# CHAPTER Quadratic expressions and equations

# Mathematics of flight

If you blow air across the top of a small piece of paper it will lift rather than be forced down. Daniel Bernoulli, an 18th-century Swiss mathematician and scientist, discovered the relationship between fluid pressure and fluid speed, simply represented by this quadratic equation:

$$P = -\frac{1}{2}v^2 + c$$
, where *P* is internal pressure, *v* is

speed and *c* is a constant.

As air is a fluid, Bernoulli's law shows us that with increased air speed there is decreased internal air pressure. This explains why, when a cyclonic wind blows across a house roof, the stronger air pressure from inside the house can push the roof off. The aerofoil shape of a bird or plane wing (i.e. concave-down on the top) causes air to flow at a higher speed over the wing's upper surface and hence air pressure is decreased. The air of higher pressure under the wing helps to lift the plane or bird. Bernoulli's quadratic equation shows us that wing lift is proportional to the square of the airspeed.

# Online resources 🎍

A host of additional online resources are included as part of your Interactive Textbook, including HOTmaths content, video demonstrations of all worked examples, auto-marked quizzes and much more.

# In this chapter

# 5A Expanding expressions (CONSOLIDATING)

- 5B Factorising expressions
- **5C** Factorising monic quadratic trinomials
- **5D** Factorising non-monic quadratic trinomials (10A)
- **5E** Factorising by completing the square
- **5F** Solving quadratic equations using factorisation
- 5G Applications of quadratics
- **5H** Solving quadratic equations by completing the square
- **5I** Solving quadratic equations using the quadratic formula

# **Victorian Curriculum**

## NUMBER AND ALGEBRA Patterns and algebra

Factorise algebraic expressions by taking out a common algebraic factor (VCMNA329)

Expand binomial products and factorise monic quadratic expressions using a variety of strategies (VCMNA332)

Substitute values into formulas to determine an unknown and re-arrange formulas to solve for a particular term (VCMNA333)

#### Linear and non-linear relationships

Solve simple quadratic equations using a range of strategies (VCMNA341)

(10A) Factorise monic and non-monic quadratic expressions and solve a wide range of quadratic equations derived from a variety of contexts (VCMNA362)

the fully loaded weight of a plane by the wing area. Planes with a large wing loading need large wings or a high airspeed or both to achieve lift. The gigantic Antonov cargo plane has a wing loading of around 660 kg/m<sup>2</sup> and can lift enormous weights due to its huge wing area of 905 m<sup>2</sup> and airspeed of 800 km/h. A hang glider has large wings and a low mass giving a wing loading of only 6 kg/m<sup>2</sup>. Hence it can still obtain lift at very slow speeds.

Wing loading in kg/m<sup>2</sup> is calculated by dividing

© VCAA Cambridge University Press Updated September 2021

# 5A Expanding expressions consolidating

#### Learning intentions

- To review how to apply the distributive law to expand brackets
- To be able to expand binomial products including perfect squares
- To be able to form a difference of perfect squares by expansion

You will recall that expressions that include numerals and pronumerals are central to the topic of algebra. Sound skills in algebra are essential for solving most mathematical problems and this includes the ability to expand expressions involving brackets. This includes binomial products, perfect squares and the difference of perfect squares. Exploring how projectiles fly subject to the Earth's gravity, for example, can be modelled with expressions with and without brackets.

# LESSON STARTER Five key errors

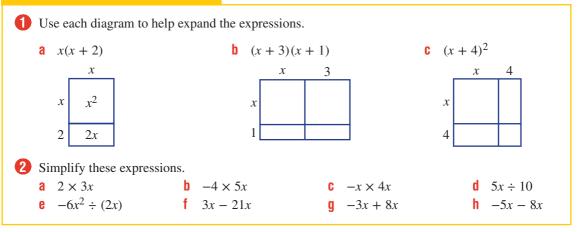
Here are five expansion problems with incorrect answers. Discuss what error has been made and then give the correct expansion.

- -2(x-3) = -2x 6
- $(x+3)^2 = x^2 + 9$
- $(x-2)(x+2) = x^2 + 4x 4$
- 5 3(x 1) = 2 3x
- $(x+3)(x+5) = x^2 + 8x + 8$

#### **KEY IDEAS**

- **Like terms** have the same pronumeral part.
  - They can be collected (i.e. added and subtracted) to form a single term. For example: 7x - 11x = -4x and  $4a^2b - 7ba^2 = -3a^2b$
- The **distributive law** is used to expand brackets.
  - a(b+c) = ab + ac and a(b-c) = ab ac
  - (a+b)(c+d) = ac + ad + bc + bd
  - (a + b)(c + d) is called a binomial product because each expression in the brackets has two terms.




Business analysts develop profit equations, which are quadratics, when sales and profit/item are linear relations of the selling price, e.g. \$*p*/ice-cream:

Profit/week = weekly sales × profit/item =  $150(10 - p) \times (p - 2)$ =  $-150(p^2 - 12p + 20)$ 

#### Perfect squares

- $(a + b)^2 = (a + b)(a + b)$ =  $a^2 + 2ab + b^2$
- $(a-b)^2 = (a-b)(a-b)$ =  $a^2 - 2ab + b^2$
- **Difference of perfect squares (DOPS)** 
  - $(a+b)(a-b) = a^2 b^2$
- By definition, a perfect square is an integer that is the square of an integer; however, the rules above also apply for a wide range of values for *a* and *b*, including all real numbers.

## **BUILDING UNDERSTANDING**



# $\mathbf{O}$

# Example 1 Expanding simple expressions

Expand and simplify where possible.

**a** 
$$-3(x-5)$$
 **b**  $2x(1-x)$  **c**  $\frac{2}{7}(14x+3)$  **d**  $x(2x-1) - x(3-x)$ 

SOLUTION

**a** 
$$-3(x-5) = -3x + 15$$

**b** 
$$2x(1-x) = 2x - 2x^2$$

c  $\frac{2}{7}(14x + 3) = \frac{2}{7} \times 14x + \frac{2}{7} \times 3$ =  $4x + \frac{6}{7}$ 

#### EXPLANATION

Use the distributive law: a(b - c) = ab - ac.  $-3 \times x = -3x$  and  $-3 \times (-5) = 15$ 

Recall that  $2x \times (-x) = -2x^2$ .

When multiplying fractions cancel before multiplying numerators and denominators.

Recall that 
$$3 = \frac{3}{1}$$
.

Continued on next page

d 
$$x(2x-1) - x(3-x) = 2x^2 - x - 3x + x^2$$
  
=  $3x^2 - 4x$ 

Apply the distributive law to each set of brackets first, then simplify by collecting like terms. Recall that  $-x \times (-x) = x^2$ .

# Now you try Expand and simplify where possible. **a** -2(x-4) **b** 5x(4-x) **c** $\frac{3}{5}(10x+1)$ **d** x(5x-1) - x(2-3x)

# $\odot$

# Example 2 Expanding binomial products, perfect squares and difference of perfect squares

Expand the following. **a** (x + 5)(x + 4)**b**  $(x - 4)^2$ 

#### SOLUTION

**a** 
$$(x + 5)(x + 4) = x^2 + 4x + 5x + 20$$
  
=  $x^2 + 9x + 20$ 

**b** 
$$(x-4)^2 = (x-4)(x-4)$$
  
=  $x^2 - 4x - 4x + 16$   
=  $x^2 - 8x + 16$ 

Alternatively:  $(x - 4)^2 = x^2 - 2(x)(4) + 4^2$  $= x^2 - 8x + 16$ 

**c** 
$$(2x + 1)(2x - 1) = 4x^2 - 2x + 2x - 1$$
  
=  $4x^2 - 1$ 

Alternatively:  $(2x + 1)(2x - 1) = (2x)^2 - (1)^2$  $= 4x^2 - 1$ 

# EXPLANATION

For binomial products use (a + b)(c + d) = ac + ad + bc + bd. Simplify by collecting like terms.

Rewrite and expand using the distributive law.

**c** (2x+1)(2x-1)

Alternatively for perfect squares  $(a - b)^2 = a^2 - 2ab + b^2$ . Here a = x and b = 4.

Expand, recalling that  $2x \times 2x = 4x^2$ . Cancel the -2x and +2x terms.

Alternatively for difference of perfect squares  $(a - b)(a + b) = a^2 - b^2$ . Here a = 2x and b = 1.

#### Now you try

Expand the following.

**a** 
$$(x+2)(x+5)$$

**b**  $(x-2)^2$ 

**c** (3x+2)(3x-2)

# Example 3 Expanding more binomial products

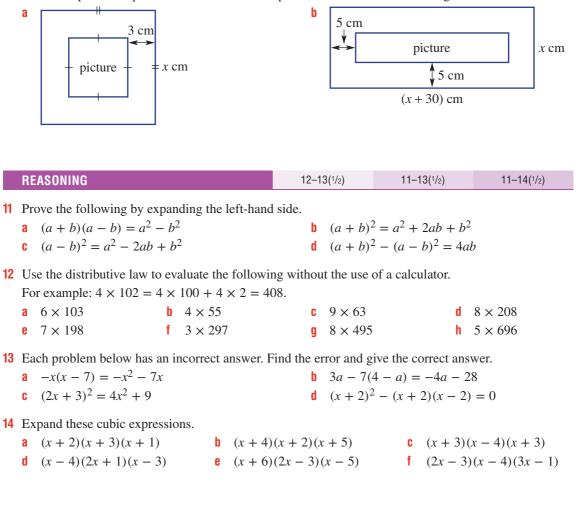
| Expand and simplify.<br><b>a</b> $(2x - 1)(3x + 5)$<br><b>b</b> $2(x - 3)(x - 2)$                                                                  | <b>c</b> $(x+2)(x+4) - (x-2)(x-5)$                                                                                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SOLUTION                                                                                                                                           | EXPLANATION                                                                                                                                                                            |
| <b>a</b> $(2x - 1)(3x + 5) = 6x^2 + 10x - 3x - 5$<br>= $6x^2 + 7x - 5$                                                                             | Expand using the distributive law and simplify.<br>Note: $2x \times 3x = 2 \times 3 \times x \times x = 6x^2$ .                                                                        |
| <b>b</b> $2(x-3)(x-2) = 2(x^2 - 2x - 3x + 6)$<br>= $2(x^2 - 5x + 6)$<br>= $2x^2 - 10x + 12$                                                        | First expand the brackets using the distributive law, simplify and then multiply each term by 2.                                                                                       |
| (x + 2)(x + 4) - (x - 2)(x - 5) = (x2 + 4x + 2x + 8) - (x2 - 5x - 2x + 10) = (x2 + 6x + 8) - (x2 - 7x + 10) = x2 + 6x + 8 - x2 + 7x - 10 = 13x - 2 | Expand each binomial product.<br>Remove brackets in the last step before<br>simplifying.<br>$-(x^2 - 7x + 10) = -1 \times x^2 + (-1) \times (-7x) + (-1) \times 10$ $= -x^2 + 7x - 10$ |

# Now you try

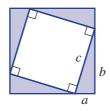
 $\mathbf{O}$ 

Expand and simplify.

# **Exercise 5A**


a

|   | FLUENCY                         |                                                                                                                                                                                                                               | 1, 2–6(1/3)                                                                                                                                                                                                                                                                                                                          | 2-6(1/3)                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2-6(1/4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | Expand and simplify who         | ere possible.                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|   | <b>a i</b> $-4(x-1)$            |                                                                                                                                                                                                                               | ii $-2(x)$                                                                                                                                                                                                                                                                                                                           | - 6)                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|   | <b>b</b> i $3x(2-x)$            |                                                                                                                                                                                                                               | <b>ii</b> $7x(5 \cdot$                                                                                                                                                                                                                                                                                                               | - x)                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|   | <b>c i</b> $\frac{4}{5}(15x+2)$ |                                                                                                                                                                                                                               | ii $\frac{7}{9}(18.5)$                                                                                                                                                                                                                                                                                                               | (x - 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2 | Expand and simplify who         | ere possible.                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|   | <b>a</b> $2(x+5)$               | <b>b</b> $3(x-4)$                                                                                                                                                                                                             | <b>c</b> $-5(x+3)$                                                                                                                                                                                                                                                                                                                   | 3) <b>d</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -4(x-2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | <b>e</b> $3(2x-1)$              | f $4(3x+1)$                                                                                                                                                                                                                   | <b>g</b> $-2(5x -$                                                                                                                                                                                                                                                                                                                   | 3) <b>h</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -5(4x + 3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   | x(2x+5)                         | x(3x-1)                                                                                                                                                                                                                       | <b>k</b> $2x(1-x)$                                                                                                                                                                                                                                                                                                                   | ;)                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3x(2-x)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | <b>m</b> $-2x(3x+2)$            | <b>n</b> $-3x(6x-2)$                                                                                                                                                                                                          | <b>o</b> $-5x(2 -$                                                                                                                                                                                                                                                                                                                   | 2 <i>x</i> ) <b>p</b>                                                                                                                                                                                                                                                                                                                                                                                                                                              | -4x(1-4x)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   | <b>q</b> $\frac{2}{5}(10x+4)$   | r $\frac{3}{4}(8x-5)$                                                                                                                                                                                                         | <b>s</b> $-\frac{1}{3}(6x +$                                                                                                                                                                                                                                                                                                         | • 1) t                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $-\frac{1}{2}(4x-3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   | <b>u</b> $-\frac{3}{8}(24x-1)$  | <b>v</b> $-\frac{2}{9}(9x+7)$                                                                                                                                                                                                 | <b>w</b> $\frac{3x}{4}(3x +$                                                                                                                                                                                                                                                                                                         | 8) <b>X</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\frac{2x}{5}(7-3x)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   | 1                               | 1 Expand and simplify when<br>a i $-4(x - 1)$<br>b i $3x(2 - x)$<br>c i $\frac{4}{5}(15x + 2)$<br>2 Expand and simplify when<br>a $2(x + 5)$<br>e $3(2x - 1)$<br>i $x(2x + 5)$<br>m $-2x(3x + 2)$<br>q $\frac{2}{5}(10x + 4)$ | 1 Expand and simplify where possible.<br>a i $-4(x - 1)$<br>b i $3x(2 - x)$<br>c i $\frac{4}{5}(15x + 2)$<br>2 Expand and simplify where possible.<br>a $2(x + 5)$ b $3(x - 4)$<br>e $3(2x - 1)$ f $4(3x + 1)$<br>i $x(2x + 5)$ j $x(3x - 1)$<br>m $-2x(3x + 2)$ n $-3x(6x - 2)$<br>q $\frac{2}{5}(10x + 4)$ r $\frac{3}{4}(8x - 5)$ | 1 Expand and simplify where possible.       ii $-4(x-1)$ ii $-2(x)$ a i $-4(x-1)$ ii $7x(5-1)$ b i $3x(2-x)$ ii $7x(5-1)$ c i $\frac{4}{5}(15x+2)$ ii $\frac{7}{9}(18x)$ 2 Expand and simplify where possible.       ii $\frac{7}{9}(18x)$ a $2(x+5)$ b $3(x-4)$ c $-5(x+3)$ e $3(2x-1)$ f $4(3x+1)$ g $-2(5x-1)$ i $x(2x+5)$ j $x(3x-1)$ k $2x(1-x)$ m $-2x(3x+2)$ n $-3x(6x-2)$ o $-5x(2-1)$ q $\frac{2}{5}(10x+4)$ r $\frac{3}{4}(8x-5)$ s $-\frac{1}{3}(6x+1)$ | 1 Expand and simplify where possible.       ii $-4(x-1)$ ii $-2(x-6)$ b i $3x(2-x)$ ii $7x(5-x)$ c i $\frac{4}{5}(15x+2)$ ii $\frac{7}{9}(18x-1)$ 2 Expand and simplify where possible.       ii $\frac{7}{9}(18x-1)$ 2 Expand and simplify where possible.       ii $2(x+5)$ b $3(x-4)$ c $-5(x+3)$ d         e $3(2x-1)$ f $4(3x+1)$ g $-2(5x-3)$ i $x(2x+5)$ j $x(3x-1)$ k $2x(1-x)$ m $-2x(3x+2)$ n $-3x(6x-2)$ o $-5x(2-2x)$ q $\frac{2}{5}(10x+4)$ r $\frac{3}{4}(8x-5)$ s $-\frac{1}{3}(6x+1)$ t |


ISBN 978-1-108-77290-7 Photocopying is restricted under law and this material must not be transferred to another party. Cambridge University Press Updated September 2021

