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Introduction

In epidemiology, vectors refer to a diverse range of organisms that act as a bridge between pathogen and
host species. Worldwide, nearly 20% of all human deaths are caused by illnesses classified as vector-borne
such as malaria, dengue, and yellow fever (Control., 2014). Although mosquitoes, ticks, and rodents are
the most prevalent carriers of disease, any organism has the propensity to be classified as a vector - such as
copepods, bats, biting flies, fleas, or even rabid canines. This study specifically seeks to explore the primary
bridge of West Nile virus to humans- Culex pipiens-restuans mosquitoes.

West Nile virus (WNV) was first detected on the North American continent in 1999 in New York
state (Nash, et al., 2001). At a 96% pool positivity rate, Culex-genus mosquitoes (tarsalis, quinquefasciatus,
pipiens, restuans) are the primary transmitters of WNV (Andreadis, 2012). Cx. pipiens and restuans are
endemic to the Mid-Atlantic US, and therefore are monitored heavily within the region. Although WNV has
its own virologic cycle, tracking the Culex-genus provides more predictability and enhances seasonal vector
management strategies.

Although distinct taxonomically, Cx. pipiens and restuans have a strikingly similar morphology making
differentiation between the two very time consuming and prone to misidentification - sometimes due to loss
of key phenotypical features during handling (Harrington & Poulson, 2008). Because of shared breeding
habitats and high WNV positivity rates, Cx. pipiens-restuans are often collected and tested together in the
same pool. For this reason, no distinguishment will be made between the them in this study.

Culex mosquitoes go through four life stages - three aquatic (egg, larva, pupa) and the last being the
terrestrial, airborne adult (Karki, et al., 2016). Shortly after taking a blood meal from a host, pregnant
females begin to seek out suitable habitat for oviposition - standing water with adequate levels of organic
matter for larvae to feed (Karki, et al., 2016). Air temperature as well as water temperature of the larval
habitat are a main drivers of the mosquito biological cycle (Reisen, et al., 2006). Dictated by weather
and other environmental cues, eggs will hatch to larvae and emerge as adults in 10 to 14 days (Crans,
2004). Imagos mosquitoes are greatly impacted by warmer air temperature by shortening the resting period
between blood meal and oviposition and encouraging swarming behavior (Reisen, et al., 2006). In addition,
temperature has been known to influence senescence. Andreadis, et al. (2014) found shorter life spans
at 30ºC and above, while greatest longevity was observed between 15 and 30ºC. In temperate climates,
like Pennsylvania, female Culex populations persist through the fall until daylight hours and overnight
temperatures initiate diapause - their overwintering mechanism (Spielman & Wong, 1973).

Other than temperature, major cyclical drivers of mosquito abundance include relative humidity,
precipitation, daytime length, wind speed, and seasonally available aquatic habitats. Preferred breeding sites
rely on the presence of stagnant water most often including wetlands, shallow bodies of water, catchment and
retention basins, sewage treatment plants, and artificial containers - i.e. tires, vacant swimming pools, dirty
bird baths, clogged rain gutters, and vacant ornamental ponds. It is natural to conclude that rain correlates
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to mosquito activity. But in some cases, precipitation can temporarily dampen mosquito presence. Low-
intensity rainfall might create or replenish breeding habitat, whereas heavy rain events could result in larval
flushing thereby limiting emergence of future generations (Jones, et al., 2012).

Culex population density is the main regulator of local West Nile virus infections, and public health
decisions are largely influenced by local vector observations (Karki, et al., 2016). Local protocols and control
strategies must mirror surveillance efforts. The purpose of this study is to identify which weather parameters
are significant predictors of Culex pipiens-restuans abundance. The area of interest covers populated regions
of Pennsylvania and relies upon 5 years of state-provided Culex collection data and surface weather obser-
vations at local airports. Due to the size and inconsistency of the data, only annually monitored trapping
sites were sampled. In this analysis, some observations were smoothed or normalized to create a standard by
which a reasonable conclusion could be made. In some cases this approach was helpful. In other cases, highly
variable observations (such as precipitation) could have been smoothed to such an extent that strength of
correlation was lost. The general correlations found within this report could assist local vector managers to
create a local, short-term predictive model that might help anticipate control measures.

Methodology

My project focuses specifically on Philadelphia because of its manageable size and the abundance of data.
In past work, I tried to model the entire state and found that so much smoothing and generalizing weakened
relationships between variables. In addition, the regions were so big that in some cases I was relying on
airport weather data from many miles away and had no way of controlling for variability. In addition, I
relied heavily on temperature metrics in my past project, however this was really limiting since all of my
temperature variables were mutually dependent and collinear (i.e humidity, dewpoint, heat index). I’ve
included stream stage data in this model because I think it could be an important independent variable that
might capture the effects of short-term precipitation over an entire basin (rather than at just one recording
station) as well as longer term soil moisture and water table level.

All of my mosquito collection data was provided by the PA Department of Environmental Protection
West Nile monitoring program. Although this dataset runs from 2015-2020, I only used 2017-2020 because of
limited stream data from years 2015-2016. In the database provided by the DEP, I extracted just Delaware,
Chester, Bucks, Montgomery, and Philadelphia counties. Then, I filtered these observations based on lo-
cations that were monitored weekly from 2017-2020 which shrunk the data down to just a few hundred
sites. After that, I chose 56 trapping locations that produced the greatest amount of mosquitoes - based
on cumulative and mean values. I took this step as a way of controlling for unique site characteristics, and
their various roles in determining mosquito density. Heavily urban areas have very few mosquito breeding
habitats aside from sewer catch basins. Lighter urban settings have more (abandoned) swimming pools and
littered backyards. While, suburban areas (especially those developed in the past 10-20 years) have large
retention basins and ponds that have the potential to become major breeding grounds for female mosquitoes
especially when there are no established predators such as fish and amphibians. Therefore, I filtered my
data selection towards habitats that are sensitive to pertubations in the weather. The map below provides
some spatial awareness of the area I’m studying including all mosquito monitoring sites, airports, and the
Darby-Cobbs Creek watershed.

