"Predictive Indices from the Susquehanna River for ChlA
Concentration at the Head of the Chesapeake Bay'

Britton Hartzok

4/30/2021

Introduction

The Susquehanna River alone introduces 40% of fresh water to the Chesapeake Bay which majorly
impacts the delicate chemistry of this vast ecosystem. The purpose of my analysis is to create a predictive
model for chlorophyll-a concentrations at the head of the Bay by using water quality metrics of the lower
and middle portions of the Susquehanna River. My data has been sourced from two authorities - the USGS
Stream Monitoring Network as well as the Chesapeake Bay Program’s Nontidal Water Quality Monitoring
(NTWQM) and Tidal Water Quality Monitoring (TWQM) programs. I only examined 4 years of data (2016-
2020) which greatly limited my choices of machine learning algorithms. While I created some relatively
successful models, my accuracy and generalized fit would’ve been made more credible had I studied a 10 or
20 year span.

The upper Chesapeake Bay is famous for Spring diatom blooms. However, because I didn’t examine
one particular type of phytoplankton, I really had no threshold measurement for what would correspond
to a bloom for any given species. This limited my approach to using only numerical predictions, although
I’d be very interested in working with classifiers in the future. With the exception of continuous in-situ
WQ monitoring stations, most of my variables were only measured on a monthly or biweekly basis. With
sparse data for each day or week, I chose to create monthly averages which further constricted my analysis
(n=48). However, as you will see, my results were rather satisfactory and are useful in the broader context
of understanding the interconnected relationship of the Susquehanna and Chesapeake systems.

Methodology

I started out this analysis with 109 predictor variables. After much trimming and regressing, I was able
to hone my dataset down to just 30 of the most significant predictor features. After noticing my models were
alarmingly accurate, I became suspicious. Upon further investigation, I found two predictor variables needed
to be eliminated for my analysis to be valid. “BelowDamChla” clearly has some collinearity to downstream
chlorophyll-a at station CB1.1, and “CBPHEOQO” (pheophytin) is a metric for calculating the Phytoplankton
Index of Biotic Integrity (PIBI). Both of these variables compromise the coherence of my model and were
removed. This change greatly reduced the accuracy of all my models. However, as you’ll see, select machine
learning methods were pretty resilient to the change - a testement to their power and usefulness.

Variable Selection (48 obs. of 31 variables)

(Locations Listed Geographically North-South) Water Temperature (°C):
- DanvilleTempC (Susquehanna River - Danville)



- JuniataT (Juniata River - Newport, Perry County)

- PaxtonT (Paxton Creek - Dauphin County)

- CityIslandT (City Island-Susquehanna River - Harrisburg)
- BreechesT (Yellow Breeches - Cumberland County)

- eConewagoT (Conewago Creek - Lancaster County)

- wConewagoT (Conewago Creek - York County)

- ConestogaT (Conestoga River - Lancaster County)

- MariettaT (Chiques Creek/Susquehanna - Lancaster County)
- MuddyCreekT (Muddy Creek - York County)

- DamT (Conowingo Dam - Maryland)

- BelowDamTemp (Below Conowingo Dam - Maryland)

- CBWTEMP (CB Mainstem Station 1.1 - Maryland)

Dissolve Oxygen (mg/L) - JuniataDO - BreechesDO - wConewagoDO - MariettaDO - ConestogaDO -
MuddyRunDO

- BelowDamDO

- DamDO

- CBDO

Nitrogen (mg/L)
- ConestogaN (Total N)
- CBPN (Particulate N)

Phosphorus (mg/L)
- JuniataP (Total P)
- CBTP (Total P)

Silica (mg/L)
- DamSIF (Filtered Si- perhaps related to diatoms)

Carbon (mg/L) - CBPC (Particulate C)

pH (standard units)
- CBPH

Sigma T (No Units) - CBSIGMA_T (Water Density as Function of (WTEMP, Salinity)
Chlorophyll-a (ug/L) - BayChla (Our dependent variable)

Analysis

Data Read-In
Missing values will be imputed using Multiple Imputation by Chained Equations

knitr: :opts_chunk$set(fig.width=16, fig.height=16)

wg<- read.csv("algae.csv", header=T)

