sqlserver/2004/07/adventure-works/ProductModelManuInstructions">
<ProductDescription ProductID="1" ProductName="Road Bike">
<Features>
<Maintenance>3 year parts and labor extended maintenance is
available</Maintenance>
</Features>
</ProductDescription>
</Root>

How It Works

As you can see, there is a small, but significant, difference between Listing 5-1 and
Listing 5-3. Listing 5-3 has an XML namespace defined within the XML instance. This
small difference affects the modify() method syntax. If the modify() method ignores the
XML namespace, the XQuery won't find the target XPath path, resulting in no change to
the XML, as shown in Listing 5-4. The result is shown in Figure 5-2.

Listing 5-4. XML namespace causes modify() method to not update target XML

DECLARE @XMLDoc xml;
SET @XMLDoc =
'<Root xmlns="http://schemas.microsoft.com/sqlserver/2004/07/adventure-
works/ProductModelManuInstructions”>
<ProductDescription ProductID="1" ProductName="Road Bike">
<Features>
</Features>
</ProductDescription>
</Root>";

SET @XMLDoc.modify('insert <Maintenance>3 year parts and labor extended
maintenance is available</Maintenance> into (/Root/ProductDescription/
Features)[1]');
SELECT @XMLDoc;

138

CHAPTER 5 © MODIFYING XML

The result, shown in Figure 5-2, demonstrates that this modify() method does not
update the source XML.

<Root
xmlns="http://schemas microsoft, com/sqlserver/2004/07 /adventure-works /ProductModelManulnstructions™>

<ProductDescription ProductID="1" ProductName="Road Bike">
<Features />
</ProductDescription>
</Root>

Figure 5-2. Resulting XML when the namepspaces are ignored in the modify() method

Asyou can see in Figure 5-2, the XML instance returned has not changed. To correct
the problem, the XML namespace needs to be declared inside the modify() method.
Therefore, the first pattern for the XML instance with the namespace must be the
namespace declaration, for example:

modify('declare namespace ns = "http://schemas.microsoft.com/
sqlserver/2004/07/ adventure-works/ProductModeIManuInstructions”; ...)

The declared name 7s is user defined, so you can choose a name to declare the
namespace as long as it complies with SQL Server naming conventions, such as no spaces
in the name, the first character is alpha, the following characters are alphanumeric, etc.
When the namespace is declared, this name needs to be a part of each element in the
modify() method, for both new and target patterns. For example:

insert <ns:Maintenance>3 year parts and labor extended maintenance is
available</ns:Maintenance> into (/ns:Root/ns:ProductDescription/ns:Features)[1]

Tip Always verify the result after using the modify() method. For example, the parser
does not throw an error for an ignored namespace declaration, and the action appears to
complete successfully. However, modify() simply does not apply the XML DML action to your
XML data.

As an alternative to the modify() method’s internal namespace declaration syntax, it
is possible to complete this task with T-SQL's external WITH XMLNAMESPACES declaration.
When an XML document has one namespace, the default namespace can be used, as
shown in Listing 5-5.

Listing 5-5. Using WITH XMLNAMESPACES to declare a default XML namespace

DECLARE @XMLDoc xml;

WITH XMLNAMESPACES(default 'http://schemas.microsoft.com/sqlserver/2004/07/
adventure-works/ProductModelManuInstructions")

SELECT @XMLDoc =

'<Root>

139

CHAPTER 5 © MODIFYING XML

<ProductDescription ProductID="1" ProductName="Road Bike">
<Features>
</Features>
</ProductDescription>
</Root>";

SET @XMLDoc.modify('insert <Maintenance>3 year parts and labor extended
maintenance is available</Maintenance> into (/Root/ProductDescription/
Features)[1]');

When you are implementing the WITH XMLNAMESPACES clause, then the SET
operator will not work. You must implement the SELECT clause instead.

5-3. Inserting XML Attributes
Problem

You want to insert an attribute into an XML element of existing XML data.

Solution

An attribute is a property of an XML element. Therefore, the modify() method has the
attribute option to insert an attribute to an element, as shown in Listing 5-6.

Listing 5-6. Inserting ProductModel attribute into the Maintenance element

DECLARE @XMLDoc xml;
SET @XMLDoc =
'<Root>
<ProductDescription ProductID="1" ProductName="Road Bike">
<Features>
<Maintenance>3 year parts and labor extended maintenance is
available</Maintenance>
</Features>
</ProductDescription>
</Root>";

SET @XMLDoc.modify('insert attribute ProductModel {"Mountain-100"} into
(/Root/ProductDescription/Features/Maintenance)[1]"');

SELECT @XMLDoc;

140

CHAPTER 5 © MODIFYING XML
The result is shown in Figure 5-3.

<Root>
<ProductDescription ProductID="1" ProductName="Road Bike">
<Features>

<Maintenance |ProductModel="Mountain-100">
3 year parts and labor extended maintenance is available
</Maintenance>

</Features>
</ProductDescription>
</Root>

Figure 5-3. XML result of inserting an attribute into an element

How It Works

Chapter 4 explained the XPath path syntaxes for elements and attributes are different.
Likewise, the modify() method has differences as well. First of all, the insert statement
has an additional attribute option that is not specified when elements are inserted.
Second, the attribute is not surrounded by angle brackets. Finally, the attribute’s value is
placed into curly brackets with double quotes immediately following the attribute name.
Therefore, the syntax to add the attribute has the following patterns:

1. The insert attribute keywords indicate you wish to insert an
attribute into an element.

2. ProductModel {“Mountain-100"} is the attribute’s name and
value.

3. intoindicates the XPath path of the target element is coming up.

4. (/Root/ProductDescription/Features/Maintenance)[1] is the
attribute target XPath path. The singleton numeric positional
predicate is a required component of the target XPath.

For example:

modify('insert attribute ProductModel {"Mountain-100"} into (/Root/
ProductDescription/Features/Maintenance)[1]"');

Wrapping the XPath path in parentheses and then putting the numeric positional
predicate on the end means that the singleton applies to every step in the path. The
XPath path without parentheses expects that the singleton applies to each element. For
example: /Root[1]/ProductDescription[1]/Features[1]/Maintenance[1].

The sample syntax adds the attribute ProductModel with the value “Mountain-100"
to the first instance of the Maintenance element.

141

http://dx.doi.org/10.1007/978-1-4842-3117-3_4

CHAPTER 5 © MODIFYING XML

Also the modify() method allows you to insert several attributes for an element. To
add a list of attributes to the element:

1. Open parentheses after the insert directive.
2. List the attributes separated by a comma.
3. Close the parentheses.

This is demonstrated in Listing 5-7.