For the weather data, I utilized the Iowa State Environmental Mesonet which has a historical catalog
of airport METAR weather data. The four airports I selected were Philadelphia International (PHL),
Philadelphia Northeast (PNE), Brandywine Regional (OQN), and Wings Field (LOM), and I chose these
sites because they are roughly located on the four corners of my area of interest. Furthermore, elevation
changes in my study vary from close to sea-level near the Delaware River to about 300 feet further up in
Mainline Philadelphia. I could have made simple temperature-elevation adjustments based on observation at
the PHL airport, but I didn’t feel this fully captured all the microclimates. On the opposite side, I considered
employing something like the Thiessen Polygon method which would have allowed for temperature corrections
at an acceptable level of accuracy. However, this approach would have been prohibitively time-consuming
in the scope of my project. So, I simply chose to average all observations together into one daily mean that
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Figure 1: Created in Google Earth Pro

I’m considering as the daily weather over metro Philadelphia on a given day. It is also worth noting that
PNE, OQN, and LOM only reliably contributed temperature data to this project. Whereas, data from PHL
included temperature, humidity, dewpoint, and sky conditions.

When considering stream gage data, I needed to include a watershed and stream that doesn’t drain
outside of my area of interest so that I can more accurately generalize soil moisture, precipitation, and the
water table. As seen in the map above, the combined Darby-Cobbs Creek drains the central portion of
Philadelphia and is entirely contained within the area of study. Furthermore, I needed a stream monitoring
station located at the mouth of a watershed so as to accurately capture total rainfall within that hydrologic
unit. The US Geologic Survey maintains a network of stream monitoring stations in the area, and I was able
retrieve Darby-Cobbs Creek flow data from the 84th Street Bridge site. As previously mentioned, data was
extremely sparse from 2015-2016 (perhaps due to technical reasons), so I chose just to examine 2017-2020.

Variable Selection

Weather (AWOS/METAR)

-Month (integer)
-Week number elapsed from Jan 1st (integer)
-Min/Mean/Max Temp (◦F)
-DD (Base 50◦F) = Average Daily Temp - 50◦. If average temp is less than 50◦, DD = 0.
-Min/Max Dewpoints (◦F)
-Max Relative Humidity (%)
-Mean Windspeed (kts)
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-Min Visibility (mi)
-Average Daily Sky Cover at Lowest Measured Elevation

• Average Daily Sky Cover consists of 8 variables that have been grouped together into 3 classes and given
binary identifiers (1-present, 0-absent). PHL monitors sky cover every 15 minutes, so I’m creating a
daily average here by coming up with decimal values that will represent frequency of these conditions:
1. Clear = Scattered Sun, No Clouds, Clear

2. Scattered = Scattered Clouds, Few Clouds, Broken Clouds

3. Overcast = Overcast, Vertical Visibility (dense fog or heavy precipitation)

From personal experience and having read journals on past research, I’m also going to incorporate
a 2-point smooth to all variables. That is, I will average the previous and current day’s observation into
one value which will be more representative of the current day by better capturing night-time conditions.
For example, dates are usually interpreted as beginning at 12:00AM and ending at 11:59PM, and I need
to account for the nighttime hours prior to 12:00AM. Given the characteristics of certain frontal systems,
I can’t say for certain when a low or high temperature will occur in a day. A cold front might enter when
we’d usually expect a high temperature and a warm front will sometimes move in during the evening hours
when we’d expect our low temperature. In addition, mosquito traps were set on the previous day and the
collection date is indicated as the day when the traps is collected. My approach in normalizing the data
should preserve the expected relationships.

Finally, I’d like to experiment with the cumulative relationship of these parameters to mosquito density
using various rolling averages from the previous 3 to 20 days. Variables that greatly influence night time
swarming behavior (such as sky cover and windspeed) will largely be examined on short-term intervals.
However, stream gage, which could influence the speed of the greater mosquito life cycle, would be more
appropriately analyzed in the 10-20 days prior.

Stream Gage Height (USGS Stream Monitoring Network)

The data set from Darby-Cobbs Creek was to include gage height, discharge, water quality, and water
temperature. Upon retrieval of the data, discharge, water quality, and temperature were largely missing to
the point where imputation would be highly unreliable which is disappointing because water temperature
would have been extremely useful. Because discharge and gage are directly related and because I’m really
only interested in changes to stream flow and not the values themselves, gage height should be a suitable
parameter.

Parameters:
- Daily Min/Mean/Max Stream Gage Height

Mosquito Collection Data (PA DEP West Nile Program)

As you might expect, mosquito counts can be highly variable from location to location and from night
to night. In addition, I have no information about adulticide/larvicide treatments near these sites in the
time leading up to capture. I’m uncertain of the degree to which this complicates the analysis. In the
past, I’ve also experimented with trimmed means and cumulative counts which have returned questionable
results. Because my mosquito data is highly skewed, I’m going to rely on R packages to perform scaling and
transformation where needed so that my variables can be compared on the same level. Given the complexity
of modeling biological processess and my previously underwhelming attempts at performing linear regression,
I’m going to employ machine learning classification techniques that can better cut through the noise of my
data. Finally, just as I had averaged all weather observations from our 4 airports into one daily mean, I will
do the same for mosquito collection data as well.
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Simple Multivariate Linear Regression vs. Machine Learning Tech-
niques

Below, I’ll present some very basic results of a linear regression just as means of contrasting results found
using more advanced machine learning algorithms.

