

- 1 Solve the simultaneous equations x + y = 4 and $x^2 + y^2 = 40$.
- 2 If $x^2 + 3x 1 = (x + a)^2 + b$, find the values of *a* and *b*.
- 3 Find the coordinates of the points of intersection of the circle with $(x-1)^2 + y^2 = 9$ and the line y = 3x.
- 4 Find the coordinates of the points of intersection of the parabola with equation $y = 2(x 1)^2 + 4$ and the line with equation y = 4x.
- 5 Express each of the following in partial fractions.

a
$$\frac{x}{x^2 - 4}$$

b $\frac{5x}{(2x + 1)(x^2 + 1)}$
c $\frac{2x^2 + 1}{x(x - 1)^2}$

- 6 Solve each of the following quadratic functions for *x*.
 - **a** $tx^2 x + 1 = 0$ **b** $x^2 - 16x = t$ **c** $(1+t)x^2 + t - 1 = 0$
- 7 **a** A man starts at 2 p.m. to walk to a place 26 km away. He walks at a constant speed until 4 p.m. when he increases his speed by 2 km/h. He reaches his destination at 5:30 p.m. At what speed did he walk for the first two hours?
 - **b** A man walks for 12 km at *x* km/h and then jogs for another 12 km at (x + 2) km/h. He walks for a total of 5 hours. Find the value of *x*.
- 8 If $x^3 = a(x+1)^3 + b(x+1)^2 + c(x+1) + d$, find the values of a, b, c and d.
- 9 If a particle goes 20 m at x m/s and a second particle takes 9 seconds less to travel 20 m travelling at (x + 2) m/s, find the value of x.
- 10 a Find the coordinates of the points of intersection of the parabola with equation $y = x^2 x 12$ and the line y = x + a.
 - **b** Find the coordinates of the points of intersection when: **i** a = 3**ii** a = -4.
- 11 The difference between the reciprocals of two consecutive, positive, even numbers is $\frac{1}{144}$. Find the two numbers.

Units 1 & Z

Cambridge Senior Specialist Mathematics AC/VCE Units 1 & 2 Chapter 5 Algebra II: Assignment

- 12 a
- Express in partial fractions $\frac{-4x+5}{(x+4)(x-3)}$. Prove that if $ax^3 + bx^2 + cx + d = (x+1)^2(px+q)$, then b = 2a + d and b c = a + 2d.
 - Express in partial fractions $\frac{-2x+8}{(x+4)(x-3)}$. С
 - Prove that if $ax^{3} + bx^{2} + cx + d = (x 2)^{2}(px + q)$, then $b = -4a + \frac{1}{4}d$ and d c = 4a - d.
- 13 Find the coordinates of the point(s) where the line x + 3y = -11 intersects the circle $x^2 + y^2 - 10x + 4y + 19 = 0$.