Listing 5-7. Inserting multiple attributes into the Maintenance element

DECLARE @XMLDoc xml;
SET @XMLDoc =
"<Root>
<ProductDescription ProductID="1" ProductName="Road Bike">
<Features>
<Maintenance>3 year parts and labor extended maintenance is
available</Maintenance>
</Features>
</ProductDescription>
</Root>";

SET @XMLDoc.modify('insert
(
attribute ProductModel {"Mountain-100"},
attribute LaborType {"Manual"}
) into (/Root/ProductDescription/Features/Maintenance)[1]');

SELECT @XMLDoc;

The result is shown in Figure 5-4.

<Root>
<ProductDescription ProductID="1" ProductName="Road Bike">
<Features>
<Haintenance[ProductHodel-“MountainAIGB“ LaborTypen“Manual“ﬂ
3 year parts and labor extended maintenance is available</Maintenance>
</Features>
</ProductDescription>
</Root>

Figure 5-4. Result of inserting multiple attributes to the Maintenance element

142

CHAPTER 5 © MODIFYING XML

5-4. Inserting XML Attribute Conditionally
Problem

You want to insert an XML attribute based on a comparison condition.

Solution

The if ... else condition can be implemented in the modify() method, as shown in Listing 5-8.

Listing 5-8. Wrapping the attribute insert in an if-then-else condition

DECLARE @XMLDoc xml;
SET @XMLDoc =
"<Root>
<ProductDescription ProductID="1" ProductName="Road Bike">
<Features>
<Maintenance>3 year parts and labor extended maintenance is
available</Maintenance>
</Features>
</ProductDescription>
</Root>"';

SET @XMLDoc.modify('insert
if (/Root/ProductDescription[@ProductID=1])

then attribute ProductModel {"Road-150"}

else (attribute ProductModel {"Mountain-100"})
into (/Root/ProductDescription/Features/Maintenance)[1]');

SELECT @XMLDoc;

The result is shown in Figure 5-5.

<Root>
<ProductDescription ProductID="1" ProductName="Road Bike">
<Features>
<'-1aintenance[f‘"_‘.d;l‘::'-':-;:el-"Road—lSG">I
3 year parts and labor extended maintenance is available</Maintenance>
</Features>

</ProductDescription>
</Root>

Figure 5-5. XML result of conditional attribute insert

143

CHAPTER 5 © MODIFYING XML

How It Works

To insert a new attribute conditionally, you can use the if ... then ... else construct within
the modify() method. Listing 5-8 demonstrates an example of this conditional logic. If
the attribute ProductID="1" then a new attribute called ProductModel is added with the
value “Road-150,” and for all other ProductIDs, a new attribute called ProductModel is
added with the value “Mountain-100."

After the insert statement (Listing 5-8), we immediately check the ProductID
attribute value:

if (/Root/ProductDescription[@ProductID=1])

When the check condition returns true, the ProductModel attribute with the value
“Road-150” is inserted into the Maintenance element:

then attribute ProductModel {"Road-150"}
For all other values, the else block is processed:

else (
attribute ProductModel {"Mountain-100"}

)

No changes are necessary for the into keyword, which provides the functionality
establishing the target XPath path:

into (/Root/ProductDescription/Features/Maintenance)[1]

5-5. Inserting a Child Element with Position
Specification
Problem

You want to insert a new element into the existing element group and enforce a certain
position sequence.

Solution

The modify() method has four keywords that can be applied to the insert statement to
specify the child element position among a group of elements:

e asfirst
e aslast
e after

e Dbefore

144

CHAPTER 5 © MODIFYING XML

These keywords are used to specify the placement of a new element, as shown in
Listing 5-9.

Listing 5-9. Demonstrating as first, as last, after, and before keywords to arrange the child
elements under the parent element Features

DECLARE @XMLDoc xml;
SET @XMLDoc =
"<Root>
<ProductDescription ProductID="1" ProductName="Road Bike">
<Features>
</Features>
</ProductDescription>
</Root>";

SET @XMLDoc.modify('insert <Warranty>1 year parts and labor</Warranty>
as first into (/Root/ProductDescription/Features)[1]');

SET @XMLDoc.modify('insert <Material>Aluminium</Material>
as last into (/Root/ProductDescription/Features)[1]');

SET @XMLDoc.modify('insert <BikeFrame>Strong long lasting</BikeFrame>
after (/Root/ProductDescription/Features/Material)[1]")

SET @XMLDoc.modify('insert <Color>Silver</Color>
before (/Root/ProductDescription/Features/BikeFrame)[1]")

SELECT @XMLDoc;

The result is shown in Figure 5-6.

<Root>
<ProductDescription ProductID="1" ProductName="Road Bike">
<Features>
<Warranty>1 year parts and labor</Warranty>
<Material>Aluminium</Material>
<Color>Silver</Color>
<BikeFrame>Stron§ long lasting</8ikeFrame>
</Features>
</ProductDescription>
</Root>

Figure 5-6. Results for the insert directive with position specification

145

CHAPTER 5 © MODIFYING XML

How It Works

The keywords as first, as last, after, and before provide the position specification for a child
element. Each of the keywords is self-explanatory:

e asfirst - adds the child element into the first position.

e aslast - adds the child element into the last position.

e after - adds the child element after provided sibling position.

e before - adds the child element before provided sibling position.

The syntax for as first and as last differs slightly from the syntax for after and before.
For example, the syntax for as first and as last is as follows:

e modify('insert <ChildElement> as first into
(/XPath/<ParentElement>)[1]")

e modify('insert <ChildElement> as last into
(/XPath/<ParentElement>)[1]")

The insert directive provides the child element and value, then as first or as last
specifier indicates the position the element takes among its sibling elements. In the final
step, the parent’s XPath provides the child element destination.

There are two differences for the keywords before and after compared to as first and
as last:

e No into keyword implemented.

e The XPath has a reference to the <ParentElement>/<SiblingElement>
element, beside which the new element (before or after) will be
placed.

e modify('insert <ChildElement> before (/XPath/<ParentElement>
/<SiblingElement>)[1]")

e modify('insert <ChildElement> after (/XPath/<ParentElement>
/<SiblingElement>)[1]")

9-6. Inserting Multiple Elements
Problem

You want to insert multiple sibling elements into an XML document.

Solution

Unlike attributes, where you can add several attributes and their values by separating
them with a comma, multiple elements are not supported in a direct insert within the
modify() method. However, the XQuery extension function sql:variable() helps solve the
problem, as shown in Listing 5-10.