Linear Model

knitr::opts_chunk$set(fig.width=12, fig.height=8)
#Linear Regression
mos<- read.csv("mosq.csv", header=T)
#Drop date column
mos$Date<-NULL
#Scale and center data on -1,1 range
preProcValues <- preProcess(mos, method = c("center", "scale"))
mos <- predict(preProcValues, mos)
set.seed(13)
#Linear Model
lm.all <- lm(MeanCount~., data=mos)
#Variables with p-value > 0.05
mos<-mos[,-c(4,7,8,9,10,13,14,15,17,22,

25,27,29,30,33,34,35,36,38,39,44,43,42,21)]
lm.tune <-lm(MeanCount~., data=mos)
#More trimming of variables > 0.05
mos<-mos[,-c(3,4,7,8,12,14,16,19,20)]
lm.tune1 <-lm(MeanCount~., data=mos)
#...Again
mos<-mos[,-c(11,9)]
lm.tune2 <-lm(MeanCount~., data=mos)
#...And Again
mos<-mos[,-c(8)]
lm.tune3 <-lm(MeanCount~., data=mos)
#Final Model
summary(lm.tune3)

##
## Call:
## lm(formula = MeanCount ~ ., data = mos)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.8605 -0.5387 -0.0720 0.3124 4.9260
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -3.048e-16 4.528e-02 0.000 1.00000
## Week -2.545e-01 5.811e-02 -4.380 1.62e-05 ***
## MeanT 4.109e-01 8.295e-02 4.953 1.19e-06 ***
## X7DayCumDD50 7.707e-01 1.889e-01 4.080 5.70e-05 ***
## X7DayMaxDP -7.992e-01 2.016e-01 -3.965 9.08e-05 ***
## MaxRH 1.461e-01 5.878e-02 2.486 0.01342 *
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## X7DayMaxRH 2.438e-01 8.474e-02 2.877 0.00429 **
## X12DayMeanGage 1.098e-01 4.966e-02 2.212 0.02767 *
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 0.8163 on 317 degrees of freedom
## Multiple R-squared: 0.348, Adjusted R-squared: 0.3336
## F-statistic: 24.17 on 7 and 317 DF, p-value: < 2.2e-16

mos.cor<-cor(mos)
#Correlation matrix plot with Pearson r-coefficients listed
corrplot(mos.cor, method=’number’)
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#Final variables plotted. Non-linearity very apparent
plot(mos)
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After trimming insignificant variables and with a final r-squared value of 0.348, this linear model wouldn’t
be a particularly accurate predictor of mosquito catch even when applied to a test set.

Machine Learning Techniques

Support Vector Machine (SVM) for Numerical Prediction

Although not often employed in this way, SVMs can also make pretty reasonable numerical predictions.
Here I’ll feed and tune a training set into various SVMs using linear, radial, and polynomial kernals and
compare predictions to a test set.

Re-Reading Data

#re-reading the data table
mos<- read.csv("mosq.csv", header=T)
#Date Null
mos$Date<-NULL
#Data set is entirely numerical
# str(mos)
#Scaling from -1,1
preProcValues <- preProcess(mos, method = c("center", "scale"))
mos <- predict(preProcValues, mos)
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Training/Test Set Creation

set.seed(1981)
#Training/test set at 85:15 ratio
trainIndex <- createDataPartition(mos$MeanCount,

p = 0.8, list = FALSE, times = 1)
#Parse out training/test sets
train <- mos[ trainIndex,]
test <- mos[-trainIndex,]

Linear Kernal

set.seed(311)
linear.tune<-tune.svm(MeanCount~.,data=train,kernel="linear",

cost = c(.001,.01,.1,1,5,10,100))
summary(linear.tune)

##
## Parameter tuning of ’svm’:
##
## - sampling method: 10-fold cross validation
##
## - best parameters:
## cost
## 0.01
##
## - best performance: 0.729939
##
## - Detailed performance results:
## cost error dispersion
## 1 1e-03 0.8143566 0.4597445
## 2 1e-02 0.7299390 0.3980178
## 3 1e-01 0.7364341 0.3484378
## 4 1e+00 0.8227410 0.2938785
## 5 5e+00 0.8590358 0.2806036
## 6 1e+01 0.8671853 0.2856287
## 7 1e+02 0.8745010 0.2949238

best.linear<-linear.tune$best.model
tune.test<-predict(best.linear,newdata=test)
plot(tune.test,test$MeanCount)
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tune.test.resid<-tune.test-test$MeanCount
#Mean Squared Error
mean(tune.test.resid^2)

## [1] 0.7244752

RBF Kernal

set.seed(1313)
rbf.tune<-tune.svm(MeanCount~.,data=train,kernel="radial",

gamma = c(.1,.5,1,2,3,4),
cost = c(.001,.01,.1,1,5,10,100))

rbf.tune$best.model

##
## Call:
## best.svm(x = MeanCount ~ ., data = train, gamma = c(0.1, 0.5, 1,
## 2, 3, 4), cost = c(0.001, 0.01, 0.1, 1, 5, 10, 100), kernel = "radial")
##
##
## Parameters:
## SVM-Type: eps-regression
## SVM-Kernel: radial
## cost: 1
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## gamma: 0.1
## epsilon: 0.1
##
##
## Number of Support Vectors: 226

best.rbf<-rbf.tune$best.model
rbf.test<-predict(best.rbf,newdata=test)
plot(rbf.test,test$MeanCount)
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rbf.test.resid<-rbf.test-test$MeanCount
#Mean Squared Error
mean(rbf.test.resid^2)

## [1] 0.5974542

Poly Kernal

knitr::opts_chunk$set(fig.width=12, fig.height=8)
set.seed(123)
poly.tune<-tune.svm(MeanCount~.,data = train,kernal="polynomial",

degree = c(1,2,3,4,5),coef0 = c(.1,.5,1,2,3,4),
cost = c(.001,.01,.1,1,5,10,100))

best.poly<-poly.tune$best.model
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poly.test<-predict(best.poly,newdata=test)
plot(poly.test,test$MeanCount)
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poly.test.resid<-poly.test-test$MeanCount
mean(poly.test.resid^2)

## [1] 0.81361

Going off of MSE, the linear and radial kernals performed highest on the unseen test set compared to
the polynomial. However, at a mean squared error of around 0.45, improvements can be made by testing
other algorithms or simply by converting our response variable (MeanCount) into two or more classes and
reapplying our techniques. Taking a step back, what is the purpose of creating a model that reliably predicts
average trap counts down to a single mosquito? Given the amount of immeasurable predictor variables
and the complexity of this problem, numerical models could be overly challenging and unrealistic in their
application. From a vector management standpoint, it might actually be more useful to know when mosquito
pressure will fall into a certain range or when it is expected to exceed a certain threshold. In the following
steps, I’m going to transform MeanCount into both a binary and multiclass class variable and then reapply
the methods employed above as well as new techniques that are available to us now that we’re approaching
this problem from a classification perspective.