|                          | 2 | Expand and simplify                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                          |                                                                                                                                                                                                                                                     |      |
|--------------------------|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Example 1d               | 3 | Expand and simplify.<br><b>a</b> $x(3x - 1) + x(4 - x)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | h                                                                 | x(5x + 2) + x(x - 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                          | x(4x-3) - 2x(x-5)                                                                                                                                                                                                                                   | 5)   |
|                          |   | d $3x(3x - 1) + x(4 - x)$<br>d $3x(2x + 4) - x(5 - 2x)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                   | $\frac{x(3x+2) + x(x-3)}{4x(2x-1) + 2x(1-3x)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                          | x(4x - 3) - 2x(x - 3) $2x(2 - 3x) - 3x(2x - 3)$                                                                                                                                                                                                     |      |
|                          |   | <b>u</b> $3x(2x + 4) - x(3 - 2x)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | G                                                                 | 4x(2x-1)+2x(1-3x)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                          | $2\lambda(2-3\lambda)=3\lambda(2\lambda-$                                                                                                                                                                                                           | - /) |
| Example 2a               | 4 | Expand the following.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                          |                                                                                                                                                                                                                                                     |      |
|                          |   | <b>a</b> $(x+2)(x+8)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | b                                                                 | (x + 3)(x + 4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                          | (x + 7)(x + 5)                                                                                                                                                                                                                                      |      |
|                          |   | <b>d</b> $(x+8)(x-3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e                                                                 | (x+6)(x-5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | f                                                                                                                        | (x-2)(x+3)                                                                                                                                                                                                                                          |      |
|                          |   | <b>g</b> $(x-7)(x+3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | h                                                                 | (x-4)(x-6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | i                                                                                                                        | (x - 8)(x - 5)                                                                                                                                                                                                                                      |      |
| Example 2b,c             | 5 | Expand the following.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                          |                                                                                                                                                                                                                                                     |      |
|                          |   | <b>a</b> $(x+5)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | b                                                                 | $(x+7)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C                                                                                                                        | $(x+6)^2$                                                                                                                                                                                                                                           |      |
|                          |   | <b>d</b> $(x-3)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e                                                                 | $(x-8)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | f                                                                                                                        | $(x - 10)^2$                                                                                                                                                                                                                                        |      |
|                          |   | <b>g</b> $(x+4)(x-4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | h                                                                 | (x+9)(x-9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | i                                                                                                                        | (2x-3)(2x+3)                                                                                                                                                                                                                                        |      |
|                          |   | (3x+4)(3x-4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | k                                                                 | (4x - 5)(4x + 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                        | (8x - 7)(8x + 7)                                                                                                                                                                                                                                    |      |
|                          | 6 | Expand the following using the d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ictuib                                                            | utivo lovo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                          |                                                                                                                                                                                                                                                     |      |
| Example 3a               | 6 | Expand the following using the d<br>a $(2x + 1)(3x + 5)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                   | (4x + 5)(3x + 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                          | (5x + 3)(2x + 7)                                                                                                                                                                                                                                    |      |
|                          |   | d $(2x + 1)(3x + 5)$<br>d $(3x + 2)(3x - 5)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                   | (4x + 3)(3x + 2)<br>(5x + 3)(4x - 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                          | (3x + 5)(2x + 7)<br>(2x + 5)(3x - 5)                                                                                                                                                                                                                |      |
|                          |   | <b>q</b> $(4x-5)(4x+5)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                   | (3x + 3)(4x - 2)<br>(2x - 9)(2x + 9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                          | (2x + 3)(3x - 3)<br>(5x - 7)(5x + 7)                                                                                                                                                                                                                |      |
|                          |   | (7x-3)(2x-4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                   | (2x - 3)(2x + 5)<br>(5x - 3)(5x - 6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                          | (3x - 7)(3x + 7)<br>(7x - 2)(8x - 2)                                                                                                                                                                                                                |      |
|                          |   | $(2x + 5)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                   | $(5x + 6)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                          | (7x - 2)(6x - 2)<br>$(7x - 1)^2$                                                                                                                                                                                                                    |      |
|                          |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ĭ                                                                                                                        | (777 1)                                                                                                                                                                                                                                             |      |
|                          |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                          |                                                                                                                                                                                                                                                     |      |
|                          |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                          |                                                                                                                                                                                                                                                     | _    |
|                          |   | PROBLEM-SOLVING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                   | 7-8(1/2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7-                                                                                                                       | 9(1/3) 7-9(1/4), 1                                                                                                                                                                                                                                  | 0    |
|                          | 7 | PROBLEM-SOLVING<br>Write the missing number.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                   | 7-8(1/2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7-                                                                                                                       | 9(1/3) 7-9(1/4), 1                                                                                                                                                                                                                                  | 0    |
|                          | 7 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ō                                                                 | <b>b</b> $(x + ?)(x + 2)(x $                                                                                                                                                             |                                                                                                                          |                                                                                                                                                                                                                                                     | 0    |
|                          | 7 | Write the missing number.<br><b>a</b> $(x + ?)(x + 2) = x^2 + 5x + 6$<br><b>c</b> $(x + 7)(x - ?) = x^2 + 4x - 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | • 5) =                                                                                                                   | $= x^2 + 8x + 15$                                                                                                                                                                                                                                   | 0    |
|                          | 7 | Write the missing number.<br><b>a</b> $(x + ?)(x + 2) = x^2 + 5x + 6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21                                                                | <b>b</b> $(x + ?)(x + d)(x + 4)(x - d)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | · 5) =<br>· ?) =                                                                                                         | $= x^2 + 8x + 15$                                                                                                                                                                                                                                   | 0    |
| Example 3b               |   | Write the missing number.<br><b>a</b> $(x + ?)(x + 2) = x^2 + 5x + 6$<br><b>c</b> $(x + 7)(x - ?) = x^2 + 4x - 2$<br><b>e</b> $(x - 6)(x - ?) = x^2 - 7x + 6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 21                                                                | <b>b</b> $(x + ?)(x + d)(x + 4)(x - d)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | · 5) =<br>· ?) =                                                                                                         | $= x^{2} + 8x + 15$ $= x^{2} - 4x - 32$                                                                                                                                                                                                             | 0    |
| Example 3b               | 7 | Write the missing number.<br><b>a</b> $(x + ?)(x + 2) = x^2 + 5x + 6$<br><b>c</b> $(x + 7)(x - ?) = x^2 + 4x - 2$<br><b>e</b> $(x - 6)(x - ?) = x^2 - 7x + 6$<br>Expand the following.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21<br>5                                                           | <b>b</b> $(x + ?)(x + d)(x + d)(x + d)(x - f)(x - ?)(x - d)(x $                                                                                                                                                             | · 5) =<br>· ?) =<br>· 8) =                                                                                               | $= x^{2} + 8x + 15$<br>= $x^{2} - 4x - 32$<br>= $x^{2} - 10x + 16$                                                                                                                                                                                  | 0    |
| Example 3b               |   | Write the missing number.<br><b>a</b> $(x + ?)(x + 2) = x^2 + 5x + 6$<br><b>c</b> $(x + 7)(x - ?) = x^2 + 4x - 2$<br><b>e</b> $(x - 6)(x - ?) = x^2 - 7x + 6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 21<br>5<br>b                                                      | <b>b</b> $(x + ?)(x + d)(x + 4)(x - d)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - 5) =<br>- ?) =<br>- 8) =<br>C                                                                                          | $= x^{2} + 8x + 15$ $= x^{2} - 4x - 32$                                                                                                                                                                                                             | 0    |
| Example 3b               |   | Write the missing number.<br><b>a</b> $(x + ?)(x + 2) = x^2 + 5x + 6$<br><b>c</b> $(x + 7)(x - ?) = x^2 + 4x - 2$<br><b>e</b> $(x - 6)(x - ?) = x^2 - 7x + 6$<br>Expand the following.<br><b>a</b> $2(x + 3)(x + 4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 21<br>5<br>b<br>e                                                 | <b>b</b> $(x + ?)(x + d)(x + 4)(x - f)(x - 2)(x - 7)(x - 3)(x + 2)(x + 7)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - 5) =<br>- ?) =<br>- 8) =<br>C<br>f                                                                                     | $= x^{2} + 8x + 15$<br>= $x^{2} - 4x - 32$<br>= $x^{2} - 10x + 16$<br>-2(x + 8)(x + 2)                                                                                                                                                              | 0    |
| Example 3b               |   | Write the missing number.<br><b>a</b> $(x + ?)(x + 2) = x^2 + 5x + 6$<br><b>c</b> $(x + 7)(x - ?) = x^2 + 4x - 2$<br><b>e</b> $(x - 6)(x - ?) = x^2 - 7x + 6$<br>Expand the following.<br><b>a</b> $2(x + 3)(x + 4)$<br><b>d</b> $-4(x + 9)(x + 2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21<br>5<br>b<br>e<br>h                                            | b $(x + ?)(x + d)(x + 4)(x - f)(x + 4)(x - 7)(x - $                                                                                                                                                                  | - 5) =<br>- ?) =<br>- 8) =<br>C<br>f<br>i                                                                                | $= x^{2} + 8x + 15$<br>= $x^{2} - 4x - 32$<br>= $x^{2} - 10x + 16$<br>-2(x + 8)(x + 2)<br>3(x + 5)(x - 3)                                                                                                                                           | 0    |
| Example 3b               |   | Write the missing number.<br><b>a</b> $(x + ?)(x + 2) = x^2 + 5x + 6$<br><b>c</b> $(x + 7)(x - ?) = x^2 + 4x - 2$<br><b>e</b> $(x - 6)(x - ?) = x^2 - 7x + 6$<br>Expand the following.<br><b>a</b> $2(x + 3)(x + 4)$<br><b>d</b> $-4(x + 9)(x + 2)$<br><b>g</b> $-3(a + 2)(a - 7)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21<br>5<br>b<br>e<br>h<br>k                                       | b $(x + ?)(x + d)(x + 4)(x - f)(x + 4)(x - f)(x - ?)(x - f)(x - 3)(x + 4)(x - 3)(x + 4)(x - 3)(x + 4)(x - 3)(x + 4)(x - 3)(x - $                                                                                                                                                                  | - 5) =<br>- ?) =<br>- 8) =<br>C<br>f<br>i<br>I                                                                           | $= x^{2} + 8x + 15$<br>= $x^{2} - 4x - 32$<br>= $x^{2} - 10x + 16$<br>-2(x + 8)(x + 2)<br>3(x + 5)(x - 3)<br>4(a - 3)(a - 6)                                                                                                                        | 0    |
| Example 3b               |   | Write the missing number.<br><b>a</b> $(x + ?)(x + 2) = x^2 + 5x + 6$<br><b>c</b> $(x + 7)(x - ?) = x^2 + 4x - 2$<br><b>e</b> $(x - 6)(x - ?) = x^2 - 7x + 6$<br>Expand the following.<br><b>a</b> $2(x + 3)(x + 4)$<br><b>d</b> $-4(x + 9)(x + 2)$<br><b>g</b> $-3(a + 2)(a - 7)$<br><b>j</b> $3(y - 4)(y - 5)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21<br>5<br>b<br>e<br>h<br>k<br>n                                  | b $(x + ?)(x + d)(x + 4)(x - f)(x + 4)(x - f)(x - ?)(x - f)(x - 3)(x + 4)(x - 3)(x + 4)(x - 3)(x + 4)(x - 3)(x + 4)(x - 3)(x - $                                                                                                                                                                  | - 5) =<br>- ?) =<br>- 8) =<br>C<br>f<br>i<br>I<br>0                                                                      | $= x^{2} + 8x + 15$<br>= $x^{2} - 4x - 32$<br>= $x^{2} - 10x + 16$<br>-2(x + 8)(x + 2)<br>3(x + 5)(x - 3)<br>4(a - 3)(a - 6)<br>-6(y - 4)(y - 3)                                                                                                    | 0    |
| Example 3b               |   | Write the missing number.<br><b>a</b> $(x + ?)(x + 2) = x^2 + 5x + 6$<br><b>c</b> $(x + 7)(x - ?) = x^2 + 4x - 2$<br><b>e</b> $(x - 6)(x - ?) = x^2 - 7x + 6$<br>Expand the following.<br><b>a</b> $2(x + 3)(x + 4)$<br><b>d</b> $-4(x + 9)(x + 2)$<br><b>g</b> $-3(a + 2)(a - 7)$<br><b>j</b> $3(y - 4)(y - 5)$<br><b>m</b> $3(2x + 3)(2x + 5)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21<br>5<br>b<br>e<br>h<br>k<br>n<br>q                             | b $(x + ?)(x + d)(x + d)(x + d)(x + d)(x - f)(x - ?)(x - f)(x - ?)(x - d)(x + 2)(x + 7)$<br>5(x - 3)(x + 4) - 5(a + 2)(a - 8) - 2(y - 3)(y - 8) - 6(3x - 4)(x + 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 5) =<br>- ?) =<br>- 8) =<br>C<br>f<br>i<br>I<br>0<br>r                                                                 | $= x^{2} + 8x + 15$<br>= $x^{2} - 4x - 32$<br>= $x^{2} - 10x + 16$<br>-2(x + 8)(x + 2)<br>3(x + 5)(x - 3)<br>4(a - 3)(a - 6)<br>-6(y - 4)(y - 3)<br>-2(x + 4)(3x - 7)                                                                               | 0    |
|                          | 8 | Write the missing number.<br><b>a</b> $(x + ?)(x + 2) = x^2 + 5x + 6$<br><b>c</b> $(x + 7)(x - ?) = x^2 + 4x - 2$<br><b>e</b> $(x - 6)(x - ?) = x^2 - 7x + 6$<br>Expand the following.<br><b>a</b> $2(x + 3)(x + 4)$<br><b>d</b> $-4(x + 9)(x + 2)$<br><b>g</b> $-3(a + 2)(a - 7)$<br><b>j</b> $3(y - 4)(y - 5)$<br><b>m</b> $3(2x + 3)(2x + 5)$<br><b>p</b> $2(x + 3)^2$<br><b>s</b> $-3(y - 5)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21<br>5<br>b<br>e<br>h<br>k<br>n<br>q<br>t                        | b $(x + ?)(x + d)(x + 4)(x - f)(x + 4)(x - f)(x - ?)(x - f)(x - ?)(x - f)(x - ?)(x - 3)(x + 4)(x + 2)(a - 8)(x - 4)(x + 4)(x - 5)(a - 4)(x - 4)(x - 2)(x - 3)(x - 4)(x - 4)(x - 2)(x - 3)(x - 4)(x - $                                                                                                                                                                  | - 5) =<br>- ?) =<br>- 8) =<br>C<br>f<br>i<br>I<br>0<br>r                                                                 | $= x^{2} + 8x + 15$<br>= $x^{2} - 4x - 32$<br>= $x^{2} - 10x + 16$<br>-2(x + 8)(x + 2)<br>3(x + 5)(x - 3)<br>4(a - 3)(a - 6)<br>-6(y - 4)(y - 3)<br>-2(x + 4)(3x - 7)<br>$2(a - 7)^{2}$                                                             | 0    |
| Example 3b<br>Example 3c |   | Write the missing number.<br><b>a</b> $(x + ?)(x + 2) = x^2 + 5x + 6$<br><b>c</b> $(x + 7)(x - ?) = x^2 + 4x - 2$<br><b>e</b> $(x - 6)(x - ?) = x^2 - 7x + 6$<br>Expand the following.<br><b>a</b> $2(x + 3)(x + 4)$<br><b>d</b> $-4(x + 9)(x + 2)$<br><b>g</b> $-3(a + 2)(a - 7)$<br><b>j</b> $3(y - 4)(y - 5)$<br><b>m</b> $3(2x + 3)(2x + 5)$<br><b>p</b> $2(x + 3)^2$<br><b>s</b> $-3(y - 5)^2$<br>Expand and simplify the following                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21<br>5<br>b<br>e<br>h<br>k<br>n<br>q<br>t                        | b (x + ?)(x + d)(x + d)(x + d)(x - f)(x -                                                                                                                                                                     | <pre>- 5) = - ?) = - ?) = - 8) = - C f i i 0 r u</pre>                                                                   | $= x^{2} + 8x + 15$<br>= $x^{2} - 4x - 32$<br>= $x^{2} - 10x + 16$<br>-2(x + 8)(x + 2)<br>3(x + 5)(x - 3)<br>4(a - 3)(a - 6)<br>-6(y - 4)(y - 3)<br>-2(x + 4)(3x - 7)<br>$2(a - 7)^{2}$<br>$-3(2y - 6)^{2}$                                         | 0    |
|                          | 8 | Write the missing number.<br><b>a</b> $(x + ?)(x + 2) = x^2 + 5x + 6$<br><b>c</b> $(x + 7)(x - ?) = x^2 + 4x - 2$<br><b>e</b> $(x - 6)(x - ?) = x^2 - 7x + 6$<br>Expand the following.<br><b>a</b> $2(x + 3)(x + 4)$<br><b>d</b> $-4(x + 9)(x + 2)$<br><b>g</b> $-3(a + 2)(a - 7)$<br><b>j</b> $3(y - 4)(y - 5)$<br><b>m</b> $3(2x + 3)(2x + 5)$<br><b>p</b> $2(x + 3)^2$<br><b>s</b> $-3(y - 5)^2$<br>Expand and simplify the following<br><b>a</b> $(x + 1)(x + 3) + (x + 2)(x + 3)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21<br>5<br>b<br>e<br>h<br>k<br>n<br>q<br>t<br>sg.<br>- 4)         | <b>b</b> $(x + ?)(x + d)(x + d)(x + 4)(x - f)(x - 2)(x - f)(x - 2)(x - 1)(x - 1)(x - 1)(x - 2)(x $                                                                                                                                                             | - 5) =<br>- ?) =<br>- 8) =<br>- c<br>f<br>i<br>i<br>l<br>0<br>r<br>u                                                     | $= x^{2} + 8x + 15$<br>= $x^{2} - 4x - 32$<br>= $x^{2} - 10x + 16$<br>-2(x + 8)(x + 2)<br>3(x + 5)(x - 3)<br>4(a - 3)(a - 6)<br>-6(y - 4)(y - 3)<br>-2(x + 4)(3x - 7)<br>$2(a - 7)^{2}$<br>$-3(2y - 6)^{2}$<br>+ (x + 4)(x + 5)                     | 0    |
|                          | 8 | Write the missing number.<br><b>a</b> $(x + ?)(x + 2) = x^2 + 5x + 6$<br><b>c</b> $(x + 7)(x - ?) = x^2 + 4x - 2$<br><b>e</b> $(x - 6)(x - ?) = x^2 - 7x + 6$<br>Expand the following.<br><b>a</b> $2(x + 3)(x + 4)$<br><b>d</b> $-4(x + 9)(x + 2)$<br><b>g</b> $-3(a + 2)(a - 7)$<br><b>j</b> $3(y - 4)(y - 5)$<br><b>m</b> $3(2x + 3)(2x + 5)$<br><b>p</b> $2(x + 3)^2$<br><b>s</b> $-3(y - 5)^2$<br>Expand and simplify the following<br><b>a</b> $(x + 1)(x + 3) + (x + 2)(x + 3)^2$<br><b>b</b> $(y + 3)(y - 1) + (y - 2)(y - 3)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21<br>5<br>b<br>e<br>h<br>k<br>n<br>q<br>t<br>sg.<br>- 4)<br>- 4) | b (x + ?)(x + d)(x + d)(x + d)(x + d)(x - f)(x + d)(x + d)(x + f)(x +                                                                                                                                                                     | <pre></pre>                                                                                                              | $= x^{2} + 8x + 15$<br>= $x^{2} - 4x - 32$<br>= $x^{2} - 10x + 16$<br>-2(x + 8)(x + 2)<br>3(x + 5)(x - 3)<br>4(a - 3)(a - 6)<br>-6(y - 4)(y - 3)<br>-2(x + 4)(3x - 7)<br>$2(a - 7)^{2}$<br>$-3(2y - 6)^{2}$                                         | 0    |
|                          | 8 | Write the missing number.<br><b>a</b> $(x + ?)(x + 2) = x^2 + 5x + 6$<br><b>c</b> $(x + 7)(x - ?) = x^2 + 4x - 2$<br><b>e</b> $(x - 6)(x - ?) = x^2 - 7x + 6$<br>Expand the following.<br><b>a</b> $2(x + 3)(x + 4)$<br><b>d</b> $-4(x + 9)(x + 2)$<br><b>g</b> $-3(a + 2)(a - 7)$<br><b>j</b> $3(y - 4)(y - 5)$<br><b>m</b> $3(2x + 3)(2x + 5)$<br><b>p</b> $2(x + 3)^2$<br><b>s</b> $-3(y - 5)^2$<br>Expand and simplify the following<br><b>a</b> $(x + 1)(x + 3) + (x + 2)(x + 3)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21<br>5<br>b<br>e<br>h<br>k<br>n<br>q<br>t<br>sg.<br>- 4)<br>- 4) | b (x + ?)(x + d)(x + d)(x + d)(x + d)(x - f)(x + d)(x + d)(x + f)(x +                                                                                                                                                                     | <pre>- 5) =<br/>- ?) =<br/>- 8) =<br/>- C<br/>f<br/>i<br/>i<br/>0<br/>r<br/>u<br/>u<br/>- 3) +<br/>- 4) +<br/>+ 5)</pre> | $= x^{2} + 8x + 15$<br>$= x^{2} - 4x - 32$<br>$= x^{2} - 10x + 16$<br>-2(x + 8)(x + 2)<br>3(x + 5)(x - 3)<br>4(a - 3)(a - 6)<br>-6(y - 4)(y - 3)<br>-2(x + 4)(3x - 7)<br>$2(a - 7)^{2}$<br>$-3(2y - 6)^{2}$<br>+ (x + 4)(x + 5)<br>+ (y + 5)(y - 3) | 0    |
|                          | 8 | Write the missing number.<br><b>a</b> $(x + ?)(x + 2) = x^2 + 5x + 6$<br><b>c</b> $(x + 7)(x - ?) = x^2 + 4x - 2$<br><b>e</b> $(x - 6)(x - ?) = x^2 - 7x + 6$<br>Expand the following.<br><b>a</b> $2(x + 3)(x + 4)$<br><b>d</b> $-4(x + 9)(x + 2)$<br><b>g</b> $-3(a + 2)(a - 7)$<br><b>j</b> $3(y - 4)(y - 5)$<br><b>m</b> $3(2x + 3)(2x + 5)$<br><b>p</b> $2(x + 3)^2$<br><b>s</b> $-3(y - 5)^2$<br>Expand and simplify the following<br><b>a</b> $(x + 1)(x + 3) + (x + 2)(x + 3) + (x + 3)(x - 5) + (x + 3)(x - 5) + (x + 6)(2)$ | 21<br>5<br>b<br>e<br>h<br>k<br>n<br>q<br>t<br>sg.<br>- 4)<br>- 4) | $b  (x + ?)(x + d) \\ (x + 4)(x - f) \\ (x - ?)(x - f) \\ (x - f) \\ (x - ?)(x - f) \\ (x - f) \\ $ | - 5) =<br>- ?) =<br>- 8) =<br>- c<br>f<br>i<br>l<br>0<br>r<br>u<br>- 3) -<br>- 4) -<br>+ 5)<br>9                         | $= x^{2} + 8x + 15$<br>$= x^{2} - 4x - 32$<br>$= x^{2} - 10x + 16$<br>-2(x + 8)(x + 2)<br>3(x + 5)(x - 3)<br>4(a - 3)(a - 6)<br>-6(y - 4)(y - 3)<br>-2(x + 4)(3x - 7)<br>$2(a - 7)^{2}$<br>$-3(2y - 6)^{2}$<br>+ (x + 4)(x + 5)<br>+ (y + 5)(y - 3) | 0    |

**10** Find an expanded expression for the area of the pictures centred in these rectangular frames.



- ENRICHMENT: Expanding to prove
- **15** One of the ways to prove Pythagoras' theorem is to arrange four congruent right-angled triangles around a square to form a larger square, as shown.



\_

15

- **a** Find an expression for the total area of the four shaded triangles by multiplying the area of one triangle by 4.
- **b** Find an expression for the area of the four shaded triangles by subtracting the area of the inner square from the area of the outer square.
- **c** By combining your results from parts **a** and **b**, expand and simplify to prove Pythagoras' theorem:  $a^2 + b^2 = c^2$ .

# **5B** Factorising expressions

#### Learning intentions

- · To understand what it means to write an expression in factorised form
- To know to always look for a common factor before trying other factorising techniques
- To be able to recognise a difference of perfect squares including ones involving surds
- To be able to factorise using a common factor or a difference of perfect squares
- To be able to use the grouping technique to factorise

A common and key step in the simplification and solution of equations involves factorisation. Factorisation is the process of writing a number or expression as a product of its factors.

In this section we look at expressions in which all terms have a common factor, expressions that are a difference of perfect squares and four-term expressions, which can be factorised by grouping.



After a car accident, crash investigators use the length of tyre skid marks to determine a vehicle's speed before braking. The quadratic equation  $u^2 + 2 as = 0$  relates to speed, u, to a known braking distance, s, and deceleration a = -10 m/s<sup>2</sup> on a dry, flat bitumen road.

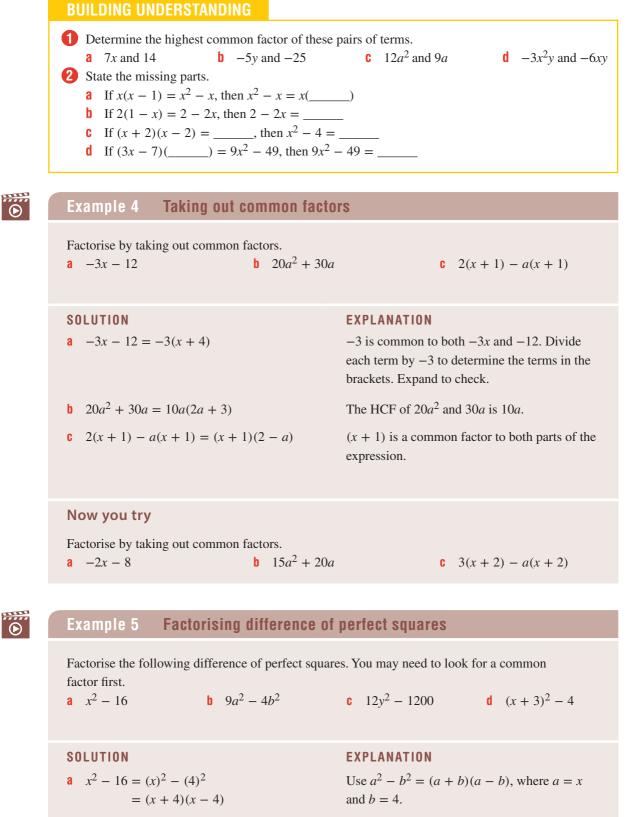
# LESSON STARTER But there are no common factors!

An expression such as xy + 4x + 3y + 12 has no common factors across all four terms, but it can still be factorised. The method of grouping can be used.

• Complete this working to show how to factorise the expression.

 $xy + 4x + 3y + 12 = x(\_\_) + 3(\_\_)$ = ( )(x + 3)

• Now repeat with the expression rearranged.


$$xy + 3y + 4x + 12 = y(\_\_\_) + 4(\_\_)$$
$$= (\_\_\_)(\_\_)$$

• Are the two results equivalent?

# **KEY IDEAS**

- **Factorise** expressions with **common factors** by 'taking out' the common factors. For example: -5x - 20 = -5(x + 4) and  $4x^2 - 8x = 4x(x - 2)$ .
- Factorise a difference of perfect squares (DOPS) using  $a^2 b^2 = (a + b)(a b)$ .
  - We use surds when  $a^2$  or  $b^2$  is not a perfect square, such as 1, 4, 9, ... For example:  $x^2 - 5 = (x + \sqrt{5})(x - \sqrt{5})$  using  $(\sqrt{5})^2 = 5$ .
- Factorise four-term expressions if possible by **grouping** terms and factorising each pair. For example:  $x^2 + 5x - 2x - 10 = x(x + 5) - 2(x + 5)$

$$= (x + 5)(x - 2)$$



#### Continued on next page

**b** 
$$9a^2 - 4b^2 = (3a)^2 - (2b)^2$$
  
=  $(3a + 2b)(3a - 2b)$ 

**c** 
$$12y^2 - 1200 = 12(y^2 - 100)$$
  
=  $12(y + 10)(y - 10)$ 

d 
$$(x + 3)^2 - 4 = (x + 3)^2 - (2)^2$$
  
=  $(x + 3 + 2)(x + 3 - 2)$   
=  $(x + 5)(x + 1)$ 

 $9a^2 = (3a)^2$  and  $4b^2 = (2b)^2$ .

First, take out the common factor of 12.  $100 = 10^2$ , use  $a^2 - b^2 = (a + b)(a - b)$ .

Use  $a^2 - b^2 = (a + b)(a - b)$ , where a = x + 3 and b = 2. Simplify each bracket.

## Now you try

Factorise the following difference of perfect squares. You may need to look for a common factor first.

)

| <b>a</b> $x^2 - 25$ <b>b</b> | $16a^2 - 9b^2$ | <b>c</b> $2y^2 - 98$ | <b>d</b> $(x+2)^2 - 36$ |
|------------------------------|----------------|----------------------|-------------------------|
|------------------------------|----------------|----------------------|-------------------------|

| $\odot$ | Example 6 Factorising DOPS using a                                                                                    | surds                                                                                                          |
|---------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
|         | Factorise these DOPS using surds.<br><b>a</b> $x^2 - 10$ <b>b</b> $x^2 - 24$                                          | <b>c</b> $(x-1)^2 - 5$                                                                                         |
|         | SOLUTION<br>a $x^2 - 10 = x^2 - (\sqrt{10})^2$<br>= $(x + \sqrt{10})(x - \sqrt{10})$                                  | <b>EXPLANATION</b><br>Recall that $(\sqrt{10})^2 = 10$ .                                                       |
|         | <b>b</b> $x^2 - 24 = x^2 - (\sqrt{24})^2$<br>= $(x + \sqrt{24})(x - \sqrt{24})$<br>= $(x + 2\sqrt{6})(x - 2\sqrt{6})$ | Use $(\sqrt{24})^2 = 24$ . Simplify:<br>$\sqrt{24} = \sqrt{4 \times 6} = \sqrt{4} \times \sqrt{6} = 2\sqrt{6}$ |
|         | <b>c</b> $(x-1)^2 - 5 = (x-1)^2 - (\sqrt{5})^2$<br>= $(x-1+\sqrt{5})(x-1-\sqrt{5})$                                   | Use $a^2 - b^2 = (a + b)(a - b)$ , where $a = x - 1$ and $b = \sqrt{5}$ .                                      |
|         | Now you try<br>Factorise these DOPS using surds.<br><b>a</b> $x^2 - 7$ <b>b</b> $x^2 - 32$                            | <b>c</b> $(x-5)^2 - 2$                                                                                         |
|         |                                                                                                                       |                                                                                                                |



# Example 7 Factorisation by grouping

Factorise by grouping  $x^2 - x + ax - a$ .

#### SOLUTION

 $x^{2} - x + ax - a = x(x - 1) + a(x - 1)$ = (x - 1)(x + a)

#### **EXPLANATION**

Factorise two pairs of terms, then take out the common binomial factor (x - 1).

## Now you try

Factorise by grouping  $x^2 - 2x + ax - 2a$ .