#MICE

wq <- mice(wq,m=5,maxit=10,meth="pmm’,seed=320)

# Completed imputation, selecting our completed dataframe
wq <- complete(wq,1)

# Check for NAs - Returns ’FALSE’, No N/As

anyNA (wq)

# Summary Statistics

describe (wq)



Scaling, Centering, Basic Correlation Between Variables

preProcValues <- preProcess(wq, method = c("center", "scale"))
numvars <- predict(preProcValues, wq)

res2 <- rcorr(as.matrix(numvars))

# Insignificant correlations, at alpha=0.05, are crossed out
set.seed(31)

corrplot(res2$r, type="upper", order="hclust", addCoef.col = TRUE,
col=colorRampPalette(c("blue","white","red")) (200),
p.mat = res2$P, sig.level = 0.05, insig = "pch")
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Multivariate Linear Regression

knitr: :opts_chunk$set(fig.width=6, fig.height=6)
# Multivariate Linear Regresstion
set.seed(412)

Im.all <- 1m(BayChla~., data=wq)
wq<-wql[,-c(6,9,12,15,16,22)]
lm.tune <-1lm(BayChla~., data=wq)
wq<-wql[,-c(1,4,21,22)]

1lm.tune <-1lm(BayChla~., data=wq)
wq<-wql[,-c(1,8,19)]

1m.tune <-1m(BayChla~., data=wq)
wq<-wq[,-c(8)]

lm.tune <-1lm(BayChla~., data=wq)
wg<-wql[,-c(8,11)]

1lm.tune <-1lm(BayChla~., data=wq)
wg<-wql[,-c(4,7,11)]

1m.tune <-1m(BayChla~., data=wq)
wq<-wql,-c(1,2,11)]

lm.tune <-1lm(BayChla~., data=wq)
wq<-wql[,-c(1,4)]

1m.final <-1m(BayChla~., data=wq)
summary (lm.final)

##

## Call:

## 1m(formula = BayChla ~ ., data = wq)

##

## Residuals:

## Min 1Q Median 3Q Max

## -3.824 -1.149 0.162 1.014 7.053

##

## Coefficients:

#t Estimate Std. Error t value Pr(>ltl)

## (Intercept) -23.55250 9.47090 -2.487 0.017051 =*
## JuniataT 0.23169 0.06026 3.845 0.000413 **x
## MuddyCrkDO 0.20688 0.09314 2.221 0.031916 *
## DamSIF -1.82534 0.56563 -3.227 0.002461 *x*
## BreechesT 0.12235 0.06656 1.838 0.073289 .
## CBPC 5.87985 1.03868 5.661 1.31e-06 **x*
## CBPH 2.44028 0.98200 2.485 0.017126 =*
## ——-

## Signif. codes: O ’**xx’> 0.001 ’*x’ 0.01 ’%’ 0.05 ’.” 0.1’ > 1
##

## Residual standard error: 1.995 on 41 degrees of freedom
## Multiple R-squared: 0.627, Adjusted R-squared: 0.5724
## F-statistic: 11.49 on 6 and 41 DF, p-value: 1.668e-07

Now that certain features have been eliminated, let’s try linear regression on a training and
test set.



set.seed(1981)
#Training/test set at 80:10 ratio
trainIndex <- createDataPartition(wq$BayChla,
p = 0.8, list = FALSE, times =
#Parse out training/test sets
train <- wq[ trainIndex,] #n=40
test <- wql-trainIndex,] #n=8

set.seed(412)

Im.all <- 1m(BayChla~., data=train)
train<-train[,-c(4)]

final.tune <-1m(BayChla~., data=train)
summary (final.tune)

##

## Call:

## 1m(formula = BayChla ~ ., data = train)

##

## Residuals:

## Min 1Q Median 3Q Max

## -3.2842 -1.1719 0.1754 1.0103 6.1879

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -23.90561 9.16000 -2.610 0.013375 *
## JuniataT 0.34636 0.06611 5.239 8.42e-06 *x*x
## MuddyCrkDO 0.19779 0.08865 2.231 0.032382 *
## DamSIF -2.31585 0.61033 -3.794 0.000581 =*x*x*
## CBPC 6.61744 1.04962 6.305 3.47e-07 **x*
## CBPH 2.56191 0.98128 2.611 0.013343 *
## ———