Binary Classification

Having minimal experience in the field of vector management, I can only make assumptions. However,
here I’d like to establish a hypothetical threshold for the mean daily mosquito count. Any MeanCount at or
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exceeding 100 will be classified as “Hi” and anything below that threshold will be classified as “Lo”. A mean
count of 100 or greater could be concerning to a vector control professional and may warrant changes to
operational strategy or could serve as an early warning system. Assuming a class imbalance of an unknown
degree will exist, I’m going to test our models on imbalanced training/test sets and then perhaps address
this imbalance through synthetic sampling techniques to see if improvements can be made.

Data Read-In, Preprocessing, Training

mos<- read.csv("mosq.csv", header=T)
mos$Date<-NULL
mos$Week<-as.factor(mos$Week)
mos$Month<-as.factor(mos$Month)
#Rounding Mean Counts to 1 significant figure which makes for easy factoring
mos$MeanCount<-signif(mos$MeanCount, digits=1)
#With rounding, if MeanCount is less than 100, that observation will be classified as "Lo",
#all others will be classified as "Hi".
mos$MeanCount <- ifelse(mos$MeanCount < 100, "Lo","Hi")
#Convert MeanCount to a factor with 2 levels
mos$MeanCount<-as.factor(mos$MeanCount)
#Scale and center all numerical values
preProcValues <- preProcess(mos, method = c("center", "scale"))
mos <- predict(preProcValues, mos)
#Training and test set creation (85:15)
set.seed(45)
trainIndex <- createDataPartition(mos$MeanCount, p = 0.85, list = FALSE, times = 1)
#Parse out training/test sets
train <- mos[ trainIndex,]
test <- mos[-trainIndex,]
#Check class distribution (slightly imbalanced)
prop.table(table(train$MeanCount))

##
## Hi Lo
## 0.299639 0.700361

prop.table(table(test$MeanCount))

##
## Hi Lo
## 0.2916667 0.7083333

Linear Kernal SVM

## SVM #85.4% Accurate
set.seed(143)
lin.svm <- tune.svm(MeanCount~.,data=train, kernel="linear",

cost=c(0.001,0.01,0.1,1,5,10,100,1000))
best.linsvm <- lin.svm$best.model
lintune.test <- predict(best.linsvm, newdata=test)
confusionMatrix(test$MeanCount,lintune.test)
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## Confusion Matrix and Statistics
##
## Reference
## Prediction Hi Lo
## Hi 7 7
## Lo 0 34
##
## Accuracy : 0.8542
## 95% CI : (0.7224, 0.9393)
## No Information Rate : 0.8542
## P-Value [Acc > NIR] : 0.59902
##
## Kappa : 0.5862
##
## Mcnemar’s Test P-Value : 0.02334
##
## Sensitivity : 1.0000
## Specificity : 0.8293
## Pos Pred Value : 0.5000
## Neg Pred Value : 1.0000
## Prevalence : 0.1458
## Detection Rate : 0.1458
## Detection Prevalence : 0.2917
## Balanced Accuracy : 0.9146
##
## ’Positive’ Class : Hi
##

accuracy.meas(lintune.test, test$MeanCount)

##
## Call:
## accuracy.meas(response = lintune.test, predicted = test$MeanCount)
##
## Examples are labelled as positive when predicted is greater than 0.5
##
## precision: 0.854
## recall: 1.000
## F: 0.461

RBF Kernal SVM

#Radial Kernal 83.3% Accurate
set.seed(143)
rbf.svm <- tune.svm(MeanCount~.,data=train, kernel="radial",

gamma=c(0.1,0.5,1,2,3,4),
cost=c(0.001,0.01,0.1,1,5,10,100,1000))

best.rbfsvm <- rbf.svm$best.model
rbftune.test <- predict(best.rbfsvm, newdata=test)
confusionMatrix(test$MeanCount,rbftune.test)

## Confusion Matrix and Statistics
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##
## Reference
## Prediction Hi Lo
## Hi 8 6
## Lo 2 32
##
## Accuracy : 0.8333
## 95% CI : (0.6978, 0.9252)
## No Information Rate : 0.7917
## P-Value [Acc > NIR] : 0.3061
##
## Kappa : 0.5596
##
## Mcnemar’s Test P-Value : 0.2888
##
## Sensitivity : 0.8000
## Specificity : 0.8421
## Pos Pred Value : 0.5714
## Neg Pred Value : 0.9412
## Prevalence : 0.2083
## Detection Rate : 0.1667
## Detection Prevalence : 0.2917
## Balanced Accuracy : 0.8211
##
## ’Positive’ Class : Hi
##

accuracy.meas(rbftune.test, test$MeanCount)

##
## Call:
## accuracy.meas(response = rbftune.test, predicted = test$MeanCount)
##
## Examples are labelled as positive when predicted is greater than 0.5
##
## precision: 0.792
## recall: 1.000
## F: 0.442

lin.svmroc <- roc.curve(test$MeanCount, lintune.test, col="black")
rbf.svmroc <- roc.curve(test$MeanCount, rbftune.test, add.roc=TRUE, col="Red")
legend("topleft", c("Linear","Radial"), col=1:3, lty=1, lwd=2)
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# Linear AUC
lin.svmroc

## Area under the curve (AUC): 0.750

# Radial AUC
rbf.svmroc

## Area under the curve (AUC): 0.756

Seen here, a binary classification approach greatly improved our results. At an 85.4% accuracy for the
linear kernal, our output might actually be useful (Note: RBF failed the p-value). However, with a negative
prediction value of 1.000 and a positive prediction value of 0.500, it might be time to address the class
imbalance as we need our model to better identify positive observations. Also, as seen, our precision/recall/f-
values are very satisfactory while improvements can still be made to the area under the ROC curve.