146

CHAPTER 5 © MODIFYING XML

Listing 5-10. Inserting multiple sibling elements into an XML instance

DECLARE @XMLDoc xml;
SET @XMLDoc =
'<Root>
<ProductDescription ProductID="1" ProductName="Road Bike">
<Features>
</Features>
</ProductDescription>
</Root>";

DECLARE @newElements xml;

SET @newElements =

'<Warranty>1 year parts and labor</Warranty>
<Material>Aluminium</Material>
<Color>Silver</Color>

<BikeFrame>Strong long lasting</BikeFrame>';

SET @XMLDoc.modify('insert
sql:variable("@newElements")

into (/Root/ProductDescription/Features)[1]")

SELECT @XMLDoc;

The resulting XML is shown in Figure 5-6 (repeating the figure).

<Root>
<ProductDescription ProductID="1" ProductName="Road Bike™>
<Features>
<Warranty>1 year parts and labor</Warranty>
<Material>Aluminium</Material>
<Color>Silver</Color>
<BikeFrame>Stron§ long lasting</8ikeFrame>
</Features>
</ProductDescription>
</Root>

How It Works

As explained in the Solution section, the modify() method does not support a multiple
sibling element list within the insert directive. The XQuery sql:variable() extension
function provides us a reference to an XML block, which makes the insert directive
mechanism operate as it inserts a new element.

147

CHAPTER 5 © MODIFYING XML

To insert multiple sibling elements into an XML instance, the following is required:

1. Declare a variable as an XML data type (NVARCHAR or VARCHAR
data types work as well, but I would recommend remaining
consistent with the XML data type).

2. Assign an XML element list to the variable.

For example:

DECLARE @newElements xml;

SET @newElements =

"<Warranty>1 year parts and labor</Warranty>
<Material>Aluminium</Material>
<Color>Silver</Color>

<BikeFrame>Strong long lasting</BikeFrame>';

The insert part is the same as explained in Recipe 5-1, “Inserting a Child Element
into Your XML.” However, the function sql:variable() is used instead of the specific child
element. For example:

modify('insert
sql:variable("@newElements")
into (/Root/ProductDescription/Features)[1]")

The XQuery extension function sql:variable() is a key part of this simple solution for
inserting multiple sibling elements into an XML instance.

5-7. Updating an XML Element Value
Problem

You want to update an XML instance element value.

Solution

The modify() method replace value of statement updates an XML instance element value.
Listing 5-11 demonstrates the solution to update the Color element value from “Silver” to
“Black”

Listing 5-11. Updating the <Color> element value

DECLARE @XMLDoc xml;
SET @XMLDoc =
'<Root>
<ProductDescription ProductID="1" ProductName="Road Bike">
<Features>
<Warranty>1 year parts and labor</Warranty>

148

CHAPTER 5 © MODIFYING XML

<Material>Aluminium</Material>

<Color>Silver</Color>

<BikeFrame>Strong long lasting</BikeFrame>

</Features>
</ProductDescription>

</Root>";
SET @XMLDoc.modify('replace value of
(/Root/ProductDescription/Features/Color/text())[1] with "Black"')
SELECT @XMLDoc;

The result is shown in Figure 5-7.

<Root>
<ProductDescription ProductID="1" ProductName="Road Bike">
<Features>
<Warranty>1 year parts and labor</Warranty>
<Material>Aluminium</Material>
|<C010P>Black</Color>]
<BikeFrame>Strong long lasting</BikeFrame>
</Features>
</ProductDescription>
</Root>

Figure 5-7. Showing the result when the value of the Color element has been updated

How It Works

The modify() method implements the replace value of statement to update an XML
instance element value. When the XML data type was introduced in SQL Server

2005, many DBAs and SQL Server Developers were puzzled, at least all SQL Server
professionals that I know. We expected a directive name of “update” or so; however, the
replace value of directive updates the XML instance elements and attributes. Previous
recipes provided us with many “flavors” of the insert directive, which is practically correct.
The insert process has many options for XML instances. Compared to insert, updating

an XML instance element is fairly straightforward. To modify the XML instance element
value, you need the following:

1. Specify the modify() method replace value of statement.

2. Opening parenthesis, provide the XPath path to the XML
element; implement the text() function for the target element;
and closing the parenthesis and specifying the singleton.

3. After the with keyword, specify a new element value in double
quotes.

149

CHAPTER 5 © MODIFYING XML

For example:

modify('replace value of
(/Root/ProductDescription/Features/Color/text())[1]
with "Black"')

5-8. Updating XML Attribute Value
Problem

You want to update the value of an attribute in an XML instance.

Solution

Updating an XML instance attribute solution is relatively close to updating the element.
However, updating the attribute has some specifics that are demonstrated in Listing 5-12.
The attribute ProductName value is modified from “Road Bike” to “Mountain Bike.”

Listing 5-12. Updating ProductName attribute

DECLARE @XMLDoc xml;
SET @XMLDoc =
'<Root>
<ProductDescription ProductID="1" ProductName="Road Bike">
<Features>
<Warranty>1 year parts and labor</Warranty>
<Material>Aluminium</Material>
<Color>Silver</Color>
<BikeFrame>Strong long lasting</BikeFrame>
</Features>
</ProductDescription>
</Root>";
SET @XMLDoc.modify('replace value of
(/Root/ProductDescription/@ProductName)[1] with "Mountain Bike"');
SELECT @XMLDoc;

150

CHAPTER 5 © MODIFYING XML

The result is shown in Figure 5-8.

<Root>
<ProductDescription ProductID="1"|ProductName="Mountain-500">
<Features>
<Warranty>1 year parts and labor</Warranty>
<Material>Aluminium</Material>
<Color>»Silver</Color>
<BikeFrame>Strong long lasting</BikeFrame>
</Features>
</ProductDescription>
</Root>

Figure 5-8. Showing the results when the attribute ProductName value is updated

How It Works

Updating an XML instance attribute is not much different from updating an element. To
modify the XML instance attribute value, you need to:

1. Specify the modify() method replace value of statement.

2. The XPath path to the XML attribute you want to update
with the @ symbol preceding the attribute name, wrapped in
parentheses. The XPath path must be a singleton node.

3. After the with keyword, specify a new attribute value in
double quotes.

The major difference between modifying the element and attribute is that the
attribute must be prefixed with an @ symbol and the text() node test is not needed to
update the attribute.

5-9. Deleting an XML Attribute
Problem

You want to delete an attribute from an XML attribute.

Solution

Use the delete statement in the modify() method, as shown in Listing 5-13.