## Signif. codes: O ’**x> 0.001 ’*x> 0.01 ’%’ 0.05 ’.” 0.1 7 > 1
##

## Residual standard error: 1.861 on 34 degrees of freedom
## Multiple R-squared: 0.7123, Adjusted R-squared: 0.67
## F-statistic: 16.84 on 5 and 34 DF, p-value: 2.307e-08

tune.test<-predict(final.tune,newdata=test)

plot(tune.test,test$BayChla,cex=1.5, cex.lab=1.5, cex.axis=1.5, col="red", type='"p",

D)

pch=15)
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tune.test

tune.test.resid<-tune.test-test$BayChla

#Mean Absolute Error (MAE)
linregMAE<-sum(abs(tune.test.resid))/nrow(test)
linregMAE

## [1] 2.280986

#Root Mean Squared Error
linregRMSE<-sqrt (mean(tune.test.resid"2))
linregRMSE

## [1] 3.084639

With a prediction accuracy of MAE= + 2.28 mg/L Chla and a RMSE = 3.08, this linear regression
model isn’t extremely accurate. Next, I'm going to feed the entire untrimmed dataset into a support vector
machine (SVM) with both linear and radial kernals as well as an elastic net regression fit model.



Machine Learning Techniques for Variable Prediction (SVMs and
Elastic Net)

Cost-Tuned Linear SVM on Full Data Set

# Train control with repeated 10-fold cross walidation, repeated 3 times
# Need to be careful with trctrl function to avoid "overtuning”,
## R-Squared=1 isn’t always a good thing

trctrl <- trainControl(method = "repeatedcv", number = 10, repeats = 3)
# Training method, preprocessing
svm_Linear <- train(BayChla ~., data = train, method =’svmLinear’,
trControl=trctrl, tunelength = 10,
preProcess = c("center", "scale"))

svm_Linear

## Support Vector Machines with Linear Kernel

#it

## 40 samples

## 30 predictors

#i#

## Pre-processing: centered (30), scaled (30)

## Resampling: Cross-Validated (10 fold, repeated 3 times)
## Summary of sample sizes: 36, 35, 37, 37, 36, 36,

## Resampling results:

##

##  RMSE Rsquared MAE

##  3.664094 0.3015589 2.995365
##

## Tuning parameter ’C’ was held constant at a value of 1

test_pred <- predict(svm_Linear, newdata = test)
resids<-test_pred-test$BayChla

#Mean Absolute Error (MAE)

linsvmMAE<-sum(abs (resids))/nrow(test)
linsvmMAE

## [1] 2.422026

#Root Mean Squared Error
linsvmRMSE<-sqrt (mean(resids~2))
1linsvmRMSE

## [1] 3.654987

plot(test_pred,test$BayChla, cex=1.5, cex.lab=1.5, cex.axis=1.5, col="red", type="p", pch=15)
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Sigma/Cost-Tuned Radial SVM Tuning on Original Training Set

svm_rbf <- train(BayChla ~., data = train, method =’svmRadial’,
trControl=trctrl, tunelength = 10,
preProcess = c("center", "scale"))

svm_rbf

## Support Vector Machines with Radial Basis Function Kernel
##

## 40 samples

## 30 predictors

##

## Pre-processing: centered (30), scaled (30)

## Resampling: Cross-Validated (10 fold, repeated 3 times)
## Summary of sample sizes: 37, 35, 37, 36, 36, 36,

## Resampling results across tuning parameters:

##



## C RMSE Rsquared MAE

#i# 0.25 2.378375 0.5729166 1.839877
#i# 0.50 2.290754 0.5597836 1.795598
## 1.00 2.237112 0.5519931 1.769375
## 2.00 2.180154 0.5344902 1.756969
## 4.00 2.187094 0.5292108 1.750400
#i# 8.00 2.302807 0.5167578 1.853620
#i# 16.00 2.492595 0.5095429 1.999945
#i# 32.00 2.492595 0.5095429 1.999945
## 64.00 2.492595 0.5095429 1.999945
## 128.00 2.492595 0.5095429 1.999945
#