Balancing Classes

Now, I’m going to apply synthetic sampling techniques - Random Oversampling Examples (ROSE),
undersampling, and oversampling. Perhaps by boosting the number of “hi” observations in the training set,
we can increase our positive detection rate on the test set. Given the relatively small class imbalance, I’m
not sure how effective the results will be.
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#Oversampling - N = 394
data_balanced_over <- ovun.sample(MeanCount ~ ., data = train, method = "over", seed = 19)$data
table(data_balanced_over$MeanCount)

##
## Lo Hi
## 194 200

#Undersampling - N= 164
data_balanced_under <- ovun.sample(MeanCount ~ ., data = train, method = "under", seed = 1)$data
table(data_balanced_under$MeanCount)

##
## Lo Hi
## 81 83

#ROSE sampling - N=150
data_balanced_rose <- ROSE(MeanCount ~ ., data = train, seed = 99, N=150)$data
table(data_balanced_rose$MeanCount)

##
## Lo Hi
## 73 77

Balanced Sets Applied to Both Linear and RBF SVM Kernals

Linear

set.seed(132)
#Linear
linsvm.rose <- tune.svm(MeanCount~.,data=data_balanced_rose, kernel="linear",

cost=c(0.001,0.01,0.1,1,5,10,100,1000))
linsvm.over <- tune.svm(MeanCount~.,data=data_balanced_over, kernel="linear",

cost=c(0.001,0.01,0.1,1,5,10,100,1000))
linsvm.under <- tune.svm(MeanCount~.,data=data_balanced_under, kernel="linear",

cost=c(0.001,0.01,0.1,1,5,10,100,1000))
best.linsvm.rose <- linsvm.rose$best.model
best.linsvm.over <- linsvm.over$best.model
best.linsvm.under <- linsvm.under$best.model
lineartune.test.rose <-predict(best.linsvm.rose, newdata=test)
lineartune.test.over <- predict(best.linsvm.over, newdata=test)
lineartune.test.under <- predict(best.linsvm.under, newdata=test)
confusionMatrix(lineartune.test.rose, test$MeanCount)

## Confusion Matrix and Statistics
##
## Reference
## Prediction Hi Lo
## Hi 12 17
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## Lo 2 17
##
## Accuracy : 0.6042
## 95% CI : (0.4527, 0.7423)
## No Information Rate : 0.7083
## P-Value [Acc > NIR] : 0.956483
##
## Kappa : 0.2716
##
## Mcnemar’s Test P-Value : 0.001319
##
## Sensitivity : 0.8571
## Specificity : 0.5000
## Pos Pred Value : 0.4138
## Neg Pred Value : 0.8947
## Prevalence : 0.2917
## Detection Rate : 0.2500
## Detection Prevalence : 0.6042
## Balanced Accuracy : 0.6786
##
## ’Positive’ Class : Hi
##

confusionMatrix(lineartune.test.over, test$MeanCount)

## Confusion Matrix and Statistics
##
## Reference
## Prediction Hi Lo
## Hi 9 7
## Lo 5 27
##
## Accuracy : 0.75
## 95% CI : (0.604, 0.8636)
## No Information Rate : 0.7083
## P-Value [Acc > NIR] : 0.3234
##
## Kappa : 0.4194
##
## Mcnemar’s Test P-Value : 0.7728
##
## Sensitivity : 0.6429
## Specificity : 0.7941
## Pos Pred Value : 0.5625
## Neg Pred Value : 0.8438
## Prevalence : 0.2917
## Detection Rate : 0.1875
## Detection Prevalence : 0.3333
## Balanced Accuracy : 0.7185
##
## ’Positive’ Class : Hi
##
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confusionMatrix(lineartune.test.under, test$MeanCount)

## Confusion Matrix and Statistics
##
## Reference
## Prediction Hi Lo
## Hi 10 13
## Lo 4 21
##
## Accuracy : 0.6458
## 95% CI : (0.4946, 0.7784)
## No Information Rate : 0.7083
## P-Value [Acc > NIR] : 0.86601
##
## Kappa : 0.2792
##
## Mcnemar’s Test P-Value : 0.05235
##
## Sensitivity : 0.7143
## Specificity : 0.6176
## Pos Pred Value : 0.4348
## Neg Pred Value : 0.8400
## Prevalence : 0.2917
## Detection Rate : 0.2083
## Detection Prevalence : 0.4792
## Balanced Accuracy : 0.6660
##
## ’Positive’ Class : Hi
##

accuracy.meas(lineartune.test.rose, test$MeanCount)

##
## Call:
## accuracy.meas(response = lineartune.test.rose, predicted = test$MeanCount)
##
## Examples are labelled as positive when predicted is greater than 0.5
##
## precision: 0.604
## recall: 1.000
## F: 0.377

accuracy.meas(lineartune.test.over, test$MeanCount)

##
## Call:
## accuracy.meas(response = lineartune.test.over, predicted = test$MeanCount)
##
## Examples are labelled as positive when predicted is greater than 0.5
##
## precision: 0.333
## recall: 1.000
## F: 0.250
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accuracy.meas(lineartune.test.under, test$MeanCount)

##
## Call:
## accuracy.meas(response = lineartune.test.under, predicted = test$MeanCount)
##
## Examples are labelled as positive when predicted is greater than 0.5
##
## precision: 0.479
## recall: 1.000
## F: 0.324

rose.lin.svmroc <- roc.curve(test$MeanCount, lineartune.test.rose,
col="black")

over.lin.svmroc <- roc.curve(test$MeanCount, lineartune.test.over,
add.roc = T, col="red")

under.lin.svmroc <- roc.curve(test$MeanCount, lineartune.test.under,
add.roc = T, col="green")

rose.lin.svmroc

## Area under the curve (AUC): 0.679

over.lin.svmroc

## Area under the curve (AUC): 0.718

under.lin.svmroc

## Area under the curve (AUC): 0.666

legend("topleft", c("ROSE","Over","Under"), col=1:4, lty=1, lwd=2)
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#Radial Kernal
rbfsvm.rose <- tune.svm(MeanCount~.,data=data_balanced_rose, kernel="radial",