# **Exercise 5B**

|              |   | FLUENCY                    |                                       | 1, 2–6(1/2)                    | 2-7(1/3)                              | 2-7(1/4)              |
|--------------|---|----------------------------|---------------------------------------|--------------------------------|---------------------------------------|-----------------------|
|              | 1 | Factorise by taking out co | ommon factors.                        |                                |                                       |                       |
| Example 4a   |   | <b>a</b> i $-4x - 12$      |                                       | <b>ii</b> -9 <i>x</i> -        | - 36                                  |                       |
| Example 4b   |   | <b>b</b> i $10a^2 + 40a$   |                                       | ii $17a^2$                     | + 34a                                 |                       |
| Example 4c   |   | <b>c</b> i $4(x+2) - a(x+$ | 2)                                    | ii $11(x \cdot$                | (+5) - a(x+5)                         |                       |
| Example 4a,b | 2 | Factorise by taking out th | e common factors.                     |                                |                                       |                       |
|              |   | <b>a</b> $3x - 18$         | <b>b</b> $4x + 20$                    | <b>c</b> 7a + 7b               |                                       | 9 <i>a</i> – 15       |
|              |   | <b>e</b> $-5x - 30$        | •                                     | <b>g</b> $-12a - 3$            |                                       |                       |
|              |   |                            | · · ·                                 | <b>k</b> $6b^2 - 18$           |                                       | $14a^2 - 21a$         |
|              |   | <b>m</b> $10a - 5a^2$      | <b>n</b> $12x - 30x^2$                | <b>0</b> $-2x - x^2$           | e p                                   | $-4y - 8y^2$          |
|              |   | <b>q</b> $ab^2 - a^2b$     | $r  2x^2yz - 4xy$                     | <b>s</b> $-12m^2n$             | $-12mn^2$ t                           | $6xyz^2 - 3z^2$       |
| Example 4c   | 3 | Factorise, noting the com  | mon binomial factor.                  | ( <i>Hint</i> : For parts g-i, | insert a 1 where                      | appropriate.)         |
|              |   | <b>a</b> $5(x-1) - a(x-1)$ | <b>b</b> $b(x+2)$                     |                                | <b>c</b> $a(x + 5)$                   |                       |
|              |   | <b>d</b> $x(x+2) + 5(x+2)$ |                                       | · · · · ·                      |                                       | · · · · ·             |
|              |   | a(x+3) + (x+3)             | · · · · · · · · · · · · · · · · · · · | (x - 2)                        | · · · · · · · · · · · · · · · · · · · | · · · ·               |
|              |   |                            | Ň                                     | , , , ,                        |                                       |                       |
| Example 5a,b | 4 | Factorise the following di |                                       |                                |                                       |                       |
|              |   | <b>a</b> $x^2 - 9$         |                                       | c $y^2 - 49$                   |                                       | $y^2 - 1$             |
|              |   |                            | f $36a^2 - 25$                        | <b>g</b> $1 - 81y^2$           |                                       | $100 - 9x^2$          |
|              |   | i $25x^2 - 4y^2$           | j $64x^2 - 25y^2$                     | <b>k</b> $9a^2 - 49$           | $b^2$                                 | $144a^2 - 49b^2$      |
| Example 5c,d | 5 | Factorise the following.   |                                       |                                |                                       |                       |
|              |   | <b>a</b> $2x^2 - 32$       | <b>b</b> $5x^2 - 45$                  | <b>c</b> $6y^2 - 24$           | d                                     | $3y^2 - 48$           |
|              |   | $3x^2 - 75y^2$             | f $3a^2 - 300b^2$                     | $\frac{1}{9}$ $12x^2 - 2$      | $7y^2$ h                              | $63a^2 - 112b^2$      |
|              |   | i $(x+5)^2 - 16$           |                                       | •                              | - 64 I                                | $(a-7)^2 - 1$         |
|              |   |                            | <b>n</b> $(2y + 7)^2 - y^2$           |                                |                                       | $(3x - 5y)^2 - 25y^2$ |
|              |   |                            | ·· (_; i ') y                         | • (54   11                     | , 100 P                               | (en ey) 20y           |

ISBN 978-1-108-77290-7 © Greenwood et al. 2019 Photocopying is restricted under law and this material must not be transferred to another party. Example 6 6 Factorise using surds and remember to simplify surds where possible.

|           | b                    | racionise using surus and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | d remember to simplify surd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | s where possible                                                                                                                                                                                                                                                   | •                                                                                                  |                                                                                                       |
|-----------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
|           |                      | <b>a</b> $x^2 - 7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>b</b> $x^2 - 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                    | <b>c</b> $x^2 - 19$                                                                                |                                                                                                       |
|           |                      | <b>d</b> $x^2 - 21$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $x^2 - 14$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                    | f $x^2 - 30$                                                                                       |                                                                                                       |
|           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                    |                                                                                                    |                                                                                                       |
|           |                      | <b>g</b> $x^2 - 15$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>h</b> $x^2 - 11$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                    | $x^2 - 8$                                                                                          |                                                                                                       |
|           |                      | $x^2 - 18$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $k x^2 - 45$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                    | $x^2 - 20$                                                                                         |                                                                                                       |
|           |                      | <b>m</b> $x^2 - 32$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n $x^2 - 48$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                    | <b>o</b> $x^2 - 50$                                                                                |                                                                                                       |
|           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                    |                                                                                                    | 10                                                                                                    |
|           |                      | <b>p</b> $x^2 - 200$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>q</b> $(x+2)^2 - 6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                    | r $(x+5)^2$                                                                                        |                                                                                                       |
|           |                      | <b>s</b> $(x-3)^2 - 11$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | t $(x-1)^2 - 7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                    | <b>u</b> $(x-6)^2$                                                                                 | - 15                                                                                                  |
|           |                      | $(x+4)^2 - 21$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $(x+1)^2 - 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9                                                                                                                                                                                                                                                                  | <b>x</b> $(x-7)^2$                                                                                 | - 26                                                                                                  |
|           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | /                                                                                                                                                                                                                                                                  |                                                                                                    | 20                                                                                                    |
| Example 7 | 7                    | Factorise by grouping.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                    |                                                                                                    |                                                                                                       |
|           | •                    | <b>a</b> $x^2 + 4x + ax + 4a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>b</b> $x^2 + 7x + bx$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 71                                                                                                                                                                                                                                                                 | <b>c</b> $x^2 - 3x$                                                                                | 1 au 2 a                                                                                              |
|           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                    |                                                                                                    |                                                                                                       |
|           |                      | <b>d</b> $x^2 + 2x - ax - 2a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>e</b> $x^2 + 5x - bx$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | c - 5b                                                                                                                                                                                                                                                             | f $x^2 + 3x$                                                                                       | -4ax - 12a                                                                                            |
|           |                      | $x^2 - ax - 4x + 4a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>h</b> $x^2 - 2bx - 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5x + 10b                                                                                                                                                                                                                                                           | $3x^2 - 6a$                                                                                        | ax - 7x + 14a                                                                                         |
|           |                      | <b>J</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                    |                                                                                                    |                                                                                                       |
|           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                    |                                                                                                    |                                                                                                       |
|           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0(1)                                                                                                                                                                                                                                                               | 0.0(1/)                                                                                            | 0.40(1/)                                                                                              |
|           |                      | PROBLEM-SOLVING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8(1/2)                                                                                                                                                                                                                                                             | 8-9(1/2)                                                                                           | 8-10(1/3)                                                                                             |
|           | 0                    | Esstavias fulles and simul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1: f d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                    |                                                                                                    |                                                                                                       |
|           | Ö                    | Factorise fully and simpl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                    |                                                                                                    |                                                                                                       |
|           |                      | <b>a</b> $x^2 - \frac{2}{9}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>b</b> $x^2 - \frac{3}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | c $x^2 - \frac{7}{16}$                                                                                                                                                                                                                                             | h                                                                                                  | $x^2 - \frac{5}{36}$                                                                                  |
|           |                      | $a x - \frac{1}{9}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $x^{-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $x^{-1} = \frac{16}{16}$                                                                                                                                                                                                                                           | u                                                                                                  | $x^{-} = \frac{1}{36}$                                                                                |
|           |                      | $(x - 2)^2 = 20$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | f $(x+4)^2 - 27$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $(r + 1)^2$                                                                                                                                                                                                                                                        | 75 h                                                                                               | $(r - 7)^2 = 40$                                                                                      |
|           |                      | (x - 2) = 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (x + 4) = 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                    |                                                                                                    |                                                                                                       |
|           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $5x^2 - 9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>k</b> $7x^2 - 5$                                                                                                                                                                                                                                                |                                                                                                    | $6x^2 - 11$                                                                                           |
|           |                      | $m -9 + 2x^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $-16 + 5x^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>0</b> $-10 + 3x^2$                                                                                                                                                                                                                                              | p                                                                                                  | $-7 + 13x^2$                                                                                          |
|           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                    |                                                                                                    |                                                                                                       |
|           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                    |                                                                                                    |                                                                                                       |
|           | 9                    | Factorise by first rearran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ging.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                    |                                                                                                    |                                                                                                       |
|           | 9                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | q - 4x                                                                                                                                                                                                                                                             | <b>c</b> $ax - 10$                                                                                 | +5x - 2a                                                                                              |
|           | 9                    | <b>a</b> $xy - 6 - 3x + 2y$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>b</b> $ax - 12 + 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                    | <b>c</b> $ax - 10$                                                                                 |                                                                                                       |
|           | 9                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                    | <b>c</b> $ax - 10$<br><b>f</b> $2ax - 20$                                                          |                                                                                                       |
|           |                      | <b>a</b> $xy - 6 - 3x + 2y$<br><b>d</b> $xy + 12 - 3y - 4x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>b</b> $ax - 12 + 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                    |                                                                                                    |                                                                                                       |
|           |                      | <b>a</b> $xy - 6 - 3x + 2y$<br><b>d</b> $xy + 12 - 3y - 4x$<br>Factorise fully.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>b</b> $ax - 12 + 3a$<br><b>e</b> $2ax + 3 - a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - 6 <i>x</i>                                                                                                                                                                                                                                                       | f $2ax - 20$                                                                                       | 0 + 8a - 5x                                                                                           |
|           |                      | <b>a</b> $xy - 6 - 3x + 2y$<br><b>d</b> $xy + 12 - 3y - 4x$<br>Factorise fully.<br><b>a</b> $5x^2 - 120$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>b</b> $ax - 12 + 3x^{2}$<br><b>e</b> $2ax + 3 - a^{2}$<br><b>b</b> $3x^{2} - 162$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - $6x$<br>c $7x^2 - 126$                                                                                                                                                                                                                                           | f 2ax - 20<br>d                                                                                    | $0 + 8a - 5x$ $2x^2 - 96$                                                                             |
|           |                      | <b>a</b> $xy - 6 - 3x + 2y$<br><b>d</b> $xy + 12 - 3y - 4x$<br>Factorise fully.<br><b>a</b> $5x^2 - 120$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>b</b> $ax - 12 + 3a$<br><b>e</b> $2ax + 3 - a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - $6x$<br>c $7x^2 - 126$                                                                                                                                                                                                                                           | f 2ax - 20<br>d                                                                                    | $0 + 8a - 5x$ $2x^2 - 96$                                                                             |
|           |                      | <b>a</b> $xy - 6 - 3x + 2y$<br><b>d</b> $xy + 12 - 3y - 4x$<br>Factorise fully.<br><b>a</b> $5x^2 - 120$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>b</b> $ax - 12 + 3x^{2}$<br><b>e</b> $2ax + 3 - a^{2}$<br><b>b</b> $3x^{2} - 162$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - $6x$<br>c $7x^2 - 126$                                                                                                                                                                                                                                           | f 2ax - 20<br>d                                                                                    | $0 + 8a - 5x$ $2x^2 - 96$                                                                             |
|           |                      | <b>a</b> $xy - 6 - 3x + 2y$<br><b>d</b> $xy + 12 - 3y - 4x$<br>Factorise fully.<br><b>a</b> $5x^2 - 120$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>b</b> $ax - 12 + 3x^{2}$<br><b>e</b> $2ax + 3 - a^{2}$<br><b>b</b> $3x^{2} - 162$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - $6x$<br>c $7x^2 - 126$                                                                                                                                                                                                                                           | f 2ax - 20<br>d                                                                                    | $0 + 8a - 5x$ $2x^2 - 96$                                                                             |
|           |                      | <b>a</b> $xy - 6 - 3x + 2y$<br><b>d</b> $xy + 12 - 3y - 4x$<br>Factorise fully.<br><b>a</b> $5x^2 - 120$<br><b>e</b> $2(x + 3)^2 - 10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>b</b> $ax - 12 + 3x^{2}$<br><b>e</b> $2ax + 3 - a^{2}$<br><b>b</b> $3x^{2} - 162$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - $6x$<br><b>c</b> $7x^2 - 126$<br><b>g</b> $4(x - 4)^2$ -                                                                                                                                                                                                         | f 2ax - 20<br>- 48 h                                                                               | $b^{2} + 8a - 5x$<br>$2x^{2} - 96$<br>$5(x + 6)^{2} - 90$                                             |
|           |                      | <b>a</b> $xy - 6 - 3x + 2y$<br><b>d</b> $xy + 12 - 3y - 4x$<br>Factorise fully.<br><b>a</b> $5x^2 - 120$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>b</b> $ax - 12 + 3x^{2}$<br><b>e</b> $2ax + 3 - a^{2}$<br><b>b</b> $3x^{2} - 162$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - $6x$<br>c $7x^2 - 126$                                                                                                                                                                                                                                           | f 2ax - 20<br>d                                                                                    | $0 + 8a - 5x$ $2x^2 - 96$                                                                             |
|           | 10                   | <b>a</b> $xy - 6 - 3x + 2y$<br><b>d</b> $xy + 12 - 3y - 4x$<br>Factorise fully.<br><b>a</b> $5x^2 - 120$<br><b>e</b> $2(x + 3)^2 - 10$<br><b>REASONING</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>b</b> $ax - 12 + 3x^{2}$<br><b>e</b> $2ax + 3 - a^{2}$<br><b>b</b> $3x^{2} - 162$<br><b>f</b> $3(x - 1)^{2} - 21$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - $6x$<br><b>c</b> $7x^2 - 126$<br><b>g</b> $4(x - 4)^2$ -<br>11(1/2)                                                                                                                                                                                              | f $2ax - 20$<br>d d h<br>11(1/2), 12                                                               | $b^{2} + 8a - 5x$<br>$2x^{2} - 96$<br>$5(x + 6)^{2} - 90$                                             |
|           | 10                   | <b>a</b> $xy - 6 - 3x + 2y$<br><b>d</b> $xy + 12 - 3y - 4x$<br>Factorise fully.<br><b>a</b> $5x^2 - 120$<br><b>e</b> $2(x + 3)^2 - 10$<br><b>REASONING</b><br>Evaluate the following, w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>b</b> $ax - 12 + 3x^{2}$<br><b>e</b> $2ax + 3 - a^{2}$<br><b>b</b> $3x^{2} - 162$<br><b>f</b> $3(x - 1)^{2} - 21$<br>without the use of a calculate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - $6x$<br><b>c</b> $7x^2 - 126$<br><b>g</b> $4(x - 4)^2$ -<br>11( <sup>1</sup> / <sub>2</sub> )<br>by first factor                                                                                                                                                 | f $2ax - 20$<br>d d<br>- 48 h<br>11(1/2), 12<br>ising.                                             | b) + 8a - 5x<br>$2x^2 - 96$<br>$5(x + 6)^2 - 90$<br>11(1/2), 13, 14                                   |
|           | 10                   | <b>a</b> $xy - 6 - 3x + 2y$<br><b>d</b> $xy + 12 - 3y - 4x$<br>Factorise fully.<br><b>a</b> $5x^2 - 120$<br><b>e</b> $2(x + 3)^2 - 10$<br><b>REASONING</b><br>Evaluate the following, y<br><b>a</b> $16^2 - 14^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>b</b> $ax - 12 + 3x^{2}$<br><b>e</b> $2ax + 3 - a^{2}$<br><b>b</b> $3x^{2} - 162$<br><b>f</b> $3(x - 1)^{2} - 21$<br>without the use of a calculate<br><b>b</b> $18^{2} - 17^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - $6x$<br><b>c</b> $7x^2 - 126$<br><b>g</b> $4(x - 4)^2$ -<br>11( <sup>1</sup> / <sub>2</sub> )<br>or, by first factoric<br><b>c</b> $13^2 - 10^2$                                                                                                                 | f $2ax - 20$<br>- 48 h<br>11(1/2), 12<br>ising.                                                    | $2x^{2} - 96$ $5(x + 6)^{2} - 90$ $11(1/2), 13, 14$ $15^{2} - 11^{2}$                                 |
|           | 10                   | <b>a</b> $xy - 6 - 3x + 2y$<br><b>d</b> $xy + 12 - 3y - 4x$<br>Factorise fully.<br><b>a</b> $5x^2 - 120$<br><b>e</b> $2(x + 3)^2 - 10$<br><b>REASONING</b><br>Evaluate the following, y<br><b>a</b> $16^2 - 14^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>b</b> $ax - 12 + 3x^{2}$<br><b>e</b> $2ax + 3 - a^{2}$<br><b>b</b> $3x^{2} - 162$<br><b>f</b> $3(x - 1)^{2} - 21$<br>without the use of a calculate<br><b>b</b> $18^{2} - 17^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - $6x$<br><b>c</b> $7x^2 - 126$<br><b>g</b> $4(x - 4)^2$ -<br>11( <sup>1</sup> / <sub>2</sub> )<br>by first factor                                                                                                                                                 | f $2ax - 20$<br>- 48 h<br>11(1/2), 12<br>ising.                                                    | b) + 8a - 5x<br>$2x^2 - 96$<br>$5(x + 6)^2 - 90$<br>11(1/2), 13, 14                                   |
|           | 10<br>11             | <b>a</b> $xy - 6 - 3x + 2y$<br><b>d</b> $xy + 12 - 3y - 4x$<br>Factorise fully.<br><b>a</b> $5x^2 - 120$<br><b>e</b> $2(x + 3)^2 - 10$<br><b>REASONING</b><br>Evaluate the following, w<br><b>a</b> $16^2 - 14^2$<br><b>e</b> $17^2 - 15^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>b</b> $ax - 12 + 3x^{2}$<br><b>e</b> $2ax + 3 - a^{2}$<br><b>b</b> $3x^{2} - 162$<br><b>f</b> $3(x - 1)^{2} - 21$<br>without the use of a calculate<br><b>b</b> $18^{2} - 17^{2}$<br><b>f</b> $11^{2} - 9^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - $6x$<br><b>c</b> $7x^2 - 126$<br><b>g</b> $4(x - 4)^2$ -<br>11(1/2)<br>pr, by first factori<br><b>c</b> $13^2 - 10^2$<br><b>g</b> $27^2 - 24^2$                                                                                                                  | f $2ax - 20$<br>- 48 h<br>11(1/2), 12<br>ising.<br>d<br>h                                          | $2x^{2} - 96$ $5(x + 6)^{2} - 90$ $11(1/2), 13, 14$ $15^{2} - 11^{2}$                                 |
|           | 10<br>11             | <b>a</b> $xy - 6 - 3x + 2y$<br><b>d</b> $xy + 12 - 3y - 4x$<br>Factorise fully.<br><b>a</b> $5x^2 - 120$<br><b>e</b> $2(x + 3)^2 - 10$<br><b>REASONING</b><br>Evaluate the following, w<br><b>a</b> $16^2 - 14^2$<br><b>e</b> $17^2 - 15^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>b</b> $ax - 12 + 3x^{2}$<br><b>e</b> $2ax + 3 - a^{2}$<br><b>b</b> $3x^{2} - 162$<br><b>f</b> $3(x - 1)^{2} - 21$<br>without the use of a calculate<br><b>b</b> $18^{2} - 17^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - $6x$<br><b>c</b> $7x^2 - 126$<br><b>g</b> $4(x - 4)^2$ -<br>11(1/2)<br>pr, by first factori<br><b>c</b> $13^2 - 10^2$<br><b>g</b> $27^2 - 24^2$                                                                                                                  | f $2ax - 20$<br>- 48 h<br>11(1/2), 12<br>ising.<br>d<br>h                                          | $2x^{2} - 96$ $5(x + 6)^{2} - 90$ $11(1/2), 13, 14$ $15^{2} - 11^{2}$                                 |
|           | 10<br>11             | a $xy - 6 - 3x + 2y$<br>d $xy + 12 - 3y - 4x$<br>Factorise fully.<br>a $5x^2 - 120$<br>e $2(x + 3)^2 - 10$<br><b>REASONING</b><br>Evaluate the following, y<br>a $16^2 - 14^2$<br>e $17^2 - 15^2$<br>a Show that $4 - (x + 2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>b</b> $ax - 12 + 3x^{2}$<br><b>e</b> $2ax + 3 - a^{2}$<br><b>b</b> $3x^{2} - 162$<br><b>f</b> $3(x - 1)^{2} - 21$<br>without the use of a calculate<br><b>b</b> $18^{2} - 17^{2}$<br><b>f</b> $11^{2} - 9^{2}$<br>$2)^{2} = -x(x + 4)$ by factorisis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - $6x$<br><b>c</b> $7x^2 - 126$<br><b>g</b> $4(x - 4)^2$ -<br>11(1/2)<br>pr, by first factori<br><b>c</b> $13^2 - 10^2$<br><b>g</b> $27^2 - 24^2$                                                                                                                  | f $2ax - 20$<br>- 48 h<br>11(1/2), 12<br>ising.<br>d<br>h                                          | $2x^{2} - 96$ $5(x + 6)^{2} - 90$ $11(1/2), 13, 14$ $15^{2} - 11^{2}$                                 |
|           | 10<br>11             | <b>a</b> $xy - 6 - 3x + 2y$<br><b>d</b> $xy + 12 - 3y - 4x$<br>Factorise fully.<br><b>a</b> $5x^2 - 120$<br><b>e</b> $2(x + 3)^2 - 10$<br><b>REASONING</b><br>Evaluate the following, y<br><b>a</b> $16^2 - 14^2$<br><b>e</b> $17^2 - 15^2$<br><b>a</b> Show that $4 - (x + 2)$<br><b>b</b> Now factorise the following the following is the following | <b>b</b> $ax - 12 + 3$<br><b>e</b> $2ax + 3 - a$<br><b>b</b> $3x^2 - 162$<br><b>f</b> $3(x - 1)^2 - 21$<br>without the use of a calculate<br><b>b</b> $18^2 - 17^2$<br><b>f</b> $11^2 - 9^2$<br>$22)^2 = -x(x + 4)$ by factorising lowing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - $6x$<br><b>c</b> $7x^2 - 126$<br><b>g</b> $4(x - 4)^2$ -<br>11( <sup>1/2</sup> )<br>or, by first factoric<br><b>c</b> $13^2 - 10^2$<br><b>g</b> $27^2 - 24^2$<br>ng the left-hand                                                                                | f $2ax - 20$<br>- 48 h<br>11(1/2), 12<br>ising.<br>d<br>h<br>side.                                 | $2x^{2} - 96$ $5(x + 6)^{2} - 90$ $11(1/2), 13, 14$ $15^{2} - 11^{2}$ $52^{2} - 38^{2}$               |
|           | 10<br>11             | a $xy - 6 - 3x + 2y$<br>d $xy + 12 - 3y - 4x$<br>Factorise fully.<br>a $5x^2 - 120$<br>e $2(x + 3)^2 - 10$<br><b>REASONING</b><br>Evaluate the following, w<br>a $16^2 - 14^2$<br>e $17^2 - 15^2$<br>a Show that $4 - (x + 2)^2$<br>b Now factorise the following in $9 - (x + 3)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>b</b> $ax - 12 + 3$<br><b>e</b> $2ax + 3 - a$<br><b>b</b> $3x^2 - 162$<br><b>f</b> $3(x - 1)^2 - 21$<br>without the use of a calculate<br><b>b</b> $18^2 - 17^2$<br><b>f</b> $11^2 - 9^2$<br>$2)^2 = -x(x + 4)$ by factorising lowing.<br><b>ii</b> $16 - (x - 4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - $6x$<br><b>c</b> $7x^2 - 126$<br><b>g</b> $4(x - 4)^2$ -<br><b>11</b> ( <sup>1/2</sup> )<br>or, by first factor<br><b>c</b> $13^2 - 10^2$<br><b>g</b> $27^2 - 24^2$<br>ng the left-hand<br>+ $4)^2$                                                              | f $2ax - 20$<br>d<br>h<br>11(1/2), 12<br>ising.<br>d<br>h<br>side.<br>iii 25 -                     | $2x^{2} - 96$ $5(x + 6)^{2} - 90$ $11(1/2), 13, 14$ $15^{2} - 11^{2}$ $52^{2} - 38^{2}$ $(x - 5)^{2}$ |
|           | 10<br>11             | <b>a</b> $xy - 6 - 3x + 2y$<br><b>d</b> $xy + 12 - 3y - 4x$<br>Factorise fully.<br><b>a</b> $5x^2 - 120$<br><b>e</b> $2(x + 3)^2 - 10$<br><b>REASONING</b><br>Evaluate the following, y<br><b>a</b> $16^2 - 14^2$<br><b>e</b> $17^2 - 15^2$<br><b>a</b> Show that $4 - (x + 2)$<br><b>b</b> Now factorise the following the following is the following | <b>b</b> $ax - 12 + 3$<br><b>e</b> $2ax + 3 - a$<br><b>b</b> $3x^2 - 162$<br><b>f</b> $3(x - 1)^2 - 21$<br>without the use of a calculate<br><b>b</b> $18^2 - 17^2$<br><b>f</b> $11^2 - 9^2$<br>$22)^2 = -x(x + 4)$ by factorising lowing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - $6x$<br><b>c</b> $7x^2 - 126$<br><b>g</b> $4(x - 4)^2$ -<br><b>11</b> ( <sup>1/2</sup> )<br>or, by first factor<br><b>c</b> $13^2 - 10^2$<br><b>g</b> $27^2 - 24^2$<br>ng the left-hand<br>+ $4)^2$                                                              | f $2ax - 20$<br>d<br>h<br>11(1/2), 12<br>ising.<br>d<br>h<br>side.<br>iii 25 -                     | $2x^{2} - 96$ $5(x + 6)^{2} - 90$ $11(1/2), 13, 14$ $15^{2} - 11^{2}$ $52^{2} - 38^{2}$               |
|           | 10<br>11<br>12       | a $xy - 6 - 3x + 2y$<br>d $xy + 12 - 3y - 4x$<br>Factorise fully.<br>a $5x^2 - 120$<br>e $2(x + 3)^2 - 10$<br><b>REASONING</b><br>Evaluate the following, v<br>a $16^2 - 14^2$<br>e $17^2 - 15^2$<br>a Show that $4 - (x + 2)^2$<br>b Now factorise the following in $9 - (x + 3)^2$<br>iv $25 - (x + 2)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>b</b> $ax - 12 + 3$<br><b>e</b> $2ax + 3 - a$<br><b>b</b> $3x^2 - 162$<br><b>f</b> $3(x - 1)^2 - 21$<br>without the use of a calculate<br><b>b</b> $18^2 - 17^2$<br><b>f</b> $11^2 - 9^2$<br>$2)^2 = -x(x + 4)$ by factorisis<br>lowing.<br><b>ii</b> $16 - (x - y)^2 + 4 - (x - y)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - $6x$<br><b>c</b> $7x^2 - 126$<br><b>g</b> $4(x - 4)^2$ -<br><b>11</b> ( <sup>1/2</sup> )<br>or, by first factor<br><b>c</b> $13^2 - 10^2$<br><b>g</b> $27^2 - 24^2$<br>ng the left-hand<br>+ $4)^2$                                                              | f $2ax - 20$<br>d<br>h<br>11(1/2), 12<br>ising.<br>d<br>h<br>side.<br>iii 25 -                     | $2x^{2} - 96$ $5(x + 6)^{2} - 90$ $11(1/2), 13, 14$ $15^{2} - 11^{2}$ $52^{2} - 38^{2}$ $(x - 5)^{2}$ |
|           | 10<br>11<br>12       | a $xy - 6 - 3x + 2y$<br>d $xy + 12 - 3y - 4x$<br>Factorise fully.<br>a $5x^2 - 120$<br>e $2(x + 3)^2 - 10$<br><b>REASONING</b><br>Evaluate the following, y<br>a $16^2 - 14^2$<br>e $17^2 - 15^2$<br>a Show that $4 - (x + 2)^2$<br>b Now factorise the following in $9 - (x + 3)^2$<br>iv $25 - (x + 2)^2$<br>a Prove that, in general                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>b</b> $ax - 12 + 3$<br><b>e</b> $2ax + 3 - a$<br><b>b</b> $3x^2 - 162$<br><b>f</b> $3(x - 1)^2 - 21$<br>without the use of a calculate<br><b>b</b> $18^2 - 17^2$<br><b>f</b> $11^2 - 9^2$<br>$2)^2 = -x(x + 4)$ by factorisic<br>lowing.<br><b>ii</b> $16 - (x - y)^2 + (x - y)$ | - $6x$<br><b>c</b> $7x^2 - 126$<br><b>g</b> $4(x - 4)^2$ -<br><b>11</b> ( <sup>1/2</sup> )<br><b>or</b> , by first factoric<br><b>c</b> $13^2 - 10^2$<br><b>g</b> $27^2 - 24^2$<br>ng the left-hand<br>+ $4)^2$<br>- $1)^2$                                        | f $2ax - 20$<br>d<br>- 48<br>h<br>11(1/2), 12<br>ising.<br>d<br>h<br>side.<br>iii 25 -<br>vi 100 - | $2x^{2} - 96$ $5(x + 6)^{2} - 90$ $11(1/2), 13, 14$ $15^{2} - 11^{2}$ $52^{2} - 38^{2}$ $(x - 5)^{2}$ |
|           | 10<br>11<br>12       | a $xy - 6 - 3x + 2y$<br>d $xy + 12 - 3y - 4x$<br>Factorise fully.<br>a $5x^2 - 120$<br>e $2(x + 3)^2 - 10$<br><b>REASONING</b><br>Evaluate the following, w<br>a $16^2 - 14^2$<br>e $17^2 - 15^2$<br>a Show that $4 - (x + 2)^2$<br>b Now factorise the following in $9 - (x + 3)^2$<br>iv $25 - (x + 2)^2$<br>a Prove that, in general                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>b</b> $ax - 12 + 3$<br><b>e</b> $2ax + 3 - a$<br><b>b</b> $3x^2 - 162$<br><b>f</b> $3(x - 1)^2 - 21$<br>without the use of a calculate<br><b>b</b> $18^2 - 17^2$<br><b>f</b> $11^2 - 9^2$<br>$2)^2 = -x(x + 4)$ by factorisic<br>lowing.<br><b>ii</b> $16 - (x - y)^2 + (x - y)$ | - $6x$<br><b>c</b> $7x^2 - 126$<br><b>g</b> $4(x - 4)^2$ -<br><b>11</b> ( <sup>1/2</sup> )<br><b>or</b> , by first factoric<br><b>c</b> $13^2 - 10^2$<br><b>g</b> $27^2 - 24^2$<br>ng the left-hand<br>+ $4)^2$<br>- $1)^2$                                        | f $2ax - 20$<br>d<br>- 48<br>h<br>11(1/2), 12<br>ising.<br>d<br>h<br>side.<br>iii 25 -<br>vi 100 - | $2x^{2} - 96$ $5(x + 6)^{2} - 90$ $11(1/2), 13, 14$ $15^{2} - 11^{2}$ $52^{2} - 38^{2}$ $(x - 5)^{2}$ |
|           | 10<br>11<br>12       | a $xy - 6 - 3x + 2y$<br>d $xy + 12 - 3y - 4x$<br>Factorise fully.<br>a $5x^2 - 120$<br>e $2(x + 3)^2 - 10$<br><b>REASONING</b><br>Evaluate the following, w<br>a $16^2 - 14^2$<br>e $17^2 - 15^2$<br>a Show that $4 - (x + 2)^2$<br>b Now factorise the following in $9 - (x + 3)^2$<br>iv $25 - (x + 2)^2$<br>a Prove that, in general                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>b</b> $ax - 12 + 3$<br><b>e</b> $2ax + 3 - a$<br><b>b</b> $3x^2 - 162$<br><b>f</b> $3(x - 1)^2 - 21$<br>without the use of a calculate<br><b>b</b> $18^2 - 17^2$<br><b>f</b> $11^2 - 9^2$<br>$2)^2 = -x(x + 4)$ by factorisis<br>lowing.<br><b>ii</b> $16 - (x - y)^2 + 4 - (x - y)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - $6x$<br><b>c</b> $7x^2 - 126$<br><b>g</b> $4(x - 4)^2$ -<br><b>11</b> ( <sup>1/2</sup> )<br><b>or</b> , by first factoric<br><b>c</b> $13^2 - 10^2$<br><b>g</b> $27^2 - 24^2$<br>ng the left-hand<br>+ $4)^2$<br>- $1)^2$                                        | f $2ax - 20$<br>d<br>- 48<br>h<br>11(1/2), 12<br>ising.<br>d<br>h<br>side.<br>iii 25 -<br>vi 100 - | $2x^{2} - 96$ $5(x + 6)^{2} - 90$ $11(1/2), 13, 14$ $15^{2} - 11^{2}$ $52^{2} - 38^{2}$ $(x - 5)^{2}$ |
|           | 10<br>11<br>12<br>13 | a $xy - 6 - 3x + 2y$<br>d $xy + 12 - 3y - 4x$<br>Factorise fully.<br>a $5x^2 - 120$<br>e $2(x + 3)^2 - 10$<br><b>REASONING</b><br>Evaluate the following, v<br>a $16^2 - 14^2$<br>e $17^2 - 15^2$<br>a Show that $4 - (x + 2)^2$<br>b Now factorise the following to the following of the fol                                         | <b>b</b> $ax - 12 + 3$<br><b>e</b> $2ax + 3 - a$<br><b>b</b> $3x^2 - 162$<br><b>f</b> $3(x - 1)^2 - 21$<br>without the use of a calculate<br><b>b</b> $18^2 - 17^2$<br><b>f</b> $11^2 - 9^2$<br>$2)^2 = -x(x + 4)$ by factorising<br>lowing.<br><b>ii</b> $16 - (x - y + 4) - (x - y + 4)$<br>49 - (x - y + 4) - (x - 4)<br><b>ii</b> $x + a^2 \neq x^2 + a^2$ .<br>of x for which $(x + a)^2 = x^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - $6x$<br><b>c</b> $7x^2 - 126$<br><b>g</b> $4(x - 4)^2$ -<br><b>11</b> ( <sup>1/2</sup> )<br><b>b</b> r, by first factoric<br><b>c</b> $13^2 - 10^2$<br><b>g</b> $27^2 - 24^2$<br><b>ng the left-hand</b><br>+ $4)^2$<br>- $1)^2$<br><b>2</b> + $a^2$ ? If so, wh | f $2ax - 20$<br>d<br>- 48<br>h<br>11(1/2), 12<br>ising.<br>d<br>h<br>side.<br>iii 25 -<br>vi 100 - | $2x^{2} - 96$ $5(x + 6)^{2} - 90$ $11(1/2), 13, 14$ $15^{2} - 11^{2}$ $52^{2} - 38^{2}$ $(x - 5)^{2}$ |
|           | 10<br>11<br>12<br>13 | a $xy - 6 - 3x + 2y$<br>d $xy + 12 - 3y - 4x$<br>Factorise fully.<br>a $5x^2 - 120$<br>e $2(x + 3)^2 - 10$<br><b>REASONING</b><br>Evaluate the following, v<br>a $16^2 - 14^2$<br>e $17^2 - 15^2$<br>a Show that $4 - (x + 2)^2$<br>b Now factorise the following to the following of the fol                                         | <b>b</b> $ax - 12 + 3$<br><b>e</b> $2ax + 3 - a$<br><b>b</b> $3x^2 - 162$<br><b>f</b> $3(x - 1)^2 - 21$<br>without the use of a calculate<br><b>b</b> $18^2 - 17^2$<br><b>f</b> $11^2 - 9^2$<br>$2)^2 = -x(x + 4)$ by factorisic<br>lowing.<br><b>ii</b> $16 - (x - y)^2 + (x - y)$ | - $6x$<br><b>c</b> $7x^2 - 126$<br><b>g</b> $4(x - 4)^2$ -<br><b>11</b> ( <sup>1/2</sup> )<br><b>b</b> r, by first factoric<br><b>c</b> $13^2 - 10^2$<br><b>g</b> $27^2 - 24^2$<br><b>ng the left-hand</b><br>+ $4)^2$<br>- $1)^2$<br><b>2</b> + $a^2$ ? If so, wh | f $2ax - 20$<br>d<br>- 48<br>h<br>11(1/2), 12<br>ising.<br>d<br>h<br>side.<br>iii 25 -<br>vi 100 - | $2x^{2} - 96$ $5(x + 6)^{2} - 90$ $11(1/2), 13, 14$ $15^{2} - 11^{2}$ $52^{2} - 38^{2}$ $(x - 5)^{2}$ |