151

CHAPTER 5 © MODIFYING XML

Listing 5-13. Deleting the ProductName attribute from an XML instance

DECLARE @XMLDoc xml;
SET @XMLDoc =
"<Root>
<ProductDescription ProductID="1" ProductName="Road Bike">
<Features>
<Warranty>1 year parts and labor</Warranty>
<Material>Aluminium</Material>
<Color>Silver</Color>
<BikeFrame>Strong long lasting</BikeFrame>
</Features>
</ProductDescription>
</Root>";
SET @XMLDoc.modify('delete /Root/ProductDescription/@ProductName")
SELECT @XMLDoc;

The result is shown in Figure 5-9.

<Root>
<ProductDescription ProductID="1"> I
<Features>
<Warranty>1 year parts and labor</Warranty>
<Material>Aluminium</Material>
<Color>Silver</Color>
<BikeFrame>Strong long lasting</BikeFrame>
</Features>
</ProductDescription>
</Root>

Figure 5-9. Result of deleting attribute from an XML instance

How It Works

The syntax to delete an attribute is simpler than the syntax to update an attribute.

To delete an attribute from an XML instance, the modify() method needs the delete
statement and an XPath path to the attribute. Just remember the attribute is prefixed
by the “@” symbol. Also, the ProductDescription element is unique within the XML
document, therefore no singleton needed in such a case. For example:

modify('delete /Root/ProductDescription/@ProductName")

In the case when you need to remove all attributes from an element, the XPath
should have the destination element path followed by “/@*’, as shown in Listing 5-14.

152

CHAPTER 5 © MODIFYING XML

Listing 5-14. Deleting all attributes of the ProductDescription element

DECLARE @XMLDoc xml;
SET @XMLDoc =
'<Root>
<ProductDescription ProductID="1" ProductName="Road Bike">
<Features>
<Warranty>1 year parts and labor</Warranty>
<Material>Aluminium</Material>
<Color>Silver</Color>
<BikeFrame>Strong long lasting</BikeFrame>
</Features>
</ProductDescription>
</Root>";
SET @XMLDoc.modify('delete /Root/ProductDescription/@*")
SELECT @XMLDoc;

The result is shown in Figure 5-10.

<Root>
| <ProductDescription> |
<Features>
<Warranty>1 year parts and labor</Warranty>
<Material>Aluminium</Material>
<Color>Silver</Color>
<BikeFrame>Strong long lasting</BikeFrame>
</Features>
</ProductDescription>
</Root>

Figure 5-10. Showing the results when all attributes are deleted from the
<ProductDescription> element

5-10. Deleting an XML Element
Problem

You want to delete an element from an XML instance.

Solution

The mechanism for removing an element from an XML instance is very similar to
removing an attribute. The solution to delete the Color element from our sample XML is
demonstrated in Listing 5-15.

153

CHAPTER 5 © MODIFYING XML

Listing 5-15. Deleting the Color element from an XML instance

DECLARE @XMLDoc xml;
SET @XMLDoc =
"<Root>
<ProductDescription ProductID="1" ProductName="Road Bike">
<Features>
<Warranty>1 year parts and labor</Warranty>
<Material>Aluminium</Material>
<Color>Silver</Color>
<BikeFrame>Strong long lasting</BikeFrame>
</Features>
</ProductDescription>
</Root>";
SET @XMLDoc.modify('delete /Root/ProductDescription/Features/Color)
SELECT @XMLDoc;

The result is shown in Figure 5-11.

<Root>
<ProductDescription ProductID="1" Productlame="Road Bike">
<Features>
<Warranty>1 year parts and labor</Warranty>
<Material>Aluminium</Material>
<BikeFrame>Strong long lasting</BikeFrame>
<{/Features>
</ProductDescription>
</Root>

Figure 5-11. Result of deleting the Color element from an XML instance

How It Works

To delete an element from an XML instance, the modify() method specifies the delete
statement and the XPath path to the target element. A singleton is required to delete a
specific element when the XML has several elements with the same name, for example:

<Material>Aluminium</Material>
<Color>Silver</Color>
<Color>Blue</Color>
<BikeFrame>Strong long lasting</BikeFrame>
modify('delete /Root/ProductDescription/Features/Color[1]")

The result after delete is that <Color>Silver</Color> gone, <Color>Blue</Color> stays.

To remove all child elements from the parent element, the XPath should point to the
parent element plus “/*’} as shown in Listing 5-16.

154

CHAPTER 5 © MODIFYING XML

Listing 5-16. Deleting all child elements from the Features element

DECLARE @XMLDoc xml;
SET @XMLDoc =
'<Root>
<ProductDescription ProductID="1" ProductName="Road Bike">
<Features>
<Warranty>1 year parts and labor</Warranty>
<Material>Aluminium</Material>
<Color>Silver</Color>
<BikeFrame>Strong long lasting</BikeFrame>
</Features>
</ProductDescription>
</Root>";
SET @XMLDoc.modify('delete /Root/ProductDescription/Features/*")
SELECT @XMLDoc;

The result is shown in Figure 5-12.

<Root>
<ProductDescription ProductID="1" ProductName="Road Bike">
I <Features /> I
</ProductDescription>

</Root>

Figure 5-12. XML result after all child elements are deleted from the Features element

To delete items like comments and processing instructions, or even the text within
an element, you could use node tests with delete as it demonstrates in Listing 5-17. The
result is shown in Figure 5-13.

Listing 5-17. Deleting other types of XML nodes by using node tests

DECLARE @XMLDoc xml;
SET @XMLDoc =
'<Root>
<ProductDescription ProductID="1" ProductName="Road Bike">
<Features>
<!-- Comment 1-->
<!-- Comment 2-->
<?process abcd?>
<Warranty>1 year parts and labor</Warranty>
<Material>Aluminium</Material>
<Color>Silver</Color>
<BikeFrame>Strong long lasting</BikeFrame>
</Features>
</ProductDescription>
</Root>"';

155

CHAPTER 5 © MODIFYING XML

SET @XMLDoc.modify('delete (/Root/ProductDescription/Features/comment())[1]"');
SET @XMLDoc.modify('delete (/Root/ProductDescription/Features/Color/text())[1]");

SET @XMLDoc.modify('delete (/Root/ProductDescription/Features/processing-
instruction())[1]');

SELECT @XMLDoc;

<Root>
<ProductDescription ProductID="1" ProductName="Road Bike">»
<Features>
<!-- Comment 2--> |
<Warranty>1 year parts and labor</Warranty>
<Material>Aluminium</Material>
<Color />
<BikeFrame>Strong long lasting</BikeFrame>
</Features>»
</ProductDescription>
</Root>

Figure 5-13. Showing delete result

Summary

The modify() method provides a comprehensive solution for manipulating the nodes of
an XML instance. The directives:

e insert
e replace value of
e delete

These directives are able to modify any elements and attributes within an XML
instance with a relatively simple syntax.
In the next chapter the recipes will cover how to efficiently filter the XML.