gamma=c(0.1,0.5,1,2,3,4),
cost=c(0.001,0.01,0.1,1,5,10,100))

rbfsvm.over <- tune.svm(MeanCount~.,data=data_balanced_over, kernel="radial",
gamma=c(0.1,0.5,1,2,3,4),
cost=c(0.001,0.01,0.1,1,5,10,100))

rbfsvm.under <- tune.svm(MeanCount~.,data=data_balanced_under, kernel="radial",
gamma=c(0.1,0.5,1,2,3,4),
cost=c(0.001,0.01,0.1,1,5,10,100))

best.rbfsvm.rose <- rbfsvm.rose$best.model
best.rbfsvm.over <- rbfsvm.over$best.model
best.rbfsvm.under <- rbfsvm.under$best.model
rbftune.test.rose = predict(best.rbfsvm.rose, newdata=test)
rbftune.test.over = predict(best.rbfsvm.over, newdata=test)
rbftune.test.under = predict(best.rbfsvm.under, newdata=test)
confusionMatrix(rbftune.test.rose,test$MeanCount)

## Confusion Matrix and Statistics
##
## Reference
## Prediction Hi Lo
## Hi 13 14
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## Lo 1 20
##
## Accuracy : 0.6875
## 95% CI : (0.5375, 0.8134)
## No Information Rate : 0.7083
## P-Value [Acc > NIR] : 0.688944
##
## Kappa : 0.4059
##
## Mcnemar’s Test P-Value : 0.001946
##
## Sensitivity : 0.9286
## Specificity : 0.5882
## Pos Pred Value : 0.4815
## Neg Pred Value : 0.9524
## Prevalence : 0.2917
## Detection Rate : 0.2708
## Detection Prevalence : 0.5625
## Balanced Accuracy : 0.7584
##
## ’Positive’ Class : Hi
##

confusionMatrix(rbftune.test.over,test$MeanCount)

## Confusion Matrix and Statistics
##
## Reference
## Prediction Hi Lo
## Hi 3 0
## Lo 11 34
##
## Accuracy : 0.7708
## 95% CI : (0.6269, 0.8797)
## No Information Rate : 0.7083
## P-Value [Acc > NIR] : 0.216188
##
## Kappa : 0.2787
##
## Mcnemar’s Test P-Value : 0.002569
##
## Sensitivity : 0.2143
## Specificity : 1.0000
## Pos Pred Value : 1.0000
## Neg Pred Value : 0.7556
## Prevalence : 0.2917
## Detection Rate : 0.0625
## Detection Prevalence : 0.0625
## Balanced Accuracy : 0.6071
##
## ’Positive’ Class : Hi
##
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confusionMatrix(rbftune.test.under,test$MeanCount)

## Confusion Matrix and Statistics
##
## Reference
## Prediction Hi Lo
## Hi 12 10
## Lo 2 24
##
## Accuracy : 0.75
## 95% CI : (0.604, 0.8636)
## No Information Rate : 0.7083
## P-Value [Acc > NIR] : 0.32340
##
## Kappa : 0.482
##
## Mcnemar’s Test P-Value : 0.04331
##
## Sensitivity : 0.8571
## Specificity : 0.7059
## Pos Pred Value : 0.5455
## Neg Pred Value : 0.9231
## Prevalence : 0.2917
## Detection Rate : 0.2500
## Detection Prevalence : 0.4583
## Balanced Accuracy : 0.7815
##
## ’Positive’ Class : Hi
##

accuracy.meas(rbftune.test.rose, test$MeanCount)

##
## Call:
## accuracy.meas(response = rbftune.test.rose, predicted = test$MeanCount)
##
## Examples are labelled as positive when predicted is greater than 0.5
##
## precision: 0.562
## recall: 1.000
## F: 0.360

accuracy.meas(rbftune.test.over, test$MeanCount)

##
## Call:
## accuracy.meas(response = rbftune.test.over, predicted = test$MeanCount)
##
## Examples are labelled as positive when predicted is greater than 0.5
##
## precision: 0.062
## recall: 1.000
## F: 0.059
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accuracy.meas(rbftune.test.under, test$MeanCount)

##
## Call:
## accuracy.meas(response = rbftune.test.under, predicted = test$MeanCount)
##
## Examples are labelled as positive when predicted is greater than 0.5
##
## precision: 0.458
## recall: 1.000
## F: 0.314

rose.rbf.svmroc <- roc.curve(test$MeanCount, rbftune.test.rose,
col="black")

over.rbf.svmroc <- roc.curve(test$MeanCount, rbftune.test.over,
add.roc = T, col="red")

under.rbf.svmroc <- roc.curve(test$MeanCount, rbftune.test.under,
add.roc = T, col="green")

rose.rbf.svmroc

## Area under the curve (AUC): 0.758

over.rbf.svmroc

## Area under the curve (AUC): 0.607

under.rbf.svmroc

## Area under the curve (AUC): 0.782

legend("topleft", c("ROSE","Over","Under"), col=1:4, lty=1, lwd=2)
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When applying the balancing methods to linear and RBF SVMs, performance decreased - both in terms
of accuracy and our ROC measures. Sparing any higher level tuning and risking overfitting, it appears the
linear SVM using the unbalanced training set yielded the greatest results for binary classification. To push
boundaries a little further, I’m going to approach this as a multi-class problem using three classes - lo, mid,
and hi.

Multiple Classes Employed with SVMs

I will be binning counts greater than 100 as “Hi, 20-99 as”Mid“, and 1-19 as”Lo". This approach could
be very useful in flagging concerning environmental conditions for mosquito densities, while also identifying
weather that is of least concern. As you might imagine, this multi-class problem produces slightly more class
imbalance than the binary approach. Therefore, after applying imbalanced training sets to linear and radial
SVMs, I’ll apply some basic synthetic balancing methods (under and over sampling). Because we’re working
with 3 classes as opposed to 2, we are more limited in our balancing techniques as ROSE and SMOTE are
most easily applied in binary decision making.