#### **ENRICHMENT: Hidden DOPS**

1

\_

**15** Factorise and simplify the following without initially expanding the brackets.

- a  $(x + 2)^2 (x + 3)^2$ b  $(y 7)^2 (y + 4)^2$ c  $(a + 3)^2 (a 5)^2$ d  $(b + 5)^2 (b 5)^2$ e  $(s 3)^2 (s + 3)^2$ f  $(y 7)^2 (y + 7)^2$ g  $(2w + 3x)^2 (3w + 4x)^2$ h  $(d + 5e)^2 (3d 2e)^2$ i  $(4f + 3j)^2 (2f 3j)^2$ j  $(3r 2p)^2 (2p 3r)^2$
- **16 a** Is it possible to factorise  $x^2 + 5y y^2 + 5x$ ? Can you show how?

**b** Also try factorising:  
**i** 
$$x^2 + 7x + 7y - y^2$$

$$\begin{array}{c} x + 7x + 7y = y \\ ii \quad x^2 - 2x - 2y - y^2 \end{array}$$

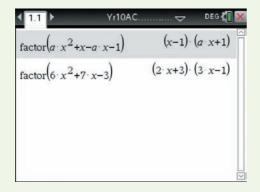
$$\begin{array}{cccc} x & -2x - 2y - y \\ \hline \\ x & 4x^2 + 4x + 6y - 9y^2 \end{array}$$

$$25y^2 + 15y - 4x^2 + 6x$$



Factorising is a key component of the proof of Fermat's last theorem, which states that there are no solutions to  $x^n + y^n = z^n$  for  $n \ge 3$ . Although it looks simple, it took the best mathematicians on Earth 358 years to find a proof of this theorem. It was finally proved in 1994 by Andrew Wiles, and his proof is almost 130 pages long!

## Using calculators to expand and factorise


- **1** Expand and simplify  $3(2x 3)(5x + 1) (4x 1)^2$ .
- **2** Factorise.
  - **a**  $ax^2 + x ax 1$
  - **b**  $6x^2 + 7x 3$

## Using the TI-Nspire:

 In a calculator page use menu >Algebra>Expand and type as shown.

| < <u>1.1</u> ▶      | Yr10AC         | ~~~~                 | DEG 🚺 🗙 |
|---------------------|----------------|----------------------|---------|
| $expand(3 \cdot (2$ | 2·x−3)·(5·x+1) | $-(4 \cdot x - 1)^2$ | )       |
|                     |                | $14 x^2 - 3$         | 1·x-10  |
|                     |                |                      |         |
|                     |                |                      |         |
|                     |                |                      |         |
|                     |                |                      |         |

2 In a Calculator page use menu >Algebra>Factor and type as shown.



Note: Use a multiplication sign between the *a* and *x*.

## Using the ClassPad:

1 In the Main application, type and highlight the expression, then tap Interactive, Transformation, expand and type in as shown below.

|      | dit Action In |         | -         |                        | ×    |
|------|---------------|---------|-----------|------------------------|------|
| expa | nd(3.(2.x-    | 3).(5.) | +1)-(4·x- | -1)2)                  |      |
|      |               |         |           | 14·x <sup>2</sup> -31· | x-10 |
| p    |               |         |           |                        |      |
|      |               |         |           |                        |      |
|      |               |         |           |                        |      |
|      |               |         |           |                        |      |
|      |               |         |           |                        |      |
| Alg  | Decimal       | Real    | Deg       |                        | 0    |

2 Use the VAR keyboard to type the expression as shown. Highlight the expression and tap Interactive, Transformation, factor.

| 14 8                          | The         | -1          | -1                 |             | ×.          |                  |
|-------------------------------|-------------|-------------|--------------------|-------------|-------------|------------------|
| factor (                      | ax^         | 2+x         | -ax-               | -1)         |             | 10               |
|                               |             |             | (x-                | 1).(        | a•x+        | 1)               |
| factor (                      | 6x^2        | 2+73        | (-3)               |             |             |                  |
|                               |             | (           | 3-x-               | 1).(        | 2•x+        | 3)               |
| 0                             |             |             |                    |             |             |                  |
|                               |             |             |                    |             |             |                  |
|                               |             |             |                    |             |             |                  |
|                               |             |             |                    |             |             |                  |
|                               |             |             |                    |             |             | Ē                |
| Math1                         | a           | b           | c                  | d           | e           | 1                |
| Math1<br>Math2                | -           | -           | c<br>i             | d<br>i      | -           | 1                |
|                               | 8           | h           | i                  | j           | k           | 1<br>1           |
| Math2<br>Math3                | -           | -           |                    |             | -           | 1                |
| Math2<br>Math3<br>Trig        | 8           | h           | i                  | j           | k           | 1<br>1           |
| Math2<br>Math3<br>Trig<br>Var | 8<br>m      | h<br>n      | i<br>0             | j<br>p      | k<br>q      | 1<br>1<br>r      |
| Math2<br>Math3<br>Trig        | B<br>m<br>S | h<br>n<br>t | i<br>0<br>11<br>() | j<br>p<br>v | k<br>q<br>w | f<br>l<br>r<br>x |

# 5C Factorising monic quadratic trinomials

#### Learning intentions

- To be able to identify a monic quadratic trinomial
- To understand the relationship between expanding brackets to form a trinomial and factorising a monic trinomial
- To know how to factorise a monic quadratic trinomial
- To be able to simplify algebraic fractions by first factorising and cancelling common factors

A quadratic trinomial of the form  $x^2 + bx + c$  is called a monic quadratic because the coefficient of  $x^2$  is 1.

Now consider:

(x+m)(x+n) = x<sup>2</sup> + xn + mx + mn= x<sup>2</sup> + (m + n)x + mn

We can see from this expansion that mn gives the constant term (c) and m + n is the coefficient of x. This tells us that to factorise a monic quadratic trinomial we should look for factors of the constant term (c) that add to give the coefficient of the middle term (b).



Trinomial quadratics can model the revenue and profits from book publishing. Market research and past sales are used to develop unique quadratic models which find the book's selling price that predicts maximum revenue.

# **LESSON STARTER** Factorising $x^2 - 6x - 72$

Discuss what is wrong with each of these statements when trying to factorise  $x^2 - 6x - 72$ .

- Find factors of 72 that add to 6.
- Find factors of 72 that add to -6.
- Find factors of -72 that add to 6.
- $-18 \times 4 = -72$  so  $x^2 6x 72 = (x 18)(x + 4)$
- $-9 \times 8 = -72$  so  $x^2 6x 72 = (x 9)(x + 8)$

Can you write a correct statement that correctly factorises  $x^2 - 6x - 72$ ?

## **KEY IDEAS**



- **Monic quadratics** have a coefficient of  $x^2$  equal to 1.
- Monic quadratics of the form  $x^2 + bx + c$  can be factorised by finding the two numbers that multiply to give the constant term (c) and add to give the coefficient of x (i.e. b).

$$x^{2} + (\underbrace{m+n}_{h})x + \underbrace{mn}_{c} = (x+m)(x+n)$$

# **BUILDING UNDERSTANDING**

| 1 | Find two integers that mul<br>a 18, 11                        | <b>b</b> 20, 12                                                           | <b>c</b> -15, 2                      | <b>d</b> −12, 1           |
|---|---------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------|---------------------------|
|   | <b>e</b> −24, −5                                              | T −30, −7                                                                 | <b>g</b> 10, -7                      | <b>h</b> 36, -15          |
| 2 | A number (except zero) di                                     | vided by itself always equa                                               | ıls 1.                               |                           |
|   | For example: $\frac{a^1}{a^1} = 1$ , $\frac{2(x-x)}{(x-x)^2}$ | $\frac{-3)^{1}}{-3)^{1}} = 2, \frac{(a+5)^{1}}{2(a+5)^{1}} = \frac{1}{2}$ |                                      |                           |
|   | Invent some algebraic frac                                    | tions that are equal to:                                                  |                                      |                           |
|   | <b>a</b> 1                                                    | <b>b</b> 3                                                                | <b>C</b> -5                          | <b>d</b> $\frac{1}{3}$    |
| 3 | Simplify by cancelling con                                    | nmon factors. For parts <mark>f</mark> to                                 | <b>g</b> , first factorise the numer | rator.                    |
|   | <b>a</b> $\frac{2x}{4}$                                       | <b>b</b> $\frac{6a}{2a}$                                                  | <b>c</b> $\frac{3(x+1)}{9(x+1)}$     | d $\frac{2(x-2)}{8(x-2)}$ |
|   | $\frac{8(x+4)}{12(x+4)}$                                      | f $\frac{x^2 + x}{x}$                                                     | <b>g</b> $\frac{x^2 - 2x}{x}$        | $h  \frac{x^2 - 3x}{2x}$  |
|   |                                                               |                                                                           |                                      |                           |

| $\odot$ | Example 8 Factorising trinomials of the form $x^2 + bx + c$          |                                                                                                              |  |  |  |
|---------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--|--|--|
|         | Factorise.<br><b>a</b> $x^2 + 8x + 15$ <b>b</b> $x^2 - 5x + 6$       | <b>c</b> $2x^2 - 10x - 28$ <b>d</b> $x^2 - 8x + 16$                                                          |  |  |  |
|         | SOLUTION                                                             | EXPLANATION                                                                                                  |  |  |  |
|         | <b>a</b> $x^2 + 8x + 15 = (x + 3)(x + 5)$                            | $3 \times 5 = 15$ and $3 + 5 = 8$<br>Check: $(x + 3)(x + 5) = x^2 + 5x + 3x + 15$<br>$= x^2 + 8x + 15$       |  |  |  |
|         | <b>b</b> $x^2 - 5x + 6 = (x - 3)(x - 2)$                             | $-3 \times (-2) = 6$ and $-3 + (-2) = -5$<br>Check: $(x - 3)(x - 2) = x^2 - 2x - 3x + 6$<br>$= x^2 - 5x + 6$ |  |  |  |
|         | <b>c</b> $2x^2 - 10x - 28 = 2(x^2 - 5x - 14)$<br>= $2(x - 7)(x + 2)$ | First, take out the common factor of 2.<br>$-7 \times 2 = -14$ and $-7 + 2 = -5$                             |  |  |  |
|         | <b>d</b> $x^2 - 8x + 16 = (x - 4)(x - 4)$<br>= $(x - 4)^2$           | $-4 \times (-4) = 16$ and $-4 + (-4) = -8$<br>$(x - 4)(x - 4) = (x - 4)^2$ is a perfect square.              |  |  |  |
|         | Now you try                                                          |                                                                                                              |  |  |  |
|         | Factorise:<br><b>a</b> $x^2 + 7x + 12$ <b>b</b> $x^2 - 10x + 24$     | <b>c</b> $2x^2 - 2x - 12$ <b>d</b> $x^2 - 6x + 9$                                                            |  |  |  |

ISBN 978-1-108-77290-7 © Greenwood et al. 2019 Photocopying is restricted under law and this material must not be transferred to another party. Cambridge University Press Updated September 2021

#### Example 9 Simplifying algebraic fractions

Use factorisation to simplify these algebraic fractions.

a 
$$\frac{x^2 - x - 6}{x + 2}$$

a  $\frac{x^2 - x - 6}{x + 2} = \frac{(x - 3)(x + 2)^1}{(x + 2)^1}$ 

= x - 3

**b**  $\frac{x^2 - 9}{x^2 - 2x - 15} \times \frac{x^2 - 4x - 5}{2x - 6}$ 

SOLUTION

**b** 
$$\frac{x^2 - 9}{x^2 - 2x - 15} \times \frac{x^2 - 4x - 5}{2x - 6}$$

#### **EXPLANATION**

First, factorise  $x^2 - x - 6$  and then cancel (x + 2).

First, factorise all expressions in the numerators and denominators. Cancel to simplify where possible.

#### Now you try

 $=\frac{x+1}{2}$ 

Use factorisation to simplify these algebraic fractions.