156

CHAPTER 6

Filtering XML

The filtering mechanism for XQuery has some differences and specifications when
compared to the T-SQL WHERE clause. In my experience, when DBAs and Developers
implement filters for XQuery, it is mostly based on a T-SQL strategy or to create dynamic
SQL that is not efficient and could be very difficult to maintain, especially when the filter
is implemented as dynamic SQL. This chapter will demonstrate many examples of how to
implement filters for XQuery requests.

6-1. Implementing the exist() Method
Problem

You want to determine whether a specific element or attribute exists within your
XML data.

Solution

The exist() method allows you to determine whether an element or attribute exists
within an XML instance. Listing 6-1 is a demonstration of using the exist() method to
retrieve all XML instances containing the YearlyIncome element directly below the root
IndividualSurvey element.

Listing 6-1. Retrieving the instances that contains the YearrlyIncome element

WITH XMLNAMESPACES

(
DEFAULT N'http://schemas.microsoft.com/sqlserver/2004/07/adventure-
works/IndividualSurvey'

)

SELECT BusinessEntityID,

Demographics
FROM Person.Person
WHERE Demographics.exist('IndividualSurvey/YearlyIncome') = 1;

© Alex Grinberg 2018 157
A. Grinberg, XML and JSON Recipes for SOQL Server,
https://doi.org/10.1007/978-1-4842-3117-3_6

https://doi.org/10.1007/978-1-4842-3003-9_5

CHAPTER 6 ' FILTERING XML

The query result is demonstrated in Figure 6-1.

BusmessEnhibylld
1609
1700
v
1702
1703
1704
1705
1706
1707
1708
1709
7o
1711
1mz
ma
1714

Figure 6-1. Filtering data by the YearlyIncome element

How It Works
The exist() method verifies the existence of a provided argument and then returns:

e TRUE (abit value of 1), when the XQuery expression returns a
nonempty result.

e FALSE (abit value of 0), when the XQuery expression returns an
empty result.

e NULLwhen a NULL is passed in as the XQuery expression or the
XML instance is NULL.

Therefore, to detect whether the YearlyIncome element is contained in an XML
instance, the exist() method accepts an XQuery expression that returns one or more
YearlyIncome elements when applied to the XML instance. The XML in Listing 6-2 is a
sample of the XML that the query in Listing 6-1 is run against.

Listing 6-2. Sample XML data

<IndividualSurvey

xmlns="http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/

IndividualSurvey">
<TotalPurchaseYTD>-16.01</TotalPurchaseYTD>
<DateFirstPurchase»2003-09-01Z</DateFirstPurchase>
<BirthDate>1961-02-23Z</BirthDate>
<MaritalStatus>M</MaritalStatus>
<YearlyIncome>25001-50000</YearlyIncome>
<Gender>M</Gender>
<TotalChildren>4</TotalChildren>
<NumberChildrenAtHome>0</NumberChildrenAtHome>
<Education>Graduate Degree</Education>

158

CHAPTER 6 ' FILTERING XML

<Occupation>Clerical</Occupation>

<HomeOwnerFlag>1</HomeOwnerFlag>

<NumberCarsOwned>0</NumberCarsOwned>

<CommuteDistance>0-1 Miles</CommuteDistance>
</IndividualSurvey>

The XML in Listing 6-2 has a relatively simple structure. The root element is
IndividualSurvey, and it can contain up to 13 child elements.

To query this XML and return all rows where the XML instances contain the
YearlyIncome element, we need to refer to the XML namespace. In the provided solution,
for simplicity, the XML namespace is set to DEFAULT, as shown below:

WITH XMLNAMESPACES(DEFAULT
"http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/
IndividualSurvey')

In the WHERE clause, the exist() method takes an XQuery expression that targets our
element. The exist() method will return TRUE when the XQuery expression returns a
nonempty result:

WHERE Demographics.exist('IndividualSurvey/YearlyIncome') = 1

When the Yearlylncome element is present within an XML instance, the exist()
method returns a value of 1, (numeric for TRUE), and the row provides the result set.

The same mechanism is used to detect an attribute, with some minor syntax
differences required by XQuery to match attributes. The XML provided from the
Demographics column does not have attributes. Sample 6-2 demonstrates when the
YearlyIncome element has the attribute currency.

Sample 6-2. Showing the YearlyIncome element with currency as an attribute

DECLARE @survey XML = N'<?xml version = "1.0" encoding = "utf-16" ?>
<IndividualSurvey

xmlns="http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/
IndividualSurvey">
<TotalPurchaseYTD currency = "$">-16.01</TotalPurchaseYTD>
<DateFirstPurchase>2003-09-01Z</DateFirstPurchase>
<BirthDate>1961-02-23Z</BirthDate>
<MaritalStatus>M</MaritalStatus>
<YearlyIncome currency = "$">25001-50000</YearlyIncome>
<Gender>M</Gender>
<TotalChildren>4</TotalChildren>
<NumberChildrenAtHome>0</NumberChildrenAtHome>
<Education>Graduate Degree</Education>
<Occupation>Clerical</Occupation>
<HomeOwnerFlag>1</HomeOwnerFlag>
<NumberCarsOwned>0</NumberCarsOwned>
<CommuteDistance>0-1 Miles</CommuteDistance>

159

CHAPTER 6 ' FILTERING XML

</IndividualSurvey>’;In this particular case the solution will be as demonstrated in
Listing 6-3.

Listing 6-3. Searching for an attribute @currency

WITH XMLNAMESPACES
(

DEFAULT 'http://schemas.microsoft.com/sqlserver/2004/07/adventure-
works/IndividualSurvey'

)
SELECT @survey,

CASE WHEN @survey.exist('IndividualSurvey/YearlyIncome/@currency')
= 1 THEN N'IndividualSurvey/YearlyIncome/@currency attribute is
present.'

ELSE N'currency attribute is NOT present.’

END AS hasCurrency;

As demonstrated, to detect the attributes you need to provide an XPath to the
attribute.

6-2. Filtering an XML Value with the exist()
Method

Problem

You want to filter an XML column by value, but the query does not implement XQuery
Methods, such as nodes(), value(), and query().

Solution

The exist() method can provide filtering against XML text nodes, especially when the
XML instances need to be inspected for a specific searching condition. At the same time,
the SELECT clause does not have any XQuery processes. Listing 6-4 retrieves all XML
instances where the TotalPurchaseYTD element contains a value greater than 9,000.

