
QVLx Labs
Protect and Empower

Why Salvum is so Rusty

Notes by $t@$h

Intro

In an era where mission safety and cybersecurity are more
critical than ever, selecting a programming language for a
project is a crucial decision. Our choice to write Salvum and
many other software products in Rust was influenced by
multiple factors including robust safety features and
performance. This article explores Rust and what makes it an
ideal choice for developing secure and reliable software.

Rust's inception, rooted in Graydon Hoare's vision in 2006, was
driven by a desire to combine the performance and control of
low-level languages like C and C++ with the safety and
abstraction capabilities of high-level languages. Mozilla's
sponsorship in 2009 was pivotal, leading to a collaborative
community-driven development process.

Over the years, Rust evolved through rigorous community
feedback and an open RFC process. This collaborative approach
led to a language not only powerful and efficient but also
adaptive to growing needs of modern software development. In
my opinion, Rust’s vibrant ecosystem is second to none and the
biggest reason for its growth and adoption in the past decade.

Rustlang Design

 A cornerstone of Rust's design is its ability to ensure memory
safety without the overhead of garbage collection common in
many high-level languages. This is achieved through an elegant

ownership model, where each datum has a single owner, and
the compiler strictly enforces rules about data access.

Rust also addresses one of the most complex aspects of modern
software development: safe concurrency. Its ownership model
naturally extends to handling concurrent programming without
fear, ensuring that data races, deadlocks, and other concurrency
issues are caught at compile time. Rust even has support for
asynchronous programming. An achievement only a handful of
other languages even fewer system languages can claim.

The principle of zero-cost abstractions in Rust means that high-
level constructs do not incur additional runtime overhead. The
abstractions in Rust compile down to an efficient form like the
hand-written code in lower-level languages like C. This makes
Rust super performant, in fact comparable to other system
languages like C and C++. In some cases even out-performing
those long-time low-level languages.

Rust’s ownership system is a unique solution to memory safety.
Each variable in Rust has a single owner, and the scope of the
variable defines its lifetime. The borrowing rules, which consist
of references and mutable references, allow for safe,
concurrent access to data, preventing race conditions and
ensuring thread safety. Beautifully, all values are stack allocated
by default. While this seems like it entails a lot of potential for
stack smashing, nice synergy with LLVM makes it far less likely.

Rust’s approach to memory management at compile time is
delicious. It enforces memory safety through its borrow
checker, which validates references and ensures memory access
patterns are safe, thus preventing common vulnerabilities like
null pointer dereferences and buffer overflows. In fact here is a
list of all of the security features that Rust has at the moment:

Rust's strong, static type system plays a crucial role in its safety
guarantees. It helps catch errors early in development, reducing
likelihood of runtime errors and vulnerabilities. The type
system, with features like trait-based generics and pattern
matching, offers flexibility and robustness in software design.

Error handling in Rust is designed to be explicit and robust. The
Result and Option types in Rust force the programmer to handle
the possibility of absence of value or the occurrence of error
upfront, ensuring that such cases are addressed explicitly in the
code. I have personally seen this language feature transform
less-experienced programmers learn how to think about their
code in terms of duality and thus empower them to always
consider the case of code that behaves off nominally. This
language design also builds confidence that the code will
behave expectedly and QVLx associate researchers grew
through this exposure.

Rust’s zero-cost abstractions mean that the abstractions
provided by the language do not add any extra runtime cost.
This is crucial in systems programming and other performance-
critical applications where every cycle counts.

Rust’s compiler, again by leveraging LLVM’s backend, performs
advanced optimizations that transform high-level constructs
into efficient machine code. This capability allows developers to
write high-level, abstract code without worrying about the
performance implications often associated with high-level
languages.

Cargo, Rust’s build system and package manager, streamlines
the process of managing dependencies, compiling projects, and
running tests. It ensures that the code uses the latest and most
secure versions of libraries, a crucial aspect in maintaining the
security of a software application. Such constructs help save so
much time in development, which is a vital consideration to any
endeavor that considers cost and hours. In addition, Rust also
has built-in unit testing capability. And more advanced mocking
can be achieved through third-party crates.

Clippy is a collection of lints for Rust, serving as an advanced,
language-specific tool to catch common mistakes and improve
code quality. It extends beyond the capabilities of traditional
C/C++ linters by understanding Rust's unique features and
idioms.

Rust offers a safer interface to system calls, preventing many
security vulnerabilities. Its standard library provides
abstractions that reduce risk of shell injection and other
common pitfalls associated with calls in lower-level languages.

Rust’s approach to system interaction is built on its principles of
memory and type safety. The language provides robust
abstractions that encapsulate unsafe system interactions,
ensuring that these interactions are both efficient and secure.

Rust allows developers fine-grained control over memory
allocation and deallocation, crucial in low-level systems

programming. While it automates memory management in safe
code, it also provides the tools to manually manage memory
when necessary, without sacrificing safety. Rust’s approach to
memory management is designed to prevent common errors
found in other systems languages, such as memory leaks,
double frees, and use-after-free vulnerabilities. Its compile-time
checks ensure that memory is managed safely and efficiently.

Rust includes an unsafe keyword for instances where direct
memory access is required, such as interfacing with other
languages or performing certain low-level operations. This
feature allows developers to perform these operations while
explicitly marking these sections as unsafe, bringing attention to
parts of the code that require careful review. Salvum core was
written in pure Safe Rust. All wraps and expects were replaced
with match statements that consider the case of error and don’t
panic but rather handle the error.

Rust’s advanced type system, with features like traits and
generics, contributes significantly to safety and security. They
allow for expressive, reusable code without the runtime
overhead typically associated with polymorphism and generics
in other languages. Favor composition over inheritance. Seems
Rustlang creators understood this principle well.

The decision to write a security engine in Rust was a no-brainer.
And it has resulted in all of the many codebases developed by
QVLx being able to be maintained by one person indefinitely.