 $=\frac{(x+3)^{1}(x-3)^{1}}{(x-5)^{1}(x+3)^{1}} \times \frac{(x-5)^{1}(x+1)}{2(x-3)^{1}}$ 

| a | $\frac{x^2 - 2x - 8}{2}$ | h $\frac{x^2 - 4}{x^2} \times \frac{x^2}{x^2}$ | $x^2 + 3x - 4$ |
|---|--------------------------|------------------------------------------------|----------------|
| u | x + 2                    | $x^2 + x - 2$                                  | 2x - 4         |

# **Exercise 5C**

|              |        | FLUENCY                     |                         | 1, 2–4(1/4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2-5(1/3)          | 2-5(1/4)        |
|--------------|--------|-----------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------|
|              | 1      | Factorise.                  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                 |
| Example 8a   |        | <b>a</b> i $x^2 + 3x + 2$   |                         | ii $x^2 +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6x + 5            |                 |
| Example 8b   |        | <b>b</b> i $x^2 - 4x + 3$   |                         | $x^2 - x^2 $ | 11x + 30          |                 |
| Example 8c   |        | <b>c</b> i $2x^2 - 8x - 10$ |                         | ii $3x^2$ –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -9x - 30          |                 |
| Example 8d   |        | <b>d</b> i $x^2 - 4x + 4$   |                         | ii $x^2 -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10x + 25          |                 |
| Example 8a,b | 2      | Factorise these quadratic   | trinomials.             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                 |
|              |        | <b>a</b> $x^2 + 7x + 6$     | <b>b</b> $x^2 + 5x + 6$ | <b>c</b> $x^2 + 6x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +9 <b>d</b>       | $x^2 + 7x + 10$ |
|              |        | <b>e</b> $x^2 + 7x + 12$    | f $x^2 + 11x + 18$      | <b>g</b> $x^2 + 5x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -6 h              | $x^2 + x - 6$   |
|              |        | $x^2 + 2x - 8$              | $x^2 + 3x - 4$          | $k x^2 + 7x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - 30 I            | $x^2 + 9x - 22$ |
|              |        | m $x^2 - 7x + 10$           | $x^2 - 6x + 8$          | <b>o</b> $x^2 - 7x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | + 12 p            | $x^2 - 2x + 1$  |
|              |        | <b>q</b> $x^2 - 9x + 18$    | $x^2 - 11x + 18$        | <b>s</b> $x^2 - 4x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | – 12 <b>t</b>     | $x^2 - x - 20$  |
|              |        | <b>u</b> $x^2 - 5x - 14$    | <b>v</b> $x^2 - x - 12$ | <b>w</b> $x^2 + 4x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - 32 X            | $x^2 - 3x - 10$ |
| Example 8c   | 3      | Factorise by first taking o | ut the common factor    | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                 |
|              |        | <b>a</b> $2x^2 + 14x + 20$  | <b>b</b> $3x^2 + 2$     | 21x + 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>c</b> $2x^2$ + | 22x + 36        |
|              |        | d $5x^2 - 5x - 10$          | $4x^2 - 1$              | 16x - 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | f $3x^2$ –        | 9x - 30         |
|              |        | <b>g</b> $-2x^2 - 14x - 24$ | <b>h</b> $-3x^2$ +      | -9x - 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $-2x^2$ -         | + 10x + 28      |
|              |        | $-4x^2 + 4x + 8$            | <b>k</b> $-5x^2$ –      | -20x - 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $-7x^2$ -         | +49x - 42       |
| ISBN 97      | '8-1-1 | 08-77290-7                  | © Green                 | wood et al. 2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   | Cambridge Unive |

ISBN 978-1-108-77290-7 Photocopying is restricted under law and this material must not be transferred to another party. Cambridge University Press Updated September 2021

 $\overline{\mathbf{b}}$ 

4 Factorise these perfect squares. Example 8d

| а | $x^2 - 4x + 4$     | b | $x^2 + 6x + 9$      | C | $x^2 + 12x + 36$   | d | $x^2 - 14x + 49$    |
|---|--------------------|---|---------------------|---|--------------------|---|---------------------|
| e | $x^2 - 18x + 81$   | f | $x^2 - 20x + 100$   | g | $2x^2 + 44x + 242$ | h | $3x^2 - 24x + 48$   |
| i | $5x^2 - 50x + 125$ | i | $-3x^2 + 36x - 108$ | k | $-2x^2 + 28x - 98$ | 1 | $-4x^2 - 72x - 324$ |

| Example 9a | 5 | Use factorisation to simplify these algebraic fractions. In some cases, you may need to remove a                                                                                                                                                                                                                                                         |        |                                                                                                                         |                                                                                                                                          |    |                                                                                                               |                                                         |
|------------|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
|            |   | common factor first.<br><b>a</b> $\frac{x^2 - 3x - 54}{x - 9}$<br><b>d</b> $\frac{x + 2}{x^2 + 9x + 14}$<br><b>g</b> $\frac{2(x + 12)}{x^2 + 4x - 96}$                                                                                                                                                                                                   | e      | $\frac{x^2 + x - 12}{x + 4}$ $\frac{x - 3}{x^2 - 8x + 15}$ $\frac{x^2 - 5x - 36}{3(x - 9)}$                             |                                                                                                                                          | f  | $\frac{x^2 - 6x}{x - 3}$ $\frac{x + 1}{x^2 - 5x}$ $\frac{x^2 - 15x}{5(x - 3)}$                                | - 6                                                     |
|            |   | PROBLEM-SOLVING                                                                                                                                                                                                                                                                                                                                          |        |                                                                                                                         | 6(1/2)                                                                                                                                   | 6- | -7(1/3)                                                                                                       | 6-8(1/3)                                                |
| Example 9b | 6 | Simplify by first factorising.<br><b>a</b> $\frac{x^2 - 4}{x^2 - x - 6} \times \frac{5x - 15}{x^2 + 4x - 12}$<br><b>c</b> $\frac{x^2 + 2x - 3}{x^2 - 25} \times \frac{2x - 10}{x + 3}$<br><b>e</b> $\frac{x^2 - 4x + 3}{x^2 + 4x - 21} \times \frac{4x + 4}{x^2 - 1}$<br><b>g</b> $\frac{x^2 - x - 6}{x^2 + x - 12} \times \frac{x^2 + 5x + 4}{x^2 - 1}$ |        |                                                                                                                         | $b \frac{x^2 + 3x + 2}{x^2 + 4x + 3}$ $d \frac{x^2 - 9}{x^2 - 5x + 6}$ $f \frac{x^2 + 6x + 8}{x^2 - 4}$ $h \frac{x^2 - 4x - 1}{x^2 - 4}$ | ×  | $\frac{4x-8}{x^2+8x+1}$ $\frac{6x-24}{x^2-16}$                                                                |                                                         |
|            | 7 | Simplify these expressions that in<br><b>a</b> $\frac{x^2 - 7}{x + \sqrt{7}}$ <b>d</b> $\frac{\sqrt{5}x + 3}{5x^2 - 9}$ <b>g</b> $\frac{(x + 1)^2 - 2}{x + 1 + \sqrt{2}}$                                                                                                                                                                                | b<br>e | e surds.<br>$\frac{x^2 - 10}{x - \sqrt{10}}$ $\frac{\sqrt{3}x - 4}{3x^2 - 16}$ $\frac{(x - 3)^2 - 5}{x - 3 - \sqrt{5}}$ |                                                                                                                                          | f  | $\frac{x^2 - 12}{x + 2\sqrt{3}}$ $\frac{7x^2 - 5}{\sqrt{7}x + \sqrt{x^2 - 6^2}}$ $\frac{7x^2 - 6}{x - 6 + 6}$ |                                                         |
|            | 8 |                                                                                                                                                                                                                                                                                                                                                          |        |                                                                                                                         |                                                                                                                                          |    |                                                                                                               | $\frac{+15}{-6} \div \frac{x^2 + 6x + 5}{x^2 + 7x + 6}$ |
|            |   | REASONING                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                         | 9                                                                                                                                        | 9, | 10(1/2)                                                                                                       | 10(1/2), 11, 12                                         |

A businessman is showing off his new formula to determine the company's profit, in millions of 9 dollars, after t years.

Profit = 
$$\frac{t^2 - 49}{5t - 40} \times \frac{t^2 - 5t - 24}{2t^2 - 8t - 42}$$

Show that this is really the same as

$$Profit = \frac{t+7}{10}.$$

**10** Note that an expression with a perfect square can be simplified as shown.

$$\frac{(x+3)^2}{x+3} = \frac{(x+3)(x+3)^1}{x+3^1}$$
$$= x+3$$

Use this idea to simplify the following.

a 
$$\frac{x^2 - 6x + 9}{x - 3}$$
  
b  $\frac{x^2 + 2x + 1}{x + 1}$   
c  $\frac{x^2 - 16x + 64}{x - 8}$   
d  $\frac{6x - 12}{x^2 - 4x + 4}$   
e  $\frac{4x + 20}{x^2 + 10x + 25}$   
f  $\frac{x^2 - 14x + 49}{5x - 35}$ 

**11 a** Prove that  $\frac{a^2 + 2ab + b^2}{a^2 + ab} \div \frac{a^2 - b^2}{a^2 - ab} = 1.$ 

**b** Make up your own expressions, like the one in part **a**, which equal 1. Ask a classmate to check them.

| a | $\frac{a^2 + 2ab + b^2}{a(a+b)} \div \frac{a^2 - b^2}{a^2 - 2ab + b^2}$    | <b>b</b> $\frac{a^2 - 2ab + b^2}{a^2 - b^2} \div \frac{a^2 - b^2}{a^2 + 2ab + b^2}$ |
|---|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| C | $\frac{a^2 - b^2}{a^2 - 2ab + b^2} \div \frac{a^2 - b^2}{a^2 + 2ab + b^2}$ | d $\frac{a^2 + 2ab + b^2}{a(a+b)} \div \frac{a(a-b)}{a^2 - 2ab + b^2}$              |

ENRICHMENT: Addition and subtraction with factorisation

#### **13** Factorisation can be used to help add and subtract algebraic fractions. Here is an example.

$$\frac{3}{x-2} + \frac{x}{x^2 - 6x + 8} = \frac{3}{x-2} + \frac{x}{(x-2)(x-4)}$$
$$= \frac{3(x-4)}{(x-2)(x-4)} + \frac{x}{(x-2)(x-4)}$$
$$= \frac{3x - 12 + x}{(x-2)(x-4)}$$
$$= \frac{4x - 12}{(x-2)(x-4)}$$
$$= \frac{4(x-3)}{(x-2)(x-4)}$$

Now simplify the following.

a 
$$\frac{2}{x+3} + \frac{x}{x^2 - x - 12}$$
  
b  $\frac{4}{x+2} + \frac{3x}{x^2 - 7x - 18}$   
c  $\frac{3}{x+4} - \frac{2x}{x^2 - 16}$   
d  $\frac{4}{x^2 - 9} - \frac{1}{x^2 - 8x + 15}$   
e  $\frac{x+4}{x^2 - x - 6} - \frac{x-5}{x^2 - 9x + 18}$   
f  $\frac{x+3}{x^2 - 4x - 32} - \frac{x}{x^2 + 7x + 12}$   
g  $\frac{x+1}{x^2 - 25} - \frac{x-2}{x^2 - 6x + 5}$   
h  $\frac{x+2}{x^2 - 2x + 1} - \frac{x+3}{x^2 + 3x - 4}$ 

13(1/2)

\_

# **5D** Factorising non-monic quadratic trinomials 10A

#### Learning intentions

- · To understand the relationship between expansion and factorisation for binomial products
- To know and be able to apply the process for factorising non-monic guadratic trinomials

There are a number of ways of factorising non-monic quadratic trinomials of the form  $ax^2 + bx + c$ , where  $a \neq 1$ . The cross method, for example, uses lists of factors of a and c so that a correct combination can be found. For example, to factorise  $4x^2 - 4x - 15$ :

2 × (-5) + 2 × 3 = -4, so choose (2x + 3) and (2x - 5). ∴  $4x^2 - 4x - 15 = (2x + 3)(2x - 5)$ 

The method outlined in this section, however, uses grouping.

# **LESSON STARTER** Does the order matter?

To factorise the non-monic quadratic  $4x^2 - 4x - 15$  using grouping, we multiply *a* by *c*, which is  $4 \times (-15) = -60$ . Then we look for numbers that multiply to give -60 and add to give -4 (the coefficient of *x*).

- What are the two numbers that multiply to give -60 and add to give -4?
- Complete the following using grouping.

 $4x^{2} - 4x - 15 = 4x^{2} - 10x + 6x - 15 -10 \times 6 = -60, -10 + 6 = -4$  $= 2x(\_\_\_) + 3(\_\_\_)$  $= (2x - 5)(\_\_\_)$ 

• If we changed the order of the -10x and +6x do you think the result would change? Copy and complete to find out.

$$4x^{2} - 4x - 15 = 4x^{2} + 6x - 10x - 15 \qquad 6 \times (-10) = -60, \qquad 6 + (-10) = -4$$
$$= 2x(\_\_\_]) - 5(\_\_])$$
$$= (\_\_])(\_\_])$$

#### **KEY IDEAS**

- To factorise a **non-monic** trinomial of the form  $ax^2 + bx + c$ , follow these steps:
  - Find two numbers that multiply to give a × c and add to give b.
     For 15x<sup>2</sup> x 6, a × c = 15 × (-6) = -90.
     The factors of -90 that add to -1 (b) are -10 and 9.

• Use the two numbers shown in the example above to split bx, then factorise by grouping.  $15x^2 - x - 6 = 15x^2 - 10x + 9x - 6$ = 5x(3x - 2) + 3(3x - 2) = (3x - 2)(5x + 3)

There are other valid methods that can be used to factorise non-monic trinomials. The cross method is illustrated in the introduction.

## **BUILDING UNDERSTANDING**

**1** State the missing numbers in this table.

| $ax^2 + bx + c$           | a × c                    | Two numbers that multiply to give $a \times and$ add to give $b$ |
|---------------------------|--------------------------|------------------------------------------------------------------|
| $6x^2 + 13x + 6$          | 36                       | 9 and                                                            |
| $8x^2 + 18x + 4$          | 32                       |                                                                  |
| $12x^2 + x - 6$           |                          | –8 and                                                           |
| $10x^2 - 11x - 6$         |                          |                                                                  |
| $21x^2 - 20x + 4$         |                          | -6 and                                                           |
| $15x^2 - 13x + 2$         |                          |                                                                  |
| actorise by grouping pair | <b>`S.</b>               |                                                                  |
| $x^2 + 2x + 5x + 10$      | <b>b</b> $x^2$           | $-7x - 2x + 14$ <b>C</b> $6x^2 - $                               |
| $8x^2 - 4x + 6x - 3$      | <b>e</b> 5x <sup>2</sup> | $+ 20x - 2x - 8$ <b>f</b> $12x^2$                                |

## Example 10 Factorising non-monic quadratics

#### Factorise.

2

**a**  $6x^2 + 19x + 10$ 

#### **b** $9x^2 + 6x - 8$

#### SOLUTION

**a**  $6x^2 + 19x + 10 = 6x^2 + 15x + 4x + 10$ = 3x(2x + 5) + 2(2x + 5)= (2x + 5)(3x + 2)

**b** 
$$9x^2 + 6x - 8 = 9x^2 + 12x - 6x - 8$$
  
=  $3x(3x + 4) - 2(3x + 4)$   
=  $(3x + 4)(3x - 2)$ 

#### **EXPLANATION**

 $a \times c = 6 \times 10 = 60$ ; choose 15 and 4 since 15  $\times$  4 = 60 and 15 + 4 = 19 (*b*). Factorise by grouping.

 $a \times c = 9 \times (-8) = -72$ ; choose 12 and -6 since  $12 \times (-6) = -72$  and 12 + (-6) = 6 (b).

#### Now you try

#### Factorise.

**a**  $6x^2 + 11x + 3$ 

ISBN 978-1-108-77290-7 © Greenwood et al. 2019 Photocopying is restricted under law and this material must not be transferred to another party.

# Example 11 Simplifying algebraic fractions involving quadratic expressions

Simplify 
$$\frac{4x^2 - 9}{10x^2 + 13x - 3} \times \frac{25x^2 - 10x + 1}{10x^2 - 17x + 3}$$
.

#### SOLUTION

 $\mathbf{O}$ 

 $\frac{4x^2 - 9}{10x^2 + 13x - 3} \times \frac{25x^2 - 10x + 1}{10x^2 - 17x + 3}$  $= \frac{(2x + 3)^1(2x - 3)^1}{(2x + 3)^1(5x - 1)^1} \times \frac{(5x - 1)^1(5x - 1)^1}{(2x - 3)^1(5x - 1)^1}$ = 1

#### **EXPLANATION**

First, use the range of factorising techniques to factorise all quadratics.

Cancel to simplify.

| Now yo   |                        |                             |
|----------|------------------------|-----------------------------|
| Simplify | $\frac{9x^2 - 4}{2}$ × | $\frac{16x^2 - 24x + 9}{2}$ |
| Simpiny  | $12x^2 - 17x + 6$      | $12x^2 - x - 6$             |

# **Exercise 5D**

|             |   | FLUENCY                       |                                  | 1, 2(1/2)           | 2-3(1/3)               | 2-3(1/4)         |
|-------------|---|-------------------------------|----------------------------------|---------------------|------------------------|------------------|
|             | 1 | Factorise.                    |                                  |                     |                        |                  |
| Example 10a |   | <b>a</b> i $8x^2 + 14x + 3$   |                                  | 10x <sup>4</sup>    | $x^2 + 19x + 6$        |                  |
| Example 10b |   | <b>b</b> i $6x^2 + 13x - 5$   |                                  | ii $8x^2$           | +2x - 3                |                  |
| Example 10  | 2 | Factorise the following.      |                                  |                     |                        |                  |
|             |   | <b>a</b> $3x^2 + 10x + 3$     | <b>b</b> $2x^2 + 3x + 1$         | <b>c</b> $3x^2 + 8$ | 3x + 4 d               | $3x^2 - 5x + 2$  |
|             |   | e $2x^2 - 11x + 5$            | f $5x^2 + 2x - 3$                | <b>g</b> $3x^2 - 1$ | 1x - 4 h               | $3x^2 - 2x - 1$  |
|             |   | $7x^2 + 2x - 5$               | $2x^2 - 9x + 7$                  | <b>k</b> $3x^2 + 2$ | 2x-8                   | $2x^2 + 5x - 12$ |
|             |   | <b>m</b> $2x^2 - 9x - 5$      | <b>n</b> $13x^2 - 7x - 6$        | <b>o</b> $5x^2 - 2$ | 22x + 8 p              | $8x^2 - 14x + 5$ |
|             |   | <b>q</b> $6x^2 + x - 12$      | $10x^2 + 11x - 6$                | <b>s</b> $6x^2 + 1$ | 3x + 6 t               | $4x^2 - 5x + 1$  |
|             |   | <b>u</b> $8x^2 - 14x + 5$     | $v 8x^2 - 26x + 15$              | <b>w</b> $6x^2 - 1$ | 3x + 6 <b>X</b>        | $9x^2 + 9x - 10$ |
|             | 3 | Factorise the following.      |                                  |                     |                        |                  |
|             |   | <b>a</b> $18x^2 + 27x + 10$   | <b>b</b> $20x^2 + 1$             | 39x + 18            | <b>c</b> $21x^2 + 2$   | 22x - 8          |
|             |   | d $30x^2 + 13x - 10$          | $40x^2$                          | x - 6               | f $28x^2 - 1$          | 3x - 6           |
|             |   | <b>q</b> $24x^2 - 38x + 15$   | <b>h</b> $45x^2 - x^2$           |                     | $25x^2 - 5x^2$         |                  |
|             |   | $y = 2\pi - 30x + 15$         | $-J_{\lambda}$                   | -04 + 0             | 23x - 3                | <i>for</i> + 10  |
|             |   | PROBLEM-SOLVING               |                                  | 4(1/2), 6           | 4–5(1/3), 6            | 4-5(1/3), 6      |
|             | 4 | Factorise by first taking of  | out the common factor            |                     |                        |                  |
|             |   | <b>a</b> $6x^2 + 38x + 40$    | <b>b</b> $6x^2 - 1$              |                     | <b>c</b> $48x^2 - 1$   | 8r - 3           |
|             |   | <b>d</b> $32x^2 - 88x + 60$   | <b>e</b> $16x^2 - 1$             |                     | $f 90x^2 + 9$          |                  |
|             |   | <b>q</b> $-50x^2 - 115x - 60$ | <b>h</b> $12x^2 - 10x^2 - 10x^2$ |                     | 30x + 9<br>$20x^2 - 2$ |                  |
|             |   | y = -50x = 115x = 00          | 11 12x - 1                       | JUA T 21            | 20x - 2                | JA T J           |

ISBN 978-1-108-77290-7 © Greenwood et al. 2019 Photocopying is restricted under law and this material must not be transferred to another party. **5** Simplify by first factorising.

| а | $\frac{6x^2 - x - 35}{3x + 7}$           | <b>b</b> $\frac{8x^2 + 10x - 3}{2x + 3}$      | c $\frac{9x^2 - 21x + 10}{3x - 5}$          | d  | $\frac{10x - 2}{15x^2 + 7x - 2}$       |
|---|------------------------------------------|-----------------------------------------------|---------------------------------------------|----|----------------------------------------|
| e | $\frac{4x+6}{14x^2+17x-6}$               | $f  \frac{20x - 12}{10x^2 - 21x + 9}$         | $g  \frac{2x^2 + 11x + 12}{6x^2 + 11x + 3}$ | h  | $\frac{12x^2 - x - 1}{8x^2 + 14x + 3}$ |
| i | $\frac{10x^2 + 3x - 4}{14x^2 - 11x + 2}$ | $\mathbf{j}  \frac{9x^2 - 4}{15x^2 + 4x - 4}$ | $k  \frac{14x^2 + 19x - 3}{49x^2 - 1}$      | I. | $\frac{8x^2 - 2x - 15}{16x^2 - 25}$    |

6 A cable is suspended across a farm channel. The height (*h*), in metres, of the cable above the water surface is modelled by the equation  $h = 3x^2 - 19x + 20$ , where x metres is the distance from one side of the channel.

7(1/2)

7-8(1/2)

7-8(1/3), 9

- **a** Factorise the right-hand side of the equation.
- **b** Determine the height of the cable when x = 3. Interpret this result.
- **c** Determine where the cable is at the level of the water surface.

#### REASONING

Example 11 7 Combine all your knowledge of factorising to simplify the following.

a 
$$\frac{9x^{2} - 16}{x^{2} - 6x + 9} \times \frac{x^{2} + x - 12}{3x^{2} + 8x - 16}$$
  
b 
$$\frac{4x^{2} - 1}{6x^{2} - x - 2} \times \frac{9x^{2} - 4}{8x - 4}$$
  
c 
$$\frac{1 - x^{2}}{15x + 9} \times \frac{25x^{2} + 30x + 9}{5x^{2} + 8x + 3}$$
  
d 
$$\frac{20x^{2} + 21x - 5}{16x^{2} + 8x - 15} \times \frac{16x^{2} - 24x + 9}{25x^{2} - 1}$$
  
e 
$$\frac{100x^{2} - 25}{2x^{2} - 9x - 5} \div \frac{2x^{2} - 7x + 3}{5x^{2} - 40x + 75}$$
  
f 
$$\frac{3x^{2} - 12}{30x + 15} \div \frac{2x^{2} - 3x - 2}{4x^{2} + 4x + 1}$$
  
g 
$$\frac{9x^{2} - 6x + 1}{6x^{2} - 11x + 3} \div \frac{9x^{2} - 1}{6x^{2} - 7x - 3}$$
  
h 
$$\frac{16x^{2} - 25}{4x^{2} - 7x - 15} \div \frac{4x^{2} - 17x + 15}{16x^{2} - 40x + 25}$$

8 Find a method to show how  $-12x^2 - 5x + 3$  factorises to (1 - 3x)(4x + 3). Then factorise the following.

| <b>a</b> $-8x^2 + 2x + 15$ | <b>b</b> $-6x^2 + 11x + 10$ | <b>c</b> $-12x^2 + 13x + 4$ |
|----------------------------|-----------------------------|-----------------------------|
| <b>d</b> $-8x^2 + 18x - 9$ | $e -14x^2 + 39x - 10$       | f $-15x^2 - x + 6$          |

**9** Make up your own complex expression like those in Question **7**, which simplifies to 1. Check your expression with your teacher or a classmate.