Listing 6-4. Using XQuery to filtering XML instances by values
WITH XMLNAMESPACES

(
DEFAULT N'http://schemas.microsoft.com/sqlserver/2004/07/
adventure-works/IndividualSurvey'

)

SELECT BusinessEntityID,

Demographics
FROM Person.Person
WHERE Demographics.exist('IndividualSurvey[TotalPurchaseYTD > 9000]') = 1;

160

CHAPTER 6 ' FILTERING XML

Figure 6-2 displays the query result.

BusinessEntitylD Demographics 4
2436 | <IndnvidualSurvey xminsh N"=><TotalPurchaseYT[>9263.6618<otalPurchaseYTD=><Dat

§ 43</TofalPurchaseYTD><DateFi..
y"><TotalPurchase 0.76</TojalPurchaseYTD=<DateF:

<y"><TotalPurchaseYT}>954 7 55</TojalPurchaseY TD><DatekFi

e

Figure 6-2. Returning the rows where the TotalPurchaceYTD is greater than 9000.00

How It Works

In addition to detecting XML elements and attributes, as described in Recipe 6-1, the
exist() method can efficiently filter XML based on instance values. When the query
returns columns from a table and the XML instance is not a required part of the
shredding processes, but at the same time the rows from the table need to be filtered
based on XML value, then the exist() Method can be used as the filtering mechanism to
return rows based on the search condition.

The difference, as demonstrated in Recipe 6-1, is that the exist() Method has a filter
condition for the TotalPurchaseYTD element value instead of checking for the existence
of an element, for example:

Demographics.exist('IndividualSurvey[TotalPurchaseYTD > 9000]")

The filters for an XML instance have some differences when we compare it to
the T-SQL WHERE clause. The XML filters specify a Boolean expression for the exist()
method surrounded by square brackets (“[“]”) (the filter for the nodes() method will
be demonstrated later in this chapter). The solution demonstrates filtering to return
rows where TotalPurchaseYTD value is greater than $9000.00. The filter argument for the
exist() Method has the following components:

1. the parent element IndividualSurvey
2. opening bracket

3. the child element TotalPurchaseYTD with a comparison
operator and value

4. closing bracket

Putting it all together, our XQuery filter has the following syntax:

IndividualSurvey[TotalPurchaseYTD > 9000]

161

CHAPTER 6 ' FILTERING XML

Note The step in the path is implied when you apply a filter. For instance, the actual
step would be: IndividualSurvey/.[TotalPurchaseYTD > 9000]. But when a filter is applied,
the step is implied: IndividualSurvey[TotalPurchaseYTD > 9000].

The XML comparison operators are listed in Table 6-1.

Table 6-1. Demonstrating XML comparison operators

Operator Value Description

= eq Equal

I= ne Not equal

> gt Greater than

< 1t Less than

>= ge Greater than and equal to

<= le Less than and equal to

<« N/A Node order precede
comparison

>> N/A Node order follow
comparison

Is N/A Node identity equality

“Document order” is a central concept to XML. It is the basis for node order
comparisons. The XQuery Node Order Comparison operators “<<’; “>>’ and “is” might
be new to readers, because there are no equivalent operators in T-SQL. In XQuery the
“is” comparison operator checks for node identity equality; that is, it tells you whether
the two nodes on either side of the operator are the same node. The node operators “<<”
(precede) and “>>”" (follow) compare XML nodes based on document order. The “<<”
operator returns true if the node on the left precedes the node on the right of the operator,
in document order. The “>>" operator returns true if the node on the left follows the node
on the right of the operator, in document order. Listing 6-5 Compares the first instance
of the <Education> to the first instance of the <Occupation> element node position,
returning true because the <Education> element appears before the <Occupation>

element in document order.

Listing 6-5. Comparing <Education> and <Occupation> elements position

WITH XMLNAMESPACES

(
DEFAULT N'http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/IndividualSurvey'

162

CHAPTER 6 ' FILTERING XML

SELECT BusinessEntityID,

Demographics.value('(/IndividualSurvey/Education)[1] << (/IndividualSurvey/
Occupation)[1]', 'nvarchar(20)') [Node Comparison]

FROM Person.Person

WHERE BusinessEntityID = 2436;

XML filtering does not support the implicit conversion between data types
and returns an error in attempt to compare two incompatible values. For example,
TotalPurchaseYTD element expects an xs:decimal type, but the value is implemented as
an xs:string type. In this case SQL Server throws an error, in which Listing 6-6 triggered
the error message.

Listing 6-6. Raising type conversion error.

WITH XMLNAMESPACES

(
DEFAULT N'http://schemas.microsoft.com/sqlserver/2004/07/adventure-
works/IndividualSurvey'

)

SELECT BusinessEntityID,

Demographics
FROM Person.Person
WHERE Demographics.exist('IndividualSurvey[TotalPurchaseYTD > "9000"]") = 1;

Figure 6-3. Showing the error message

String type values need to be surrounded by double quotes, and numeric type values
do not. The exceptions are the date, time, and datetime types, where XML filters directly
handle conversion, as shown in Listing 6-7.

Listing 6-7. Filtering with date types
WITH XMLNAMESPACES

(
DEFAULT N'http://schemas.microsoft.com/sqlserver/2004/07/adventure-
works/IndividualSurvey'

)

SELECT BusinessEntityID,

Demographics
FROM Person.Person
WHERE Demographics.exist
('IndividualSurvey[DateFirstPurchase=xs:date("2002-06-282")]") = 1;

163

CHAPTER 6 ' FILTERING XML

The result is demonstrated in Figure 6-4.

[BusinessEnlitylD Demographics 5 2
1755 cindvidualSunvey xmil </TD><DateFirstPu Dats thDat_
3163 <IndmdualSurvey xm .>.. . te 356} ¢ Z</Da t thDat
3835 ndmdualSurvey x \r » <DateFustPurchasds» 2002-06-287 <\DateFrstPurchase> <BirthDat
8079 ndmdualSurvey x <JD><DateFirstPurchasd>2002-06-287 <jDateFirstPurchase> <BirthDat
18768 ndmidualSurvey x ')' yateFirstPur d>2002-08-287 <IDateFirstPurct

Figure 6-4. Results from the XML instance filtered by date

XQuery supports the following date and time conversion functions:
o xs:date() for date type
e xs:time() for time type
e xs:dateTime() for datetime type

The DateFirstPurchase element value is “2002-06-28Z,” where “Z” is the zero
meridian, that is, Z specifier (“Z” actually means UTC Offset of +00:00). For the filtered
value, the “Z” is an optional, therefore, xs:date("2002-06-28") and xs:date("2002-06-28Z")

will return the same result.