Data Read-In, Training/Test Partioning

#Machine Learning
mos<- read.csv("mosq.csv", header=T)
mos$Date<-NULL
mos$Week<-as.factor(mos$Week)
mos$Month<-as.factor(mos$Month)
mos$MeanCount<-signif(mos$MeanCount, digits=2)
mos$MeanCount <- ifelse(mos$MeanCount > 99, "Hi",
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ifelse(mos$MeanCount >19, "Mid", "Lo"))
mos$MeanCount<-as.factor(mos$MeanCount)
preProcValues <- preProcess(mos, method = c("center", "scale"))
mos <- predict(preProcValues, mos)
set.seed(45)
trainIndex <- createDataPartition(mos$MeanCount, p = 0.85, list = FALSE, times = 1)
#Parse out training/test sets
train <- mos[ trainIndex,]
test <- mos[-trainIndex,]
#Check class distribution
prop.table(table(train$MeanCount))

##
## Hi Lo Mid
## 0.2563177 0.1660650 0.5776173

prop.table(table(test$MeanCount))

##
## Hi Lo Mid
## 0.2500000 0.1666667 0.5833333

Imbalanced Linear Kernal

set.seed(143)
lin.svm <- tune.svm(MeanCount~.,data=train, kernel="linear",

cost=c(0.001,0.01,0.1,1,5,10,100,1000))
best.linsvm <- lin.svm$best.model
lintune.test <- predict(best.linsvm, newdata=test)
confusionMatrix(test$MeanCount,lintune.test)

## Confusion Matrix and Statistics
##
## Reference
## Prediction Hi Lo Mid
## Hi 6 0 6
## Lo 1 1 6
## Mid 2 1 25
##
## Overall Statistics
##
## Accuracy : 0.6667
## 95% CI : (0.5159, 0.796)
## No Information Rate : 0.7708
## P-Value [Acc > NIR] : 0.96617
##
## Kappa : 0.3287
##
## Mcnemar’s Test P-Value : 0.08689
##
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## Statistics by Class:
##
## Class: Hi Class: Lo Class: Mid
## Sensitivity 0.6667 0.50000 0.6757
## Specificity 0.8462 0.84783 0.7273
## Pos Pred Value 0.5000 0.12500 0.8929
## Neg Pred Value 0.9167 0.97500 0.4000
## Prevalence 0.1875 0.04167 0.7708
## Detection Rate 0.1250 0.02083 0.5208
## Detection Prevalence 0.2500 0.16667 0.5833
## Balanced Accuracy 0.7564 0.67391 0.7015

Imbalanced Radial Kernal

set.seed(143)
rbf.svm <- tune.svm(MeanCount~.,data=train, kernel="radial",

gamma=c(0.1,0.5,1,2,3,4),
cost=c(0.001,0.01,0.1,1,5,10,100,1000))

best.rbfsvm <- rbf.svm$best.model
rbftune.test <- predict(best.rbfsvm, newdata=test)
confusionMatrix(test$MeanCount,rbftune.test)

## Confusion Matrix and Statistics
##
## Reference
## Prediction Hi Lo Mid
## Hi 2 0 10
## Lo 0 0 8
## Mid 1 0 27
##
## Overall Statistics
##
## Accuracy : 0.6042
## 95% CI : (0.4527, 0.7423)
## No Information Rate : 0.9375
## P-Value [Acc > NIR] : 1
##
## Kappa : 0.0952
##
## Mcnemar’s Test P-Value : NA
##
## Statistics by Class:
##
## Class: Hi Class: Lo Class: Mid
## Sensitivity 0.66667 NA 0.6000
## Specificity 0.77778 0.8333 0.6667
## Pos Pred Value 0.16667 NA 0.9643
## Neg Pred Value 0.97222 NA 0.1000
## Prevalence 0.06250 0.0000 0.9375
## Detection Rate 0.04167 0.0000 0.5625
## Detection Prevalence 0.25000 0.1667 0.5833
## Balanced Accuracy 0.72222 NA 0.6333
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Multiclass Balancing

set.seed(234)
#Undersampling training set
threedtrain <- downSample(x = train[2:44],y = train$MeanCount)
table(threedtrain$Class)

##
## Hi Lo Mid
## 46 46 46

colnames(threedtrain)[44]<- "MeanCount"
#Oversampling training set
threeutrain <- upSample(x = train[2:44],y = train$MeanCount)
table(threeutrain$Class)

##
## Hi Lo Mid
## 160 160 160

colnames(threeutrain)[44]<- "MeanCount"

Balanced Linear Kernal (Over and Under Sampled)

set.seed(143)
#Over Sampled Training Predictions
lin.svm <- tune.svm(MeanCount~.,data=threeutrain, kernel="linear",

cost=c(0.001,0.01,0.1,1,5,10,100,1000))
best.linsvm <- lin.svm$best.model
lintune.test <- predict(best.linsvm, newdata=test)
confusionMatrix(test$MeanCount,lintune.test)

## Confusion Matrix and Statistics
##
## Reference
## Prediction Hi Lo Mid
## Hi 7 0 5
## Lo 1 1 6
## Mid 8 6 14
##
## Overall Statistics
##
## Accuracy : 0.4583
## 95% CI : (0.3137, 0.6083)
## No Information Rate : 0.5208
## P-Value [Acc > NIR] : 0.8440
##
## Kappa : 0.0796
##
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## Mcnemar’s Test P-Value : 0.6386
##
## Statistics by Class:
##
## Class: Hi Class: Lo Class: Mid
## Sensitivity 0.4375 0.14286 0.5600
## Specificity 0.8438 0.82927 0.3913
## Pos Pred Value 0.5833 0.12500 0.5000
## Neg Pred Value 0.7500 0.85000 0.4500
## Prevalence 0.3333 0.14583 0.5208
## Detection Rate 0.1458 0.02083 0.2917
## Detection Prevalence 0.2500 0.16667 0.5833
## Balanced Accuracy 0.6406 0.48606 0.4757

#Under Sampled Training Predictions
lin.svm <- tune.svm(MeanCount~.,data=threedtrain, kernel="linear",

cost=c(0.001,0.01,0.1,1,5,10,100,1000))
best.linsvm <- lin.svm$best.model
lintune.test <- predict(best.linsvm, newdata=test)
confusionMatrix(test$MeanCount,lintune.test)