#### ENRICHMENT: Non-monics with addition and subtraction

**10** Factorise the quadratics in the expressions and then simplify using a common denominator.

a 
$$\frac{2}{2x-3} + \frac{x}{8x^2 - 10x - 3}$$
  
b  $\frac{3}{3x-1} - \frac{x}{6x^2 + 13x - 5}$   
c  $\frac{4x}{2x-5} + \frac{x}{8x^2 - 18x - 5}$   
d  $\frac{4x}{12x^2 - 11x + 2} - \frac{3x}{3x - 2}$   
e  $\frac{2}{4x^2 - 1} + \frac{1}{6x^2 - x - 2}$   
f  $\frac{2}{9x^2 - 25} - \frac{3}{9x^2 + 9x - 10}$   
g  $\frac{4}{8x^2 - 18x - 5} - \frac{2}{12x^2 - 5x - 2}$   
h  $\frac{1}{10x^2 - 19x + 6} + \frac{2}{4x^2 + 8x - 21}$ 

10(1/2)

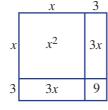
#### **5E** Factorising by completing the square

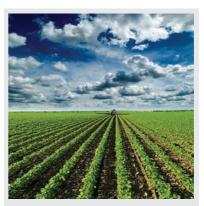
#### Learning intentions

- To know the expanded form of a perfect square
- To be able to carry out the process of completing the square •
- To know how to factorise by first completing the square .
- To understand that not all quadratic expressions can be factorised and to be able to identify those that can't

Consider the quadratic expression  $x^2 + 6x + 1$ . We cannot factorise this using the methods we have established in the previous exercises because there are no factors of 1 that add to 6.

We can, however, use our knowledge of perfect squares and the difference of perfect squares to help find factors using surds.


# LESSON STARTER Make a perfect square


This diagram is a square. Its sides are x + 3 and its area is given by  $x^{2} + 6x + 9 = (x + 3)^{2}$ .

Use a similar diagram to help make a perfect square for the following and determine the missing number for each.

- $x^2 + 8x + ?$
- $x^2 + 12x + ?$

Can you describe a method for finding the missing number without drawing a diagram?





The statistical analysis of agricultural research data has found that quadratic equations model harvest yields (kg/ha) versus the quantity of nitrogen fertiliser (kg/ha) used. The CSIRO provides Australian farmers with numerous mathematical models.

## **KEY IDEAS**

Recall for a perfect square  $(x + a)^2 = x^2 + 2ax + a^2$  and  $(x - a)^2 = x^2 - 2ax + a^2$ .

To complete the square for  $x^2 + bx$ , add  $\left(\frac{b}{2}\right)^2$ . •  $x^{2} + bx + \left(\frac{b}{2}\right)^{2} = \left(x + \frac{b}{2}\right)^{2}$ 

To factorise by completing the square:

- Factorise the perfect square and simplify.
- Factorise using DOPS:  $a^2 - b^2 = (a + b)(a - b)$ ; surds can be used.
- To factorise by completing the square: Add  $\left(\frac{b}{2}\right)^2$  and balance by subtracting  $\left(\frac{b}{2}\right)^2$ . Eactorise the perfect square and simplify Eactorise the perfect square and simplify  $= (x + 3)^2 - (\sqrt{8})^2$  $= (x + 3 + \sqrt{8})(x + 3 - \sqrt{8})$  $= (x + 3 + 2\sqrt{2})(x + 3 - 2\sqrt{2})$
- Not all quadratic expressions factorise. This will be seen when you end up with expressions such as  $(x + 3)^2 + 6$ , which is *not* a difference of two perfect squares.

| 0 | These expressions are of the form.   | $x^{2} + bx$ . Evaluate $\left(\frac{b}{2}\right)^{2}$ for each one<br><b>b</b> $x^{2} + 2x$ | e. |                  |
|---|--------------------------------------|----------------------------------------------------------------------------------------------|----|------------------|
|   | <b>a</b> $x^2 + 6x$                  | <b>b</b> $x^2 + 2x$ (2)                                                                      | C  | $x^2 - 4x$       |
|   | <b>d</b> $x^2 - 8x$                  | <b>e</b> $x^2 + 5x$                                                                          | f  | $x^2 - 9x$       |
| 2 | Factorise these perfect squares.     |                                                                                              |    |                  |
|   | <b>a</b> $x^2 + 4x + 4$              | <b>b</b> $x^2 + 8x + 16$                                                                     | C  | $x^2 + 10x + 25$ |
|   | <b>d</b> $x^2 - 12x + 36$            | <b>e</b> $x^2 - 6x + 9$                                                                      | f  | $x^2 - 18x + 81$ |
| 3 | Factorise using surds. Recall that a | $a^{2} - b^{2} = (a + b)(a - b).$                                                            |    |                  |
|   | <b>a</b> $(x+1)^2 - 5$               | <b>b</b> $(x+4)^2 - 10$                                                                      | C  | $(x-3)^2 - 11$   |

# Example 12 Completing the square

Decide what number must be added to these expressions to complete the square. Then factorise the resulting perfect square. **b**  $x^2 - 7x$ 

**a**  $x^2 + 10x$ 

 $\bigcirc$ 

SOLUTIONEXPLANATIONa 
$$\left(\frac{10}{2}\right)^2 = 5^2 = 25$$
For  $x^2 + bx$ , add  $\left(\frac{b}{2}\right)^2$ .  
Here  $b = 10$ , and evaluate  $\left(\frac{b}{2}\right)^2$ .  
 $x^2 + 10x + 25 = (x + 5)^2$  $x^2 + 10x + 25 = (x + 5)^2$  $x^2 + bx + \left(\frac{b}{2}\right)^2 = \left(x + \frac{b}{2}\right)^2$ b  $\left(\frac{-7}{2}\right)^2 = \frac{49}{4}$ In  $x^2 - 7x$ ,  $b = -7$  and evaluate  $\left(\frac{b}{2}\right)^2$ .  
Factorise the perfect square.

#### Now you try

Decide what number must be added to these expressions to complete the square. Then factorise the resulting perfect square. **b**  $x^2 - 9x$ 

a  $x^2 + 12x$ 

# 

#### Example 13 Factorising by completing the square

Factorise the following by completing the square if possible.

a  $x^2 + 8x - 3$ 

**b** 
$$x^2 - 2x + 8$$

*Continued on next page* 

SOLUTION

a 
$$x^{2} + 8x - 3 = \left(x^{2} + 8x + \left(\frac{8}{2}\right)^{2}\right) - \left(\frac{8}{2}\right)^{2} - \left(\frac{8}{2}\right$$

**b** 
$$x^2 - 2x + 8 = \left(x^2 - 2x + \left(\frac{2}{2}\right)^2\right) - \left(\frac{2}{2}\right)^2 + 8$$
  
=  $\left(x - \frac{2}{2}\right)^2 + 7$   
=  $(x - 1)^2 + 7$ 

 $\therefore x^2 - 2x + 8$  cannot be factorised.

#### **EXPLANATION**

- 3 Add  $\left(\frac{b}{2}\right)^2$  to complete the square and balance by subtracting  $\left(\frac{b}{2}\right)^2$  also. Factorise the resulting perfect square and

simplify.

Express 19 as  $(\sqrt{19})^2$  to set up a DOPS. Apply  $a^2 - b^2 = (a + b)(a - b)$  using surds.

Add  $\left(\frac{2}{2}\right)^2 = (1)^2$  to complete the square and balance by subtracting  $(1)^2$  also. Factorise the perfect square and simplify.  $(x - 1)^2 + 7$  is not a *difference* of perfect squares.

#### Now you try

Factorise the following by completing the square if possible. **a**  $x^2 + 6x - 1$ **b**  $x^2 - 4x + 7$ 

 $\mathbf{b}$ 

## **Example 14 Factorising with fractions**

Factorise  $x^2 + 3x + \frac{1}{2}$ .

#### SOLUTION

$$x^{2} + 3x + \frac{1}{2} = \left(x^{2} + 3x + \left(\frac{3}{2}\right)^{2}\right) - \left(\frac{3}{2}\right)^{2} + \frac{1}{2}$$
$$= \left(x + \frac{3}{2}\right)^{2} - \frac{9}{4} + \frac{1}{2}$$
$$= \left(x + \frac{3}{2}\right)^{2} - \frac{7}{4}$$
$$= \left(x + \frac{3}{2}\right)^{2} - \left(\sqrt{\frac{7}{4}}\right)^{2}$$
$$= \left(x + \frac{3}{2} - \frac{\sqrt{7}}{2}\right)\left(x + \frac{3}{2} + \frac{\sqrt{7}}{2}\right)$$
$$= \left(x + \frac{3 - \sqrt{7}}{2}\right)\left(x + \frac{3 + \sqrt{7}}{2}\right)$$

#### EXPLANATION

Add 
$$\left(\frac{3}{2}\right)^2$$
 to complete the square and balance by subtracting  $\left(\frac{3}{2}\right)^2$ . Leave in

fraction form.

Factorise the perfect square and simplify.

$$-\frac{9}{4} + \frac{1}{2} = -\frac{9}{4} + \frac{2}{4} = -\frac{7}{4}$$

Recall that 
$$\sqrt{\frac{7}{4}} = \frac{\sqrt{7}}{\sqrt{4}} = \frac{\sqrt{7}}{2}$$
 and use DOPS

# Now you try

Factorise  $x^2 + 5x + \frac{1}{2}$ .

# **Exercise 5E**

|             |   | FLUENCY                                                                                                                                |                                                                                          | 1, 2–3(1/2)                                                                         | 2-4(1/2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2-4(1/3)                                                                  |
|-------------|---|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Example 12a | 1 | Decide what number must<br>resulting perfect square.<br><b>a</b> i $x^2 + 8x$                                                          | t be added to these ex                                                                   | pressions to complet<br>ii $x^2 + 1$                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | en factorise the                                                          |
| Example 12b |   | <b>b</b> i $x^2 - 5x$                                                                                                                  |                                                                                          | ii $x^2 - 1$                                                                        | 1 <i>x</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                           |
| Example 12  | 2 | i $x^2 + 5x$                                                                                                                           | <b>b</b> $x^2 + 12x$<br><b>f</b> $x^2 - 2x$                                              | pressions to complet<br>c $x^2 + 4x$<br>g $x^2 - 8x$<br>k $x^2 + 7x$<br>o $x^2 - x$ | d<br>h<br>I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | en factorise the<br>$x^{2} + 8x$ $x^{2} - 12x$ $x^{2} + 11x$ $x^{2} - 9x$ |
| Example 13a | 3 | Factorise by completing the a $x^2 + 4x + 1$<br>d $x^2 + 10x - 4$<br>g $x^2 - 4x - 3$                                                  | he square.<br><b>b</b> $x^2 + 6x$<br><b>e</b> $x^2 - 8x$<br><b>h</b> $x^2 - 8x$          | + 13                                                                                | <b>c</b> $x^2 + 2x + \frac{1}{2}x^2 + \frac$ | z + 10                                                                    |
| Example 13b | 4 | Factorise, if possible.<br><b>a</b> $x^2 + 6x + 11$<br><b>d</b> $x^2 + 4x + 2$<br><b>g</b> $x^2 - 10x + 30$<br><b>j</b> $x^2 - 2x + 2$ | <b>b</b> $x^2 + 4x$<br><b>e</b> $x^2 + 10$<br><b>h</b> $x^2 - 6x$<br><b>k</b> $x^2 - 8x$ | x + 3 + 6                                                                           | <b>c</b> $x^2 + 8x + 5x^2 + 4x + 5x^2 + 4x + 5x^2 + 4x + 5x^2 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -6<br>z + 2                                                               |
|             |   | PROBLEM-SOLVING                                                                                                                        |                                                                                          | 5(1/2)                                                                              | 5-6(1/2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5-7(1/3)                                                                  |
| Example 14  | 5 | Factorise the following.<br><b>a</b> $x^2 + 3x + 1$<br><b>e</b> $x^2 - 3x + \frac{1}{2}$                                               | <b>b</b> $x^2 + 7x + 2$<br><b>f</b> $x^2 - 5x + \frac{1}{2}$                             | <b>c</b> $x^2 + 5x -$<br><b>g</b> $x^2 - 5x -$                                      | -2 d<br>$-\frac{3}{2}$ h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $x^{2} + 9x - 3$ $x^{2} - 9x - \frac{5}{2}$                               |
|             | 6 | Factorise by first taking of<br><b>a</b> $2x^2 + 12x + 8$<br><b>d</b> $3x^2 - 24x + 6$<br><b>g</b> $-4x^2 - 16x + 12$                  |                                                                                          | 2x - 3 $4x + 10$                                                                    | <b>c</b> $4x^2 - 8x$<br><b>f</b> $-3x^2 - 3x^2$<br><b>i</b> $-3x^2 + 2x^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30x - 3                                                                   |
|             | 7 | Factorise the following.<br><b>a</b> $3x^2 + 9x + 3$<br><b>d</b> $4x^2 - 28x + 12$<br><b>g</b> $-4x^2 + 12x + 20$                      | <b>b</b> $5x^2 + 1$<br><b>e</b> $-3x^2 - $<br><b>h</b> $-3x^2 + $                        | 21x + 6                                                                             | <b>c</b> $2x^2 - 10$<br><b>f</b> $-2x^2 - 1$<br><b>i</b> $-2x^2 + 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14x + 8                                                                   |

ISBN 978-1-108-77290-7 © Greenwood et al. 2019 Photocopying is restricted under law and this material must not be transferred to another party.

|   | REASONING                                                                                                                                                                                                             | 8                                                                                                                        | 8                           | 8, 9                |  |  |  |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------|--|--|--|
| 8 | <ul> <li>A student factorises x<sup>2</sup> - 2x - 24 by completi</li> <li>a Show the student's working to obtain the fa</li> <li>b Now that you have seen the answer from pa<br/>x<sup>2</sup> - 2x - 24?</li> </ul> | actorised form of $x^2$                                                                                                  |                             | er way to factorise |  |  |  |
| 9 |                                                                                                                                                                                                                       | b Decide whether the following can or cannot be factorised.<br>i $x^2 - 25$ ii $x^2 - 10$<br>iii $x^2 + 6$ iv $x^2 + 11$ |                             |                     |  |  |  |
|   | vii $(x + 3)^2 - 15$<br>c For what values of <i>m</i> can the following be                                                                                                                                            | × *                                                                                                                      | $(-1)^2 + 1$<br>al numbers? |                     |  |  |  |

i 
$$x^2 + 4x + m$$
 ii  $x^2 - 6x + m$  iii  $x^2 - 10x + m$ 

ENRICHMENT: Non-monic quadratics and completing the square - 10(1/2)

10 A non-monic quadratic such as  $2x^2 - 5x + 1$  can be factorised in the following way.

$$2x^{2} - 5x + 1 = 2\left(x^{2} - \frac{5}{2}x + \frac{1}{2}\right)$$

$$= 2\left(x^{2} - \frac{5}{2}x + \left(\frac{5}{4}\right)^{2} - \left(\frac{5}{4}\right)^{2} + \frac{1}{2}\right)$$
Note:  $\frac{5}{2} \div 2 = \frac{5}{4}$ 

$$= 2\left(\left(x - \frac{5}{4}\right)^{2} - \frac{25}{16} + \frac{8}{16}\right)$$

$$= 2\left(\left(x - \frac{5}{4}\right)^{2} - \frac{17}{16}\right)$$

$$= 2\left(x - \frac{5}{4} + \frac{\sqrt{17}}{4}\right)\left(x - \frac{5}{4} - \frac{\sqrt{17}}{4}\right)$$

Factorise these using a similar technique.

| а | $2x^2 + 5x - 12$   | b | $3x^2 + 4x - 3$  | C  | $4x^2 - 7x - 16$ |
|---|--------------------|---|------------------|----|------------------|
| d | $3x^2 - 2x + 6$    | e | $-2x^2 - 3x + 4$ | f  | $-3x^2 - 7x - 3$ |
| g | $-4x^2 + 11x - 24$ | h | $-2x^2 + 3x + 4$ | i  | $2x^2 + 5x - 7$  |
| j | $3x^2 + 4x - 5$    | k | $-2x^2 - 3x + 5$ | I. | $-3x^2 - 7x - 4$ |
|   |                    |   |                  |    |                  |

Progress quiz

**1** Expand brackets and simplify where possible. **a**  $-\frac{2x}{3}(12x-5)$ **b** a(3a-2) - a(5-a)d  $(k-3)^2$ **c** (m+2)(m+5)f (4h+7)(2h-5)(3m-2)(3m+2)**h** (p+5)(p+4) - (p-2)(p-8) $\int (x-4)(x-3)$ **2** Factorise the following. **b**  $-12m^2 + 18m$ **a** 4*a* - 20 d  $a^2 - 81$ **c** 4(x+5) - x(x+5)f  $5m^2 - 125$  $e 16a^2 - 121b^2$  $(k+2)^2 - 49$ h  $(x-1)^2 - 4$  $x^2 - 20$  (use surds)  $(h+3)^2 - 7$  (use surds)  $x^{2} + 5x + ax + 5a$  $4x^2 - 8mx - 5x + 10m$ **3** Factorise. **a**  $x^2 + x - 20$ **b**  $a^2 - 10a + 21$ **c**  $3k^2 - 21k - 54$ d  $m^2 - 12m + 36$ 4 Use factorisation to simplify these algebraic fractions. **a**  $\frac{x^2 + 2x - 15}{x + 5}$ **b**  $\frac{x^2 - 25}{x^2 - 9x + 20} \times \frac{x^2 + 3x - 28}{2x + 14}$ **5** Complete the square and factorise, if possible. a  $x^2 + 8x + 3$ **b**  $x^2 - 12x + 26$ c  $x^2 + 14x + 50$ d  $x^2 + 5x - \frac{1}{2}$ 6 Factorise. 5D **a**  $6a^2 + 19a + 10$  $8m^2 - 6m - 9$ b

c 
$$15x^2 - 22x + 8$$
  
d  $6k^2 - 11k - 35$ 

7

Simplify 
$$\frac{9x^2 - 49}{3x^2 - 4x - 7} \times \frac{2x^2 + 7x + 5}{6x^2 + 5x - 21}$$
.

# **5F** Solving quadratic equations using factorisation

#### Learning intentions

- To be able to recognise a quadratic equation
- To understand that for the product of two or more numbers to be zero, then one or both of the numbers must be zero
- To know how to rearrange a quadratic equation equal to zero
- To be able to apply the steps required for solving a quadratic equation using the Null Factor Law
- To understand that a quadratic equation can have 0, 1 or 2 solutions

The result of multiplying a number by zero is zero. Consequently, if an expression equals zero then at least one of its factors must be zero. This is called the Null Factor Law and it provides us with an important method that can be utilised to solve a range of mathematical problems involving quadratic equations.



Galileo (17th century) discovered that the path of a thrown or launched object under the influence of gravity follows a precise mathematical rule, the quadratic equation. The flight time, maximum height and range of projectiles could now be calculated.

# **LESSON STARTER** Does factorisation beat trial and error?

Set up two teams.

Team A: Trial and error Team B: Factorisation

#### Instructions:

- Team A must try to find the two solutions of  $3x^2 x 2 = 0$  by guessing and checking values for x that make the equation true.
- Team B must solve the same equation  $3x^2 x 2 = 0$  by first factorising the left-hand side.

Which team was the first to find the two solutions for x? Discuss the methods used.

#### **KEY IDEAS**

- The Null Factor Law states that if the product of two numbers is zero, then either or both of the two numbers is zero.
  - If a × b = 0, then either a = 0 or b = 0.
    For example, if x(x − 3) = 0, then either x = 0 or x − 3 = 0 (i.e. x = 0 or x = 3).
- To solve a quadratic equation, write it in standard form (i.e.  $ax^2 + bx + c = 0$ ) and factorise. Then use the Null Factor Law.
  - If the coefficients of all the terms have a common factor, then first divide by that common factor.

## **BUILDING UNDERSTANDING**

1 State the solutions to these equations, which are already in factorised form. **a** x(x+1) = 0**b** 2x(x-4) = 0(x-3)(x+2) = 0**d**  $(x + \sqrt{3})(x - \sqrt{3}) = 0$  **e** (2x - 1)(3x + 7) = 0f (8x+3)(4x+3) = 02 Rearrange and state in standard form  $ax^2 + bx + c = 0$  with a > 0. Do not solve. **a**  $x^2 + 2x = 3$ **b**  $x^2 - 5x = -6$ **c**  $4x^2 = 3 - 4x$ **e**  $x^2 = 4(x - 3)$ **d** 2x(x-3) = 5f -4 = x(3x + 2)**3** How many different solutions for x will these equations have? **c**  $(x + \sqrt{2})(x - \sqrt{2}) = 0$ **a** (x-2)(x-1) = 0**b** (x+1)(x+1) = 0**d**  $(x+8)(x-\sqrt{5}) = 0$  **e**  $(x+2)^2 = 0$ f  $3(2x+1)^2 = 0$ 

## Example 15 Solving quadratic equations using the Null Factor Law

Solve the following quadratic equations.

**a**  $x^2 - 2x = 0$  **b**  $x^2 - 15 = 0$ 

0

**b**  $x^2 - 11 = 0$ 

#### SOLUTION

**a**  $x^2 - 2x = 0$ x(x - 2) = 0

# $\therefore x = 0 \text{ or } x - 2 = 0$ $\therefore x = 0 \text{ or } x = 2$

| b | $x^2 - 15 = 0$                                             |
|---|------------------------------------------------------------|
|   | $(x + \sqrt{15})(x - \sqrt{15}) = 0$                       |
|   | $\therefore x + \sqrt{15} = 0 \text{ or } x - \sqrt{15} =$ |
|   | $\therefore x = -\sqrt{15}$ or $x = \sqrt{15}$             |
| C | $2x^2 = 50$                                                |

 $2x^2 - 50 = 0$ 

 $2(x^2 - 25) = 0$ 

2(x+5)(x-5) = 0

 $\therefore x + 5 = 0 \text{ or } x - 5 = 0$  $\therefore x = -5 \text{ or } x = 5$ 

#### EXPLANATION

Factorise by taking out the common factor *x*. Apply the Null Factor Law: if  $a \times b = 0$ , then a = 0 or b = 0. Solve for *x*. Check your solutions by substituting back into the

**c**  $2x^2 = 50$ 

equation.

Factorise  $a^2 - b^2 = (a - b)(a + b)$  using surds. Alternatively, add 15 to both sides to give  $x^2 = 15$ , then take the positive and negative square root. So  $x = \pm \sqrt{15}$ .

First, write in standard form (i.e.  $ax^2 + bx + c = 0$ ). Take out the common factor of 2 and then factorise using  $a^2 - b^2 = (a + b)(a - b)$ .

Alternatively, divide first by 2 to give  $x^2 = 25$  and  $x = \pm 5$ .

#### Now you try

Solve the following quadratic equations.

**a**  $x^2 - 3x = 0$ 

**c**  $3x^2 = 27$ 

$$\bigcirc$$

# Example 16 Solving $ax^2 + bx + c = 0$

Solve the following quadratic equations.

**a** 
$$x^2 - 5x + 6 = 0$$

**b**  $x^2 + 2x + 1 = 0$  (10A) **c**  $10x^2 - 13x - 3 = 0$ 

#### SOLUTION

| а | $x^2 - 5x + 6 = 0$                           |
|---|----------------------------------------------|
|   | (x-3)(x-2) = 0                               |
|   | $\therefore x - 3 = 0 \text{ or } x - 2 = 0$ |
|   | $\therefore x = 3 \text{ or } x = 2$         |

**b** 
$$x^2 + 2x + 1 = 0$$
  
 $(x + 1)(x + 1) = 0$   
 $(x + 1)^2 = 0$   
 $\therefore x + 1 = 0$   
 $\therefore x = -1$ 

c 
$$10x^2 - 13x - 3 = 0$$
  
 $10x^2 - 15x + 2x - 3 = 0$   
 $5x(2x - 3) + (2x - 3) = 0$   
 $(2x - 3)(5x + 1) = 0$   
∴  $2x - 3 = 0$  or  $5x + 1 = 0$   
∴  $2x = 3$  or  $5x = -1$   
∴  $x = \frac{3}{2}$  or  $x = -\frac{1}{5}$ 

#### **EXPLANATION**

Factorise by finding two numbers that multiply to 6 and add to  $-5: -3 \times (-2) = 6$  and -3 + (-2) = -5. Apply the Null Factor Law and solve for *x*.

 $1 \times 1 = 1$  and 1 + 1 = 2 $(x + 1)(x + 1) = (x + 1)^2$  is a perfect square. This gives one solution for *x*.

First, factorise using grouping or another method.  $10 \times (-3) = -30, -15 \times 2 = -30$  and -15 + 2 = -13.

Solve using the Null Factor Law.

Check your solutions by substitution.

#### Now you try

Solve the following quadratic equations.