6-3. Finding All Occurrences of an XML Element
Anywhere Within an XML Instance

Problem

You want to locate all occurrences of an XML element regardless of where it occurs within
an XML instance.

Solution

Putting double forward slashes “//” (shortcut for /descendant-or-self::node()/) before
step within XQuery path expression gives you a shortcut step operator to retrieve the
current context node and all its descendant nodes. When it appears at the beginning of
an XQuery path expression, it retrieves all nodes in the XML data. You can use this in
the node() method to avoid explicitly specifying a full reference to the target element, as
shown in Listing 6-8.

164

CHAPTER 6 ' FILTERING XML

Listing 6-8. Inserting a new row via the stored procedure

WITH XMLNAMESPACES

(N'http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/
Resume' AS ns
)
SELECT
Info.value(N'(/ns:Resume/ns:Name/ns:Name.First)[1]', 'NVARCHAR(30)")
AS FirstName,
Info.value(N' (/ns:Resume/ns:Name/ns:Name.Last)[1]", 'NVARCHAR(30)')
AS LastName,
Info.value('fn:string(../../../../ns:Address[1]/ns:Addr.Location[1]
/ns:Llocation[1]/ns:Loc.CountryRegion[1])"', 'NVARCHAR(100)') AS
Country,
Info.value('fn:string(../ns:Tel.Type[1])"', 'NVARCHAR(15)') AS
PhoneType,
Info.value('fn:string(../ns:Tel.AreaCode[1])', 'NVARCHAR(9)')
AS AreaCode,
Info.value('fn:string(.)", 'NVARCHAR(20)') AS CandidatePhone FROM
HumanResouzrces.JobCandidate
CROSS APPLY Resume.nodes('//ns:Tel.Number') AS Person(Info);
The query result is shown in Figure 6-5.
| FirstName LastName Country PhoneType AreaCode CandidatePhone
Christian Kleinerman France Voice 5 0502050205
Peng Wu us TR 253 555-1444
Lionel Penuchot France Voice 4 04 020304 05
Stephen Jiang us Voice 425 555-1119
Stephen Jiang us Voice 425 555-1981
CatiRb! LT Uszandlno thu 555-0101
Thierry D'Hers France Voice 4 0402040504
yiali] Uaas Usandlng thu 555-0114
Max Benson us Voice 407 555-0101
Max Benson us Pager 407 555-0122
Tai Yee us T 303 555-0114

Bassli us Voice 555-0114

| Shai

Figure 6-5. Showing the SQL result

165

CHAPTER 6 ' FILTERING XML

How It Works

SQL Server XQuery has the ability to shorten the reference to the source element within
the node() Method by adding leading double forward slashes to the source element, for
example Resume.nodes(‘//ns:Tel. Number’). In this case “//” is shortcut for the XQuery
“descendant-or-self::node()” path step. The XQuery engine uses this when searching for
all occurrences of an element contained within the XML data that the nodes() method is
acting upon.

The hierarchy for the Tel. Number element that is part of the HumanResources.
JobCandidate table’s Resume column is shown in Figure 6-6.

ns:Resume

ns:Address
ns:Addr.Telephone
ns:Telephone

ns:Tel.Number

Figure 6-6. Showing the Tel. Number element hierarchy

The fully qualified XQuery path expression for the nodes() method to the Tel.
Number element is demonstrated in Listing 6-9.

Listing 6-9. Demonstrating a fully qualified reference to the Tel. Number element
WITH XMLNAMESPACES

N'http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/Resume' AS n

)
SELECT

FROM HumanResources.JobCandidate

CROSS APPLY Resume.nodes
('/ns:Resume/ns:Address/ns:Addr.Telephone/ns:Telephone/ns:Tel.Number")
AS Person(Info);

166

S

CHAPTER 6 ' FILTERING XML

Caution It is obvious that the “//” axis operator provides a convenient way to set the
reference to a deep child element. However, this technique should be tested thoroughly
before coming to a final consideration because it could cause performance problems during
the XML shredding process. Chapter 7 will provide more details about the nodes() method
performance optimization.

6-4. Filtering by Single Value
Problem

You need to set a single value filter when shredding the XML instance.

Solution

Set the filter within the nodes() Method, Listing 6-10. The result is demonstrated in
Figure 6-7.

Listing 6-10. Setting a single value filter within the nodes() Method

WITH XMLNAMESPACES
(
DEFAULT N'http://schemas.microsoft.com/sqlserver/2004/07/
adventure-works/IndividualSurvey'
)
SELECT BusinessEntityID ,
ref.value('TotalPurchaseYTD', 'MONEY') AS TotalPurchase,
ref.value('DateFirstPurchase', 'DATE') AS DateFirstPurchase,
ref.value('YearlyIncome', 'NVARCHAR(20)') AS YearlyIncome,
ref.value('Occupation’, 'NVARCHAR(15)') AS Occupation,
ref.value('CommuteDistance', 'NVARCHAR(15)') AS CommuteDistance
FROM Person.Person CROSS APPLY
Demographics.nodes('IndividualSurvey[TotalPurchaseYTD > 9000]")
AS dmg(ref);

BLTSJHTSSEH}I@Di TotalPurchase DateFirstPurchase Yearlyincome Occupation CommuteDuslanoi

2436 92636618 2003-03-14 75001-100000 Professional 5-10 Miles
4987 9566 43 2001-12-03 50001-75000 Skilled Manual 2-5 Miles

16617 9650.76 2001-11-10 75001-100000 Management 10+ Miles
1773 954755 2001-12-04 75001-100000 Professional 10+ Miles

MW‘M

Figure 6-7. Result of filtered XQuery query

167

http://dx.doi.org/10.1007/978-1-4842-3117-3_7

CHAPTER 6 ' FILTERING XML

How It Works

The XQuery language supports filtering from within the nodes() method. The syntax for
the XQuery filter is very similar to the T-SQL WHERE clause, but it’s not exactly the same.
Table 6-1 lists all comparison operators for the XQuery filters (see Recipe 6-2 in the How It
Works section). They are the same except for one small difference: the not equal operator,
XQuery implements “I=" as the only option. On the other hand, T-SQL provides a choice
for DBAs and Developers between “!=" and “<>” operators (best practice in T-SQL,
however, is to use the “<>" operator).

To set a single value filter within the nodes() method you need:

1. the parent element IndividualSurvey
2. opening bracket

3. the child element TotalPurchaseYTD with comparison
operator and value to compare against

4. closing bracket
Practically speaking, all steps are the same as those demonstrated in Recipe 6-2 for
the exist() method. For example, the filter part for both is:

IndividualSurvey[TotalPurchaseYTD > 9000]

However, the exist() method has slightly better performance compared to the
nodes() method. Because those two methods serve completely different functions, the
exist() method is for filtering, and nodes() is for shredding.