## Tuning parameter ’sigma’ was held constant at a value of 0.0245123
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were sigma = 0.0245123 and C = 2.

test_pred <- predict(svm_rbf, newdata = test)
rbf .resids<-test_pred-test$BayChla

#Mean Absolute Error (MAE)

rbfMAE<-sum(abs (rbf .resids))/nrow(test)
rbfMAE

## [1] 1.632891

#Root Mean Squared Error
rbfRMSE<-sqrt (mean (rbf.resids™2))
rbfRMSE

## [1] 1.80266

plot(test_pred,test$BayChla,cex=1.5, cex.lab=1.5, cex.axis=1.5, col="red", type="p",

pch=15)
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Elastic Net Learning Algorithm Tuned with Fraction of Full Solution (FFS) and Weight of
Decay

## Elastic Net Tuned on Fraction of Full Solution and Weight Decay
enet <- train(BayChla ~., data = train, method =’enet’,
trControl=trctrl, tunelength = 10,
preProcess = c("center", "scale"))
#Best Fraction and Lambda (Decay) coefficients
enet$bestTune

## fraction lambda
## 93 0.2611111 0.1

test_pred <- predict(enet, newdata = test)
enet.resids<-test_pred-test$BayChla

#Mean Absolute Error (MAE)

10



enetMAE<-sum(abs(enet.resids))/nrow(test)
enetMAE

## [1] 1.822627

#Root Mean Squared Error
enetRMSE<-sqrt (mean(enet.resids”2))
enetRMSE

## [1] 2.163941

plot(test_pred,test$BayChla,cex=1.5, cex.lab=1.5, cex.axis=1.5, col="red", type="p", pch=15)
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Linear Regression Linear SVM Radial SVM Elastic Net

Outof | RSE R2 |Adj.R2| P-Val |[RMSE| R2 Cost CV_|JRMSE| R2 MAE | Cost |[RMSE| R2 MAE |Lambda|
Box Stats] 1.861 | 0.71 0.67 0 3.66 0.3 1 10-Fold] 2.18 0.53 1.76 2 2.02 | 0.62 1.67 0.1
Test Set MAE RMSE MAE RMSE MAE RMSE MAE RMSE
Accuracy 2.28 3.08 24 3.66 1.63 1.8 1.82 2.2

Figure 1: Summary Table

Discussion

Analysis was very limited by my low number of observations (n=48). I operated on a small training
set (n=40) and predicted on an even smaller test set (n=8). In the future, I'd like to investigate 10-20
years worth of data rather than 4. With the exception of the linear SVM, I was mostly pleased with the
improvements seen with the various machine learn methods. The challenge with opting for higher power
models is that you lose flexibility and often overfit the model to your particular set of data rather than
creating a model that can generalize and remain accurate on new sets of data. With that being said, I
tried to keep my tuning techniques to a minimum so as to simplify model explanation and increase ease of
replication.

Although the linear regression model has the highest R"2 value, the root-mean-squared-error(RMSE)
observed on the test set disqualified this model for me. The linear SVM performed notably worse with a
RMSE of 3.66. The Radial SVM and the Elastic Net were the strongest performers. At a mean-absolute-
error(MAE) of between £1.63-1.82 mg/L ChlA, they are both within a tolerable range of error. In addition,
their respective RMSEs on the test set are dramatically lower than the linear regression.

I tried to approach this data from a classification perspective as well. I ‘binned’ the ChlA concentrations
on a set scale of 0.5 and 1 mg/L increments, however this obviously severely limited class counts and
proportions. In some cases, the training module only had 1 opportunity to learn any one class. Likewise,
my test set often had just one instance of each class which lowered accuracy dramatically. Therefore, if I
were to go back and retrieve a greater time span of data, I would also attempt classification methods in my
machine learning process.
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