**a**  $x^2 - x - 12 = 0$ 

**b**  $x^2 + 6x + 9 = 0$ 

**c**  $6x^2 + x - 2 = 0$ 

# **Example 17** Solving disguised quadratics

Solve the following by first writing in the form  $ax^2 + bx + c = 0$ .

a 
$$x^2 = 4(x + 15)$$

$$\frac{x+6}{x} = x$$

#### SOLUTION

 $x^2 = 4(x + 15)$ а  $x^2 = 4x + 60$  $x^2 - 4x - 60 = 0$ (x - 10)(x + 6) = 0 $\therefore x - 10 = 0 \text{ or } x + 6 = 0$  $\therefore x = 10 \text{ or } x = -6$ 

#### **EXPLANATION**

First expand and then write in standard form by subtracting 4x and 60 from both sides. Factorise and apply the Null Factor Law:  $-10 \times 6 = -60$  and -10 + 6 = -4.

**b** 
$$\frac{x+6}{x} = x$$
  
 $x+6 = x^2$   
 $0 = x^2 - x - 6$   
 $0 = (x-3)(x+2)$   
 $\therefore x - 3 = 0 \text{ or } x + 2 = 0$   
 $\therefore x = 3 \text{ or } x = -2$   
First multiply both sides by x and then write in standard form.  
Factorise and solve using the Null Factor Law.

# Now you try

Solve the following by first writing in the form  $ax^2 + bx + c = 0$ .

**a** 
$$x^2 = 2(x + 24)$$
  
**b**  $\frac{x + 20}{x} = x$ 

# **Exercise 5F**

|               |   | FLUENCY                                      | 1, 2–3(1/2)          | 2-4(1/2)              | 2-4(1/3)    |
|---------------|---|----------------------------------------------|----------------------|-----------------------|-------------|
|               | 1 | Solve the following quadratic equations.     | <b>::</b> 2          | 12 0                  |             |
| Example 15a   |   | <b>a</b> i $x^2 - 5x = 0$                    |                      | 12x = 0               |             |
| Example 15b   |   | <b>b</b> i $x^2 - 13 = 0$                    | ii $x^2 -$           |                       |             |
| Example 15c   |   | <b>c i</b> $2x^2 = 18$                       | <b>ii</b> $4x^2 =$   | = 64                  |             |
| Example 15    | 2 | Solve the following quadratic equations.     |                      |                       |             |
|               |   | <b>a</b> $x^2 - 4x = 0$ <b>b</b> $x^2$       | -3x = 0              | <b>c</b> $x^2 + 2x =$ | = 0         |
|               |   | <b>d</b> $3x^2 - 12x = 0$ <b>e</b> $2x$      | $x^2 - 10x = 0$      | f $4x^2 + 8x$         | = 0         |
|               |   | <b>g</b> $x^2 - 7 = 0$ <b>h</b> $x^2$        | -11 = 0              | i $3x^2 - 15$         | = 0         |
|               |   | <b>j</b> $x^2 = 2x$ <b>k</b> $x^2$           | =-5x                 | $7x^2 = -x^2$         | c           |
|               |   | <b>m</b> $5x^2 = 20$ <b>n</b> $3x$           | $^{2} = 27$          | <b>o</b> $2x^2 = 72$  |             |
| Example 16a,b | 3 | Solve the following quadratic equations.     |                      |                       |             |
|               |   | <b>a</b> $x^2 + 3x + 2 = 0$ <b>b</b> $x^2$   | +5x+6=0              | <b>c</b> $x^2 - 6x$   | + 8 = 0     |
|               |   | <b>d</b> $x^2 - 7x + 10 = 0$ <b>e</b> $x^2$  | +4x - 12 = 0         | f $x^2 + 2x$          | -15 = 0     |
|               |   | <b>g</b> $x^2 - x - 20 = 0$ <b>h</b> $x^2$   | -5x - 24 = 0         | $x^2 - 12x$           | x + 32 = 0  |
|               |   | <b>j</b> $x^2 + 4x + 4 = 0$ <b>k</b> $x^2$   | +10x + 25 = 0        | $x^2 - 8x$            | + 16 = 0    |
|               |   | <b>m</b> $x^2 - 14x + 49 = 0$ <b>n</b> $x^2$ | -24x + 144 = 0       | <b>o</b> $x^2 + 18x$  | x + 81 = 0  |
| Example 16c   | 4 | Solve the following quadratic equations.     |                      |                       |             |
| $\bigcirc$    |   | <b>a</b> $2x^2 + 11x + 12 = 0$ <b>b</b> $4x$ | $x^2 + 16x + 7 = 0$  | c $2x^2 - 17$         | x + 35 = 0  |
|               |   | <b>d</b> $2x^2 - 23x + 11 = 0$ <b>e</b> $3x$ | $x^2 - 4x - 15 = 0$  | f $5x^2 - 7x$         | -6 = 0      |
|               |   | <b>g</b> $6x^2 + 7x - 20 = 0$ <b>h</b> $7x$  | $x^2 + 25x - 12 = 0$ | i $20x^2 - 3$         | 3x + 10 = 0 |
|               |   |                                              |                      |                       |             |

|               | PROBLEM-SOLVING                                                                                                                           |                                                                                                                               | 6(1/2)                                  | 5–6          | (1/2)                                                                       | 5–7(1/3)              |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------|-----------------------------------------------------------------------------|-----------------------|
| 5             | Solve by first taking out a co<br><b>a</b> $2x^2 + 16x + 24 = 0$<br><b>d</b> $5x^2 - 20x + 20 = 0$                                        | <b>b</b> $2x^2 - 2$                                                                                                           | 20x - 22 = 0<br>4x + 24 = 0             |              | $3x^2 - 18x + 27$ $18x^2 - 57x + 3$                                         |                       |
| Example 17a 6 | d $x^{2} + 7x = -10$<br>g $2x - 16 = x(2 - x)$<br>j $x^{2} - 5x = -15x - 25$                                                              | b $x^2 = 40$<br>e $x^2 - 8x$<br>h $x^2 + 12$<br>k $x^2 - 14$                                                                  | (x + 8)<br>x = -15<br>2x + 10 = 2x + 1  | C<br>f<br>i  | x(x+4) = 4(x                                                                | + 9<br>x - 4<br>+ 16) |
| Example 17b 7 | Solve the following by first v<br><b>a</b> $\frac{5x + 84}{x} = x$<br><b>b</b> $\frac{20 - 3x}{x} = 2x$<br><b>g</b> $\frac{3}{x} = x + 2$ | vriting in the form<br><b>b</b> $\frac{9x + 70}{x}$<br>(10A) <b>e</b> $\frac{6x + 8}{5x}$<br>(10A) <b>h</b> $\frac{1}{x} = 3$ | $\frac{\partial}{\partial x} = x$ $= x$ | C<br>(10A) f | $\frac{18 - 7x}{x} = x$ $\frac{7x + 10}{2x} = 3x$ $\frac{4}{x - 2} = x + 1$ |                       |
|               | REASONING                                                                                                                                 |                                                                                                                               | 8                                       | 8,           | 9                                                                           | 9, 10                 |

8 **a** Write down the solutions to the following equations.

(x-1)(x+2) = 0

**b** What difference has the common factor of 2 made to the solutions in the first equation?

**c** Explain why  $x^2 - 5x - 6 = 0$  and  $3x^2 - 15x - 18 = 0$  have the same solutions.

9 Explain why  $x^2 + 16x + 64 = 0$  has only one solution.

10 When solving  $x^2 - 2x - 8 = 7$  a student writes the following.

 $x^2 - 2x - 8 = 7$ (x-4)(x+2) = 7x - 4 = 7 or x + 2 = 7x = 11 or x = 5

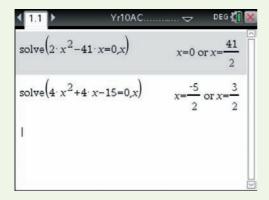
 $i \quad 2(x-1)(x+2) = 0$ 

Discuss the problem with this solution and then write a correct solution.

#### ENRICHMENT: More algebraic fractions with quadratics

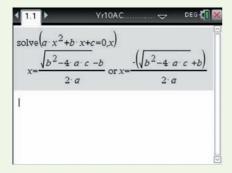
**11** Solve these equations by first multiplying by an appropriate expression.

| <b>a</b> $x + 3 = -\frac{2}{x}$        | <b>b</b> $-\frac{1}{x} = x - 2$          | <b>c</b> $-\frac{5}{x} = 2x - 11$             |
|----------------------------------------|------------------------------------------|-----------------------------------------------|
| d $\frac{x^2 - 48}{x} = 2$             | <b>e</b> $\frac{x^2 + 12}{x} = -8$       | f $\frac{2x^2 - 12}{x} = -5$                  |
| <b>g</b> $\frac{x-5}{4} = \frac{6}{x}$ | <b>h</b> $\frac{x-2}{3} = \frac{5}{x}$   | i $\frac{x-4}{2} = -\frac{2}{x}$              |
| $j  \frac{x+4}{2} - \frac{3}{x-3} = 1$ | $k  \frac{x}{x-2} - \frac{x+1}{x+4} = 1$ | $\frac{1}{x-1} - \frac{1}{x+3} = \frac{1}{3}$ |


© Greenwood et al. 2019 ISBN 978-1-108-77290-7 Photocopying is restricted under law and this material must not be transferred to another party 11(1/2)

## Using calculators to solve quadratic equations

- 1 Solve:
  - **a**  $2x^2 41x = 0$
- **2** Solve  $ax^2 + bx + c = 0$ .


## Using the TI-Nspire:

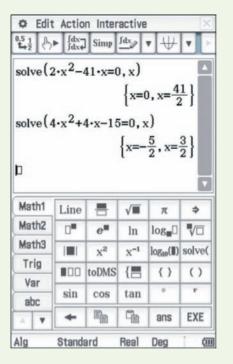
1 In a **Calculator** page use <u>menu</u> >Algebra>Solve and type as shown ending with:, *x*.



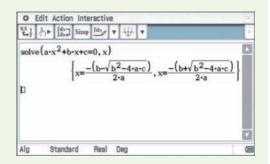
Note: if your answers are decimal then change the **Calculation Mode** to **Auto** in **Settings** on the Home screen.

2 Use <u>menu</u> >Algebra>Solve and type as shown.




Note: use a multiplication sign between *a* and  $x^2$  in  $ax^2$  and *b* and *x* in *bx*.

This gives the general quadratic formula studied in **Section 51**.


**b** 
$$4x^2 + 4x - 15 = 0$$

#### Using the ClassPad:

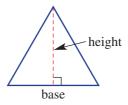
1 In the Main application, type and highlight the equation then tap Interactive, Advanced, Solve, OK.



 Use the VAR keyboard to type the equation as shown. Highlight the equation and tap Interactive, Advanced, Solve, OK. This gives the general quadratic formula studied in Section 5I.



# **5G** Applications of quadratics


#### Learning intentions

- To be able to set up a quadratic equation from a word problem
- To know how to apply the steps for solving a quadratic equation
- · To understand and check the validity of solutions in the context of the given problem

Defining variables, setting up equations, solving equations and interpreting solutions are all important elements of applying quadratic equations to problem solving. The area of a rectangular paddock, for example, that is fenced off using a fixed length of fencing can be found by setting up a quadratic equation, solving it and then interpreting the solutions.

# LESSON STARTER The 10 cm<sup>2</sup> triangle

There are many base and height measurements for a triangle that give an area of  $10 \text{ cm}^2$ .





Aerospace engineers model the trajectory of a rocket under the influence of gravity using a quadratic equation of height, *h*, versus time. The solutions to h = 0 are the times when the rocket is at ground level and give its flight time.

- Draw three different triangles that have a 10 cm<sup>2</sup> area. Include the measurements for the base and the height.
- Do any of your triangles have a base length that is 1 cm more than the height? Find the special triangle with area 10 cm<sup>2</sup> that has a base 1 cm more than its height by following these steps.
  - Let *x* cm be the height of the triangle.
  - Write an expression for the base length.
  - Write an equation if the area is  $10 \text{ cm}^2$ .
  - Solve the equation to find two solutions for *x*.
  - Which solution is to be used to describe the special triangle? Why?

#### **KEY IDEAS**

- When applying quadratic equations, follow these steps.
  - Define a variable; i.e. 'Let *x* be ...'.
  - Write an equation.
  - Solve the equation.
  - Choose the solution(s) that solves the equation and answers the question in the context in which it was given. Check that the solutions seem reasonable.



 $24 \text{ m}^2$ 

x m

#### **BUILDING UNDERSTANDING**

- 1 A rectangle has an area of 24 m<sup>2</sup>. Its length is 5 m longer than its width.
  - **a** Complete this sentence: 'Let *x* m be the \_
  - **b** State an expression for the rectangle's length.
  - **c** State an equation using the rectangle's area.
  - **d** Rearrange your equation from part **c** in standard form (i.e.  $ax^2 + bx + c = 0$ ) and solve for x.
  - **e** Find the dimensions of the rectangle.
- Repeat all the steps in Question 1 to find the dimensions of a rectangle with the following properties.
  - **a** Its area is  $60 \text{ m}^2$  and its length is 4 m more than its width.
  - **b** Its area is  $63 \text{ m}^2$  and its length is 2 m less than its width.

#### **Example 18** Finding dimensions using quadratics

The area of a rectangle is fixed at  $28 \text{ m}^2$  and its length is 3 metres more than its width. Find the dimensions of the rectangle.

#### SOLUTION

#### **EXPLANATION**

Let *x* m be the width of the rectangle.

Length = (x + 3) m x(x + 3) = 28  $x^2 + 3x - 28 = 0$  (x + 7)(x - 4) = 0 x + 7 = 0 or x - 4 = 0  $\therefore x = -7$  or x = 4 x > 0 so, choose x = 4. Rectangle has width 4 m and length 7 m. Draw a diagram to help.

$$(x+3)$$
 m  $x$  m  $28$  m<sup>2</sup>

Write an equation using the given information. Then write in standard form and solve for *x*. Disregard x = -7 because x > 0. Answer the question in full. Note: Length is 4 + 3 = 7.

#### Now you try

The area of a rectangle is fixed at  $48 \text{ m}^2$  and its length is 2 metres more than its width. Find the dimensions of the rectangle.

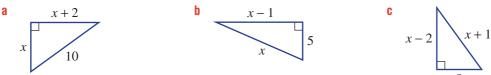
# **Exercise 5G**

| FLUENCY | 1–5 | 2–5 | 3–6 |
|---------|-----|-----|-----|
|---------|-----|-----|-----|

#### Example 18

The area of a rectangle is fixed at  $12 \text{ m}^2$  and its length is 1 metre more than its width. Find the dimensions of the rectangle.

Example 18 2 The area of a rectangle is fixed at 54 m<sup>2</sup> and its length is 3 metres more than its width. Find the dimensions of the rectangle.


- 3 Find the height and base lengths of a triangle that has an area of  $24 \text{ cm}^2$  and height 2 cm more than its base.
- 4 Find the height and base lengths of a triangle that has an area of 7  $m^2$  and height 5 m less than its base.
- **5** The product of two consecutive numbers is 72. Use a quadratic equation to find the two sets of numbers.
- 6 The product of two consecutive, even positive numbers is 168. Find the two numbers.

| PROBLEM-SOLVING | 7, 8 | 7–10 | 8–11 |
|-----------------|------|------|------|
|-----------------|------|------|------|

7 A 100 m<sup>2</sup> hay shed is to be extended to give 475 m<sup>2</sup> of floor space in total, as shown. All angles are right angles. Find the value of x.



8 Solve for *x* in these right-angled triangles, using Pythagoras' theorem.



- 9 A square hut of side length 5 m is to be surrounded by a veranda of width x metres. Find the width of the veranda if its area is to be  $24 \text{ m}^2$ .
- 10 A father's age is the square of his son's age (x). In 20 years' time the father will be three times as old as his son. What are the ages of the father and son?
- A rectangular painting is to have a total area (including the frame) of 1200 cm<sup>2</sup>. If the painting is 30 cm long and 20 cm wide, find the width of the frame.



| REASONING                                                                                   | 12                      | 12, 13         | 13, 14 |  |  |  |  |  |
|---------------------------------------------------------------------------------------------|-------------------------|----------------|--------|--|--|--|--|--|
| <b>12</b> The sum of the first <i>n</i> positive integers is given by $\frac{1}{2}n(n+1)$ . |                         |                |        |  |  |  |  |  |
| <b>a</b> Find the sum of the first 10 positive integers                                     | s (i.e. use $n = 10$ ). |                |        |  |  |  |  |  |
| <b>b</b> Find the value of <i>n</i> if the sum of the first <i>n</i> positive integers is:  |                         |                |        |  |  |  |  |  |
| i 28 ii 91                                                                                  |                         | <b>iii</b> 276 |        |  |  |  |  |  |
|                                                                                             |                         |                |        |  |  |  |  |  |

13 A ball is thrust vertically upwards from a machine on the ground. The height (*h* metres) after *t* seconds is given by h = t(4 - t).

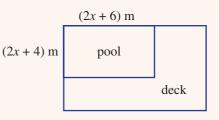
- **a** Find the height after 1.5 seconds.
- **b** Find when the ball is at a height of 3 metres.
- **c** Why are there two solutions to part **b**?
- **d** Find when the ball is at ground level. Explain.
- **e** Find when the ball is at a height of 4 metres.
- f Why is there only one solution for part e?
- g Is there a time when the ball is at a height of 5 metres? Explain.
- 14 The height (*h* metres) of a golf ball is given by h = -0.01x(x - 100), where *x* metres is the horizontal distance from where the ball was hit.
  - **a** Find the values of x when h = 0.
  - **b** Interpret your answer from part **a**.
  - **c** Find how far the ball has travelled horizontally when the height is 1.96 metres.



#### **ENRICHMENT: Fixed perimeter and area**

- **15** A small rectangular block of land has a perimeter of 100 m and an area of 225 m<sup>2</sup>. Find the dimensions of the block of land.
- **16** A rectangular farm has perimeter 700 m and area  $30000 \text{ m}^2$ . Find its dimensions.

15, 16


# **Applications and problem-solving**

The following problems will investigate practical situations drawing upon knowledge and skills developed throughout the chapter. In attempting to solve these problems, aim to identify the key information, use diagrams, formulate ideas, apply strategies, make calculations and check and communicate your solutions.

# On the pool deck

1 Designs for a rectangular pool are being considered with the dimensions shown such that the length is 2 m more than the width, as shown. The pool will also have a deck built around it as shown. The length and width of the combined rectangular area will be an increase of 50% of the length and width of the pool. *The pool designer wants to explore the areas of possible* 

#### decks in comparison to the area of the pool.



- **a** Give the length and width of the combined pool and deck area in terms of *x*.
- **b** Find the area of the deck in  $m^2$  in terms of x.
- **c** If the area of the deck is  $100 \text{ m}^2$ , determine the dimensions of the pool by first finding the value of x.
- **d** Use your answer to **b** to determine what fraction the pool area is of the deck area.
- e Repeat parts **a** and **b** to determine what fraction the pool area is of the deck area, if the deck increases the length and width of the rectangular area by 25%.



# **Round-robin tournament**

2 A round-robin tournament with *n* teams, where every team plays each other once, requires  $\frac{n^2 - n}{2}$  games.

# Using this rule, the tournament organisers wish to explore the number of games that need to be scheduled and the number of teams required for a given number of games.

- a How many games are played in a round-robin tournament with 6 teams?
- **b** A round-robin tournament has 28 games, solve an appropriate equation to find the number of teams in the competition.

- **c** Investigate if doubling the number of teams, doubles the number of matches required. Prove algebraically.
- **d** Give a simplified expression in terms of *n* for the number of games required for n + 1 teams.
- A tournament has *n* teams. How many more games are required in the tournament if the number of teams increases by
  - i 1 team?

ii 2 teams?

iii x teams?



## Kayaking along the river

3 A kayaker is paddling up a river which is flowing at a certain speed. He travels 15 km up the river and then back down the river to where he started, kayaking at the same still-water speed, x km/h. The trip takes 4 hours to go up and down the river.

You wish to investigate the effect of the varying river flow speed on the speed of the kayaker who needs to complete the trip of fixed distance in the given time frame.

- **a** If the river is flowing at a rate of 2 km/h and the man is kayaking at a rate of x km/h, find:
  - i expressions, in terms of x, for the rate the kayaker is moving upstream and the rate the kayaker is moving downstream
  - ii the value of x for this 4 hour journey.

Consider the same journey, taking the same time, with the river flowing at y km/h.

- **b** Find a rule for the speed of the kayaker in still-water, *x* km/h, in terms of *y*.
- **c** Use your rule from part **b** to confirm your answer to part **a** and to find the kayaker's speed if there was no current.



# 5H Solving quadratic equations by completing the square

#### Learning intentions

- To understand that completing the square can be used to help factorise a quadratic equation when integers cannot be found
- To be able to solve an equation by using the completing the square method to factorise
- To recognise a form of a quadratic equation that gives no solutions

In **Section 5E** we saw that some quadratics cannot be factorised using integers but instead could be factorised by completing the square. Surds were also used to complete the factorisation. We can use this method to solve many quadratic equations.

# **LESSON STARTER** Where does $\sqrt{6}$ come in?

Consider the equation  $x^2 - 2x - 5 = 0$  and try to solve it by discussing these points.

- Are there any common factors that can be taken out?
- Are there any integers that multiply to give -5 and add to give -2?
- Try completing the square on the left-hand side. Does this help and how?
- Show that the two solutions contain the surd  $\sqrt{6}$ .



In the 9th century, the great Persian mathematician Al-Khwarizmi first solved quadratic equations by completing the square. His *Al-jabr* book was the principal maths textbook in European universities for 500 years, introducing algebra, algorithms and surds.

#### **KEY IDEAS**

- To solve quadratic equations of the form  $ax^2 + bx + c = 0$  for which you cannot factorise using integers:
  - Complete the square for the quadratic expression and factorise if possible.
  - Solve the quadratic equation using the Null Factor Law or an alternate method.
- Expressions such as  $x^2 + 5$  and  $(x 1)^2 + 7$  cannot be factorised further and therefore give no solutions as they cannot be expressed as a difference of two squares.

#### **BUILDING UNDERSTANDING**

1 What number must be added to the following expressions to form a perfect square?  
a 
$$x^2 + 2x$$
 b  $x^2 + 20x$  c  $x^2 - 4x$  d  $x^2 + 5x$   
2 Factorise using surds.  
a  $x^2 - 3 = 0$  b  $x^2 - 10 = 0$  c  $(x + 1)^2 - 5 = 0$   
3 Solve these equations.  
a  $(x - \sqrt{2})(x + \sqrt{2}) = 0$  b  $(x - \sqrt{7})(x + \sqrt{7}) = 0$   
c  $(x - 3 + \sqrt{5})(x - 3 - \sqrt{5}) = 0$  d  $(x + 5 + \sqrt{14})(x + 5 - \sqrt{14}) = 0$ 

 $x^2 - 3x + 1 = 0$ 

### Example 19 Solving quadratic equations by completing the square

Solve these quadratic equations by first completing the square. **a**  $x^2 + 4x + 2 = 0$  **b**  $x^2 + 6x - 11 = 0$ 

#### SOLUTION

a

$$x^{2} - 4x + 2 = 0$$
  

$$x^{2} - 4x + 4 - 4 + 2 = 0$$
  

$$(x - 2)^{2} - 2 = 0$$
  

$$(x - 2 + \sqrt{2})(x - 2 - \sqrt{2}) = 0$$
  

$$\therefore x - 2 + \sqrt{2} = 0 \text{ or } x - 2 - \sqrt{2} = 0$$
  

$$\therefore x = 2 - \sqrt{2} \text{ or } x = 2 + \sqrt{2}$$
  
Alternate method, from  

$$(x - 2)^{2} - 2 = 0$$
  

$$(x - 2)^{2} = 2$$
  

$$x - 2 = \pm\sqrt{2}$$
  

$$x = 2 \pm \sqrt{2}$$

b

 $x^{2} + 6x - 11 = 0$   $x^{2} + 6x + 9 - 9 - 11 = 0$   $(x + 3)^{2} - 20 = 0$   $(x + 3 - \sqrt{20})(x + 3 + \sqrt{20}) = 0$   $(x + 3 - 2\sqrt{5})(x + 3 + 2\sqrt{5}) = 0$   $\therefore x + 3 - 2\sqrt{5} = 0 \text{ or } x + 3 + 2\sqrt{5} = 0$   $\therefore x = -3 + 2\sqrt{5} \text{ or } x = -3 - 2\sqrt{5}$ Alternatively,  $x = -3 \pm 2\sqrt{5}$ .