6-5. Filtering XML by T-SQL Variable
Problem

You want to filter XML results based on T-SQL variable values.

Solution

The SQL Server XQuery function sql:variable() allows your XQuery query expression to
access the values of T-SQL variables or parameters for inclusion in your search criteria.
The best implementation and demonstration of the sql:variable() function is a stored
procedure, as shown in Listing 6-11.

Listing 6-11. Creating a stored procedure with sql:variable() function

CREATE PROCEDURE dbo.usp_DemographicsByYearlyIncome
@YearlyIncome NVARCHAR(20)

AS

BEGIN
WITH XMLNAMESPACES

(

168

CHAPTER 6 ' FILTERING XML

DEFAULT N'http://schemas.microsoft.com/sqlserver/2004/07/
adventure-works/IndividualSurvey'
)
SELECT BusinessEntityID ,
ref.value('TotalPurchaseYTD', 'MONEY') AS TotalPurchase,
ref.value('DateFirstPurchase', 'DATE') AS DateFirstPurchase,
ref.value('YearlyIncome', 'NVARCHAR(20)') AS YearlyIncome,
ref.value('Occupation', "NVARCHAR(15)') AS Occupation,
ref.value('CommuteDistance', 'NVARCHAR(15)') AS CommuteDistance
FROM Person.Person
CROSS APPLY Demographics.nodes('IndividualSurvey[YearlyIncom
e=sql:variable("@YearlyIncome")]"') AS dmg(ref);
END;
GO

How It Works

XQuery has the function sql:variable() that allows you to filter XQuery without explicitly
specify a search criteria. The sql:variable() function renders and maps a T-SQL declared
variable or stored procedure parameter to the XQuery. The sql:variable() function could
be a part of the nodes() and exist() Methods to provide filtering functionalities.

The syntax to implement the sql:variable() function to filter an XML element is as
follows:

parentElement[childElement comparisonOperator sql:variable(“@varible”)]

The syntax to implement the sql:variable() function to filter an XML attribute is as
follows:

parentElement[@attribute comparisonOperator sql:variable(“@varible”)]

Listing 6-12 demonstrates several executions of the usp_DemographicsByYearly
Income stored procedure with different parameter values.

Listing 6-12. Calling the usp_DemographicsByYearlyIncome stored procedure

EXECUTE dbo.usp_DemographicsByYearlyIncome '0-25000';
GO

EXECUTE dbo.usp_DemographicsByYearlyIncome '25001-50000';
GO

EXECUTE dbo.usp_DemographicsByYearlyIncome '50001-75000';
GO

EXECUTE dbo.usp_DemographicsByYearlyIncome '75001-100000";
GO

EXECUTE dbo.usp_DemographicsByYearlyIncome 'greater than 100000';
Go

169

CHAPTER 6 ' FILTERING XML

The result from the stored procedure execution with parameter value '0-25000' is

demonstrated in Figure 6-8.

F - p—

Figure 6-8. Showing the stored procedure result

BusinessEntitylD TotalPurchase DateFirstPurchase Yearlylncome Oeccupation CommuteDistan
1706 1549 2004-07-16 0-25000 Manual 2-5 Miles
1708 -4.99 2004-02-02 0-25000 Clencal 5-10 Miles
1713 -21.49 2003-12-30 0-25000 Clerical 0-1 Miles
1717 -539.99 2004-04-02 0-25000 Manual 0-1 Miles
1718 -1.01 2004-04-23 0-25000 Manual 0-1 Miles
1722 3499.8504 2003-05-10 0-25000 Manual 0-1 Miles
1724 -539.9882 2002-10-03 0-25000 Clerical 5-10 Miles
1726 -69.99 2004-02-07 0-25000 Manual 2-5 Miles
1727 -4.00 2003-12-25 0-25000 Manual 0-1 Miles
173 -4.99 2004-07-01 0-25000 Manual 0-1 Miles
042 33 2002-01- 00 Manual 1-2 Miles

Caution

The sql:variable() function is part of XQuery; therefore the function is case

sensitive and must be referenced in lowercase only. Any other case implementation will
trigger the error: Msg 2395, ... There is no function {urn:schemas-microsoft-com:xml-
sql}:Variable()’. However, a variable name that sends to the sql:variable() function is not

case sensitive.

6-6. Comparing to a Sequence of Values

Problem

You need to filter an XML instance by list a of values, in a fashion similar to the T-SQL IN
predicate for the WHERE clause.

Solution

Listing 6-13 demonstrates how to simulate the IN predicate within an XML instance using
the “=” general comparison operator against a sequence of values.

Listing 6-13. Sending a list of values to filter an XML instance

WITH XMLNAMESPACES

(
DEFAULT N'http://schemas.microsoft.com/sqlserver/2004/07/

adventure-works/IndividualSurvey'

170

CHAPTER 6 ' FILTERING XML

SELECT BusinessEntityID,
ref.value('TotalPurchaseYTD', 'MONEY') AS TotalPurchase,
ref.value('DateFirstPurchase', 'DATE') AS DateFirstPurchase,
ref.value('YearlyIncome', 'NVARCHAR(20)') AS YearlyIncome,
ref.value('Occupation', 'NVARCHAR(15)') AS Occupation,
ref.value('CommuteDistance', 'NVARCHAR(15)') AS CommuteDistance
FROM Person.Person
CROSS APPLY Demographics.nodes('IndividualSurvey[Occupation=
("Clerical","Manual", "Professional")]') AS dmg(ref);

The query results are demonstrated in Figure 6-9.

BusinessEntitylD TotalPurchase DateFirstPurchase Yearlyincome Occupation Commute[hstance
1699 -16.01 2003-03-01 25001-50000 Clerical 0-1 Miles
1700 -4.00 2004-06-05 50001-75000 Professional 5-10 Miles
1702 24354018 2001-10-27 25001-50000 Clencal 0-1 Miles
1703 1647.00 2002-04-18 50001-75000 Professional 2-5 Miles
1704 -699.0964 2002-02-14 greater than 100000 Professional 5-10 Miles
1706 1549 2004-07-16 0-25000 Manual 2-5 Miles
1707 37.70 2003-08-12 50001-75000 Professional 5-10 Miles
1708 -4.99 2004-02-02 0-25000 Clerical 5-10 Miles
1709 -39.0€1 2004-05-18 75001-100000 Professional 5-10 Miles
17