## Confusion Matrix and Statistics
##
## Reference
## Prediction Hi Lo Mid
## Hi 6 1 5
## Lo 2 2 4
## Mid 8 12 8
##
## Overall Statistics
##
## Accuracy : 0.3333
## 95% CI : (0.204, 0.4841)
## No Information Rate : 0.3542
## P-Value [Acc > NIR] : 0.6701
##
## Kappa : -0.0132
##
## Mcnemar’s Test P-Value : 0.1699
##
## Statistics by Class:
##
## Class: Hi Class: Lo Class: Mid
## Sensitivity 0.3750 0.13333 0.4706
## Specificity 0.8125 0.81818 0.3548
## Pos Pred Value 0.5000 0.25000 0.2857
## Neg Pred Value 0.7222 0.67500 0.5500
## Prevalence 0.3333 0.31250 0.3542
## Detection Rate 0.1250 0.04167 0.1667
## Detection Prevalence 0.2500 0.16667 0.5833
## Balanced Accuracy 0.5938 0.47576 0.4127
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Balanced Radial Kernal (Over and Under Sampled)

set.seed(143)
#Over Sampled Training Predictions
rbf.svm <- tune.svm(MeanCount~.,data=threeutrain, kernel="radial",

gamma=c(0.1,0.5,1,2,3,4),
cost=c(0.001,0.01,0.1,1,5,10,100,1000))

best.rbfsvm <- rbf.svm$best.model
rbftune.test <- predict(best.rbfsvm, newdata=test)
confusionMatrix(test$MeanCount,rbftune.test)

## Confusion Matrix and Statistics
##
## Reference
## Prediction Hi Lo Mid
## Hi 0 0 12
## Lo 0 0 8
## Mid 0 0 28
##
## Overall Statistics
##
## Accuracy : 0.5833
## 95% CI : (0.4321, 0.7239)
## No Information Rate : 1
## P-Value [Acc > NIR] : 1
##
## Kappa : 0
##
## Mcnemar’s Test P-Value : NA
##
## Statistics by Class:
##
## Class: Hi Class: Lo Class: Mid
## Sensitivity NA NA 0.5833
## Specificity 0.75 0.8333 NA
## Pos Pred Value NA NA NA
## Neg Pred Value NA NA NA
## Prevalence 0.00 0.0000 1.0000
## Detection Rate 0.00 0.0000 0.5833
## Detection Prevalence 0.25 0.1667 0.5833
## Balanced Accuracy NA NA NA

#Under Sampled Training Predictions
set.seed(143)
rbf.svm <- tune.svm(MeanCount~.,data=threedtrain, kernel="radial",

gamma=c(0.1,0.5,1,2,3,4),
cost=c(0.001,0.01,0.1,1,5,10,100,1000))

best.rbfsvm <- rbf.svm$best.model
rbftune.test <- predict(best.rbfsvm, newdata=test)
confusionMatrix(test$MeanCount,rbftune.test)

## Confusion Matrix and Statistics
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##
## Reference
## Prediction Hi Lo Mid
## Hi 5 1 6
## Lo 0 3 5
## Mid 4 11 13
##
## Overall Statistics
##
## Accuracy : 0.4375
## 95% CI : (0.2948, 0.5882)
## No Information Rate : 0.5
## P-Value [Acc > NIR] : 0.8438
##
## Kappa : 0.0769
##
## Mcnemar’s Test P-Value : 0.3018
##
## Statistics by Class:
##
## Class: Hi Class: Lo Class: Mid
## Sensitivity 0.5556 0.2000 0.5417
## Specificity 0.8205 0.8485 0.3750
## Pos Pred Value 0.4167 0.3750 0.4643
## Neg Pred Value 0.8889 0.7000 0.4500
## Prevalence 0.1875 0.3125 0.5000
## Detection Rate 0.1042 0.0625 0.2708
## Detection Prevalence 0.2500 0.1667 0.5833
## Balanced Accuracy 0.6880 0.5242 0.4583

Again, the unbalanced linear SVM performed the best out of all our models. However, 66.7% accuracy
rate isn’t very useful and our p-value violates our 0.05 threshold of significance. In addition while easily
identifying the ‘mid’ classes, this model performed extremely poorly on categorizing ‘lo’ mosquito counts.

Discussion

I did explore other learning algorithms, such decision trees and random forests, and I attempted to
employ ensemble methods for boosting the results of my SVMs. However, none of these processes yielded
results that exceeded the basic linear SVM and our unaltered training set. By all accuracy and confidence
measures, the linear SVM would be the method I’d choose going forward. I know there exists a plethora of
other machine learning and AI techniques that might more gracefully handle my dataset, but it became too
computationally exhausting to test so many other methods and those approaches sometimes fell outside of
my current skill level.

To improve my dataset and perhaps boost my results, I could consider removing all stream data because
it proved to be an insignificant contributor to mosquito density. Also, because scarcity in the stream gage
data caused me to narrow my entire project to 2017-2020, I could go back and add the years 2015 and 2016.
Having 5 years of data (2015-2020) would allow me to create larger training and test sets which would correct
learning deficiencies in my completed models.

Often a problem in data mining, the DEPs mosquito dataset is maintained in coordination with mon-
itoring programs throughout counties in the commonwealth of Pennsylvania. The data wasn’t necessarily
collected and compiled with the implied purpose of being used in machine algorithms. It would be pro-
hibitively costly and inefficient to monitor environmental conditions every day at every site for five years,
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so I largely generalized all of my weather data off of the mentioned airport stations. In the past, funded
research in Canada and metro-Chicago has built in these kinds of scientific qualitative controls with much
better results.

Finally, in the future and with many more years of data, I think it’d be interesting to include daily
Positive West Nile cases as a target variable. I know the daily number of mosquitos caught and the time of
year are highly correlated to incidences of West Nile Virus, and I feel my machine learning techniques would
be especially useful in providing early warning of positive WNV cases prior to the test results returning from
a lab.
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