 $r^2 - 3r + 1 = 0$ 

C

$$x^{2} - 3x + \frac{9}{4} - \frac{9}{4} + 1 = 0$$

$$\left(x - \frac{3}{2}\right)^{2} - \frac{5}{4} = 0$$

$$\left(x + \frac{3}{2} + \sqrt{\frac{5}{4}}\right) \left(x - \frac{3}{2} - \sqrt{\frac{5}{4}}\right) = 0$$

$$x - \frac{3}{2} + \sqrt{\frac{5}{4}} = 0 \quad \text{or} \quad x - \frac{3}{2} - \sqrt{\frac{5}{4}} = 0$$

$$\therefore x = \frac{3}{2} - \frac{\sqrt{5}}{2} \quad \text{or} \quad x = \frac{3}{2} + \frac{\sqrt{5}}{2}$$

$$x = \frac{3 - \sqrt{5}}{2} \quad \text{or} \quad x = \frac{3 + \sqrt{5}}{2}$$
So  $x = \frac{3 \pm \sqrt{5}}{2}$ 

#### **EXPLANATION**

Complete the square:  $\left(\frac{-4}{2}\right)^2 = 4.$ 

$$x^{2} - 4x + 4 = (x - 2)(x - 2) = (x - 2)^{2}$$
  
Use  $a^{2} - b^{2} = (a + b)(a - b)$ .

Apply the Null Factor Law and solve for *x*. The solutions can also be written as  $2 \pm \sqrt{2}$ . An alternate approach after completing the square is to add 2 to both sides and then take the square root of both sides  $\pm \sqrt{2}$  since  $(+\sqrt{2})^2 = 2$  and  $(-\sqrt{2})^2 = 2$ .

Complete the square:  $\left(\frac{6}{2}\right)^2 = 9.$ 

Use difference of perfect squares with surds. Recall that  $\sqrt{20} = \sqrt{4 \times 5} = 2\sqrt{5}$ . Apply the Null Factor Law and solve for *x*.  $(x + 3)^2 = 20$  can also be solved by taking the square root of both sides. Alternatively, write solutions using the  $\pm$  symbol.

$$\left(-\frac{3}{2}\right)^2 = \frac{9}{4}$$

 $a^2 - b^2 = (a + b)(a - b)$ Use the Null Factor Law.

Recall that 
$$\sqrt{\frac{5}{4}} = \frac{\sqrt{5}}{\sqrt{4}} = \frac{\sqrt{5}}{2}$$

Combine using the  $\pm$  symbol.

Continued on next page

#### Now you try

Solve these quadratic equations by first completing the square.

**a**  $x^2 - 6x + 2 = 0$ **b**  $x^2 + 4x - 14 = 0$ **c**  $x^2 - 5x + 2 = 0$ 

# **Exercise 5H**

|                            |   | FLUENCY                                                                                                          |                  |                                                        | 1, 2-4(1/2)                                        | 2           | 4(1/3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2-4(1/3)                                 |
|----------------------------|---|------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------------------------|----------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| Example 19a<br>Example 19b | 1 | Solve these quadratic equations by $x^{2}$<br><b>a</b> i $x^{2} - 8x + 3 = 0$<br><b>b</b> i $x^{2} + 4x - 4 = 0$ | firs             | t complet                                              | ting the square.<br>ii $x^2 - $<br>ii $x^2 + $     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |
| Example 19a                | 2 | <b>g</b> $x^2 - 8x - 1 = 0$<br><b>j</b> $x^2 - 10x + 18 = 0$                                                     | b<br>e<br>h<br>k | $x^{2} + 8x$ $x^{2} - 12$ $x^{2} - 6x$                 | x - 3 = 0                                          | f<br>i      | $x^{2} + 10x$ $x^{2} + 6x$ $x^{2} - 2x$ $x^{2} - 8x$ $x^{2} - 14x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -16 = 0<br>+ 9 = 0                       |
| Example 19b                | 3 | <b>d</b> $x^2 - 4x - 14 = 0$                                                                                     | b<br>e           |                                                        | + 1 = 0<br>x - 3 = 0<br>x - 18 = 0                 | f           | $x^{2} - 10x$ $x^{2} + 8x + x^{2} + 6x + 6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -8 = 0                                   |
| Example 19c                | 4 | <b>d</b> $x^2 - 3x - 2 = 0$<br><b>g</b> $x^2 - 7x + 2 = 0$                                                       | b<br>e<br>h      | $x^{2} + 3x$ $x^{2} - x - x$ $x^{2} - 9x$ $x^{2} - 3x$ | -3 = 0                                             | f           | $x^{2} + 7x + x^{2} + 5x + x^{2} + x - x^{2} + 5x + x^{2$ | -2 = 0<br>4 = 0                          |
|                            |   | PROBLEM-SOLVING                                                                                                  |                  |                                                        | 5(1/2), 8                                          | 5–7         | (1/3), 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5-7(1/3), 9                              |
|                            | 5 | <b>g</b> $(x-7)^2 - 6 = 0$                                                                                       | b<br>e<br>h      | $x^2 - 10$ $(x - 1)^2$ $x^2 - 2x$                      | = 0<br>$^{2} + 4 = 0$                              | c<br>f<br>i | equations<br>$x^{2} + 3 =$ $(x + 2)^{2}$ $x^{2} - 3x +$ $x^{2} - 2x +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 - 7 = 0 + 10 = 0                       |
|                            | 6 | Solve the following, if possible, by<br>square.<br><b>a</b> $2x^2 - 4x + 4 = 0$<br><b>d</b> $3x^2 + 27x + 9 = 0$ | b                | $4x^2 + 2$                                             | ing out the coefficien<br>0x + 8 = 0<br>5x + 3 = 0 | C           | $2x^2 - 10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | completing the<br>x + 4 = 0<br>x + 8 = 0 |
|                            | 7 | Solve the following quadratic equat<br><b>a</b> $x^2 + 3x = 5$<br><b>d</b> $x^2 - 8x = -11$                      | b                | $x^2 + 5x$                                             |                                                    |             | $x^2 + 7x = x^2 + x + x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | = -15<br>9 = 5x - 3                      |

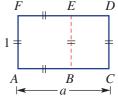
ISBN 978-1-108-77290-7 © Greenwood et al. 2019 Photocopying is restricted under law and this material must not be transferred to another party.

10, 11

- 8 A rectangle's length is 3 cm more than its width. Find the dimensions of the rectangle if its area is 20 cm<sup>2</sup>.
- $\frac{x \text{ cm}}{20 \text{ cm}^2} (x+3) \text{ cm}$
- 9 The height, h km, of a ballistic missile launched from a submarine at sea level is given by
  - $h = \frac{x(400 x)}{20000}$ , where x km is the horizontal distance travelled.
  - **a** Find the height of a missile that has travelled the following horizontal distances.
    - i 100 km ii 300 km
  - b Find how far the missile has travelled horizontally when the height is:
     i 0 km
     ii 2 km
  - **c** Find the horizontal distance the missile has travelled when its height is 1 km. (*Hint*: Complete the square.)

| REASONING |  |
|-----------|--|
| ILAUUNINU |  |

- **10** Complete the square to show that the following have no (real) solutions. **a**  $x^2 + 4x + 5 = 0$ **b**  $x^2 - 3x = -3$
- 11 A friend starts to solve  $x^2 + x 30 = 0$  by completing the square but you notice there is a much quicker way. What method do you describe to your friend?


10

- **12** This rectangle is a golden rectangle.
  - *ABEF* is a square.
  - Rectangle *BCDE* is similar to rectangle *ACDF*.
  - **a** Show that  $\frac{a}{1} = \frac{1}{a-1}$ .
  - **b** Find the exact value of *a* (which will give you the golden ratio) by completing the square.

#### ENRICHMENT: Completing the square with non-monics

13 In the Enrichment section of Exercise 5E we looked at a method to factorise non-monic quadratics by completing the square. It involved taking out the coefficient of  $x^2$ . Dividing both sides by that number is possible in these equations and this makes the task easier. Use this technique to solve the following equations.

| а | $2x^2 + 4x - 1 = 0$    | b | $3x^2 + 6x - 12 = 0$ |
|---|------------------------|---|----------------------|
| C | $-2x^2 + 16x - 10 = 0$ | d | $3x^2 - 9x + 3 = 0$  |
| e | $4x^2 + 20x + 8 = 0$   | f | $5x^2 + 5x - 15 = 0$ |



13(1/2)

11, 12

# 51 Solving quadratic equations using the quadratic formula

#### Learning intentions

- To know the guadratic formula and when to apply it ٠
- To be able to use the quadratic formula to solve a quadratic equation •
- To know what the discriminant is and what it can be used for .
- To be able to use the discriminant to determine the number of solutions of a quadratic equation

A general formula for solving quadratic equations can be found by completing the square for the general case.

Consider  $ax^2 + bx + c = 0$ , where a, b, c are constants and  $a \neq 0$ . Start by dividing both sides by a.

$$x^{2} + \frac{b}{a}x + \frac{c}{a} = 0$$

$$x^{2} + \frac{b}{a}x + \left(\frac{b}{2a}\right)^{2} - \left(\frac{b}{2a}\right)^{2} + \frac{c}{a} = 0$$

$$\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2}}{4a^{2}} + \frac{c}{a} = 0$$

$$\left(x + \frac{b}{2a}\right)^{2} - \left(\frac{b^{2} - 4ac}{4a^{2}}\right) = 0$$

$$\left(x + \frac{b}{2a}\right)^{2} = \frac{b^{2} - 4ac}{4a^{2}}$$

$$x + \frac{b}{2a} = \pm \sqrt{\frac{b^{2} - 4ac}{4a^{2}}}$$

$$x = -\frac{b}{2a} \pm \frac{\sqrt{b^{2} - 4ac}}{2a}$$

$$= \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$



Surveyors regularly subdivide land into house blocks. When dimensions are linear expressions of the same variable, an area formula forms a guadratic equation. For a given area, surveyors can solve this equation using the quadratic formula.

This formula now gives us a mechanism to solve quadratic equations and to determine how many solutions the equation has.

The expression under the root sign,  $b^2 - 4ac$ , is called the discriminant ( $\triangle$ ) and helps us to identify the number of solutions. A quadratic equation can have 0, 1 or 2 solutions.

4ac

## **LESSON STARTER How many solutions?**

Complete this table to find the number of solutions for each equation.

| $ax^2 + bx + c = 0$ | а | b | C | b <sup>2</sup> – 4ac | $\frac{-b+\sqrt{b^2-4ac}}{2a}$ | $\frac{-b-\sqrt{b^2-4ac}}{2a}$ |
|---------------------|---|---|---|----------------------|--------------------------------|--------------------------------|
| $2x^2 + 7x + 1 = 0$ |   |   |   |                      |                                |                                |
| $9x^2-6x+1=0$       |   |   |   |                      |                                |                                |
| $x^2-3x+4=0$        |   |   |   |                      |                                |                                |

Discuss under what circumstances a quadratic equation has:

- 2 solutions
- 1 solution
- 0 solutions.

#### **KEY IDEAS**

If  $ax^2 + bx + c = 0$  (where a, b, c are constants and  $a \neq 0$ ), then

$$x = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$
 or  $x = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$ 

- This is called the **quadratic formula**.
- The quadratic formula is useful when a quadratic cannot be factorised easily.
- **The discriminant** is  $\triangle = b^2 4ac$ .
  - When △ < 0, the quadratic equation has 0 real solutions (since √△ is undefined when △ is negative).</li>
  - When  $\triangle = 0$ , the quadratic equation has 1 real solution  $\left(x = -\frac{b}{2a}\right)$ .
  - When  $\triangle > 0$ , the quadratic equation has 2 real solutions  $\left(x = \frac{-b \pm \sqrt{b^2 4ac}}{2a}\right)$ .

#### **BUILDING UNDERSTANDING**

- 1 For these quadratic equations in the form  $ax^2 + bx + c = 0$ , state the values of a, b and c.
  - **a**  $3x^2 + 2x + 1 = 0$

**b** 
$$5x^2 + 3x - 2 = 0$$

$$2x^2 - x - 5 = 0$$

**d**  $-3x^2 + 4x - 5 = 0$ 

Find the value of the discriminant 
$$(b^2 - 4ac)$$
 for each part in Question **1** above.

- **3** State the number of solutions of a quadratic that has:
  - **a**  $b^2 4ac = 0$
  - **b**  $b^2 4ac < 0$
  - $b^2 4ac > 0$

#### Example 20 Using the discriminant

Determine the number of solutions to the following quadratic equations using the discriminant.

**a**  $x^2 + 5x - 3 = 0$ 

- **b**  $2x^2 3x + 4 = 0$
- **c**  $x^2 + 6x + 9 = 0$

#### SOLUTION

#### a a = 1, b = 5, c = -3 $\triangle = b^2 - 4ac$ $= (5)^2 - 4(1)(-3)$ = 25 + 12 = 37 $\triangle > 0$ , so there are 2 solutions.

**b** 
$$a = 2, b = -3, c = 4$$
  
 $\triangle = b^2 - 4ac$   
 $= (-3)^2 - 4(2)(4)$   
 $= 9 - 32$   
 $= -23$   
 $\triangle < 0$ , so there are no solutions.

**c** 
$$a = 1, b = 6, c = 9$$
  
 $\triangle = b^2 - 4ac$   
 $= (6)^2 - 4(1)(9)$   
 $= 36 - 36$   
 $= 0$   
 $\triangle = 0$ , so there is 1 solution.

#### **EXPLANATION**

State the values of a, b and c in  $ax^2 + bx + c = 0$ . Calculate the value of the discriminant by substituting values.

Interpret the result with regard to the number of solutions.

State the values of *a*, *b* and *c* and substitute to evaluate the discriminant. Recall that  $(-3)^2 = -3 \times (-3) = 9$ .

Interpret the result.

Substitute the values of *a*, *b* and *c* to evaluate the discriminant and interpret the result.

Note:  $x^2 + 6x + 9 = (x + 3)^2$  is a perfect square.

#### Now you try

Determine the number of solutions to the following quadratic equations using the discriminant.

**a**  $x^2 + 7x - 1 = 0$  **b**  $3x^2 - x + 2 = 0$ **c**  $x^2 + 8x + 16 = 0$ 

## Example 21 Solving quadratic equations using the quadratic formula

Find the exact solutions to the following using the quadratic formula.

**a**  $x^2 + 5x + 3 = 0$ 

**b**  $2x^2 - 2x - 1 = 0$ 

........

SOLUTION  
**a** 
$$a = 1, b = 5, c = 3$$
  
 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$   
 $= \frac{-5 \pm \sqrt{(5)^2 - 4(1)(3)}}{2(1)}$   
 $= \frac{-5 \pm \sqrt{25 - 12}}{2}$   
 $= \frac{-5 \pm \sqrt{13}}{2}$   
**b**  $a = 2, b = -2, c = -1$   
 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2}$ 

#### **EXPLANATION**

Determine the values of *a*, *b* and *c* in  $ax^2 + bx + c = 0$ . Write out the quadratic formula and substitute the values.

Simplify.

Two solutions: 
$$x = \frac{-5 - \sqrt{13}}{2}, \frac{-5 + \sqrt{13}}{2}$$

Determine the values of *a*, *b* and *c*.

$$a = 2, b = -2, c = -1$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{-(-2) \pm \sqrt{(-2)^2 - 4(2)(-1)}}{2(2)}$$

$$= \frac{2 \pm \sqrt{4 + 8}}{4}$$

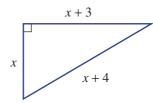
$$= \frac{2 \pm \sqrt{12}}{4}$$

$$= \frac{2 \pm 2\sqrt{3}}{4}$$

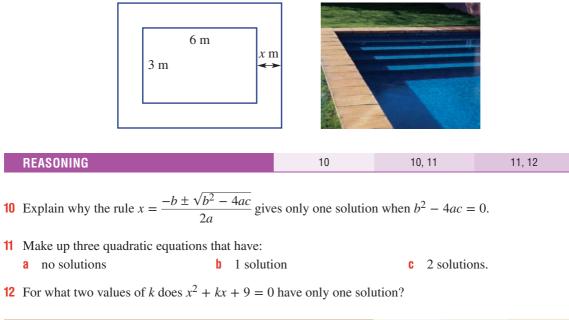
$$= \frac{1 \pm \sqrt{3}}{2}$$

Simplify:  $\sqrt{12} = \sqrt{4 \times 3} = 2\sqrt{3}$ . Cancel using the common factor:  $\frac{2 \pm 2\sqrt{3}}{4} = \frac{2(1 \pm \sqrt{3})}{4}$  $=\frac{1\pm\sqrt{3}}{2}$ 

#### Now you try


Find the exact solutions to the following using the quadratic formula.

- **a**  $x^2 + 3x + 1 = 0$
- **b**  $4x^2 2x 3 = 0$


# **Exercise 5I**

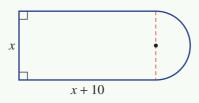
|             |   | FLUENCY                                                         |                             | 1, 2–3(1/2)                       | 2-4(1/3)               | 2-4(1/3)     |
|-------------|---|-----------------------------------------------------------------|-----------------------------|-----------------------------------|------------------------|--------------|
|             |   |                                                                 | 1 .6.11                     |                                   |                        | • • •        |
| Example 20  | 1 | Determine the number of solution<br><b>a</b> $x^2 + 3x - 1 = 0$ |                             | wing quadratic equal $2x + 5 = 0$ | <b>c</b> $x^2 + 4x$    |              |
|             |   | <b>a</b> $x^2 + 3x - 1 \equiv 0$                                | $u 4x^{-} - x$              | 2x + 3 = 0                        | $x^{-} + 4x^{-}$       | +4=0         |
| Example 20  | 2 | Using the discriminant, determin                                |                             |                                   |                        |              |
|             |   | <b>a</b> $x^2 + 5x + 3 = 0$                                     | <b>b</b> $x^2 + 3x^2$       |                                   | <b>c</b> $x^2 + 6x$    |              |
|             |   | <b>d</b> $x^2 + 7x - 3 = 0$                                     | $x^2 + 5x^2$                | x - 4 = 0                         | f $x^2 + 4x$           | -4 = 0       |
|             |   | <b>g</b> $4x^2 + 5x + 3 = 0$                                    | <b>h</b> $4x^2 + 3$         | 3x + 1 = 0                        | i $2x^2 + 12$          |              |
|             |   | $\mathbf{j}  -x^2 - 6x - 9 = 0$                                 | $k -2x^2 +$                 | -3x - 4 = 0                       | $-4x^2 - $             | 6x + 3 = 0   |
| Example 21a | 3 | Find the exact solutions to the fo                              | llowing quadr               | atic equations, usin              | g the quadratic for    | mula.        |
|             |   | <b>a</b> $x^2 + 3x - 2 = 0$                                     | <b>b</b> $x^2 + 7x$         |                                   | <b>c</b> $x^2 - 7x$    | +5 = 0       |
|             |   | <b>d</b> $x^2 - 8x + 16 = 0$                                    | $e -x^2 -$                  | 5x - 4 = 0                        | f $-x^2 - 8x^2$        | x - 7 = 0    |
|             |   | <b>g</b> $4x^2 + 7x - 1 = 0$                                    | <b>h</b> $3x^2 + 3$         | 5x - 1 = 0                        | i $3x^2 - 4x$          | x - 6 = 0    |
|             |   | $\mathbf{j}  -2x^2 + 5x + 5 = 0$                                | $k -3x^2 -$                 | x + 4 = 0                         | $5x^2 + 6x$            | x - 2 = 0    |
| Example 21b | 4 | Find the exact solutions to the fo                              | llowing quadr               | atic equations, usin              | g the quadratic for    | mula.        |
| ·           |   | <b>a</b> $x^2 + 4x + 1 = 0$                                     | <b>b</b> $x^2 - 6x^2$       | x + 4 = 0                         | <b>c</b> $x^2 + 6x$    |              |
|             |   | <b>d</b> $-x^2 - 3x + 9 = 0$                                    | $e -x^2 +$                  | 4x + 4 = 0                        | f $-3x^2 + 3x^2$       | 8x - 2 = 0   |
|             |   | <b>g</b> $2x^2 - 2x - 3 = 0$                                    | <b>h</b> $3x^2 - 6$         | 5x - 1 = 0                        | i $-5x^2 + 3$          |              |
|             |   |                                                                 |                             |                                   |                        |              |
|             |   | PROBLEM-SOLVING                                                 |                             | 5, 6(1/2)                         | 5, 6(1/2), 8           | 6(1/2), 7, 9 |
|             | 5 | A triangle's base is 5 cm more th                               | an its height c             | of x cm. Find its hei             | ght if the             | $\wedge$     |
|             |   | triangle's area is 10 cm <sup>2</sup> .                         | -                           |                                   | /                      | / \          |
|             |   |                                                                 |                             |                                   |                        | x cm         |
|             |   |                                                                 |                             |                                   |                        | <u> </u>     |
|             | 6 | Solve the following using the qua                               | adratic formul              | a.                                |                        |              |
|             |   | <b>a</b> $3x^2 = 1 + 6x$                                        | <b>b</b> $2x^2 = 3$         |                                   | <b>c</b> $5x = 2 -$    | $-4x^2$      |
|             |   | <b>d</b> $2x - 5 = -\frac{1}{x}$                                | <b>e</b> $\frac{3}{x} = 3x$ |                                   | f $-\frac{5}{r} = 2$   |              |
|             |   | $2x - 5 = -\frac{1}{x}$                                         | $\frac{x}{x} = 3x$          | + 4                               | $-\frac{1}{x} = 2$     | -x           |
|             |   | <b>g</b> $5x = \frac{2x+2}{x}$                                  | <b>h</b> $x = \frac{3x}{2}$ | + 4                               | i $3x = \frac{10x}{3}$ | x-1          |
|             |   | $\frac{y}{x} = \frac{x}{x}$                                     |                             | 2x                                | JA —                   | 2x           |
|             | 7 | Two positive numbers differ by 3                                | and their pro               | duct is 11. Find the              | numbers.               |              |

8 Find the exact perimeter of this right-angled triangle.



9 A rectangular pool measuring 6 m by 3 m is to have a path surrounding it. If the total area of the pool and path is to be  $31 \text{ m}^2$ , find the width (x m) of the path, correct to the nearest centimetre.




| ENRICHMENT: k determines th                                                                                                                                             | e number of solutions                                                  | -   | -            | 13(1/2) |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----|--------------|---------|
| <ul> <li>13 The discriminant for x<sup>2</sup> + 2x +</li> <li>are no solutions for 4 -</li> <li>is 1 solution for 4 - 4k</li> <li>are 2 solutions for 4 - 4</li> </ul> | $4k < 0, \therefore k > 1$<br>= 0, \dots k = 1<br>$k > 0, \dots k < 1$ |     |              |         |
| <ul><li>a For what values of k does x</li><li>i no solutions?</li></ul>                                                                                                 | ii 1 solution?                                                         | iii | 2 solutions? |         |
| <ul> <li>b For what values of k does k</li> <li>i no solutions?</li> <li>c For what values of k does x<sup>2</sup></li> </ul>                                           | ii 1 solution?                                                         | iii | 2 solutions? |         |
|                                                                                                                                                                         | ii 1 solution?                                                         | iii | 2 solutions? |         |
| i no solutions?                                                                                                                                                         | ii 1 solution?                                                         | iii | 2 solutions? |         |

1 Find the monic quadratic in the form  $x^{2} + bx + c = 0$  with solutions  $x = 2 - \sqrt{3}$  and  $x = 2 + \sqrt{3}$ .

2 If 
$$x + \frac{1}{x} = 7$$
, what is  $x^2 + \frac{1}{x^2}$ ?

- **3** Find all the solutions to each equation. (*Hint*: Consider letting  $a = x^2$  in each equation.) **a**  $x^4 - 5x^2 + 4 = 0$ **b**  $x^4 - 7x^2 - 18 = 0$
- 4 Make a substitution as you did in Question 3 to obtain a quadratic equation to help you solve the following.
  - **a**  $3^{2x} 4 \times 3^x + 3 = 0$
  - **b**  $4 \times 2^{2x} 9 \times 2^{x} + 2 = 0$
- 5 Quadrilateral *ABCD* has a perimeter of 64 cm with measurements as shown. What is the area of the quadrilateral?

- 6 A cyclist in a charity ride rides 300 km at a constant average speed. If the average speed had been 5 km/h faster, the ride would have taken 2 hours less. What was the average speed of the cyclist?
- 7 Find the value of x, correct to one decimal place, in this diagram if the area is to be 20 square units.



- 8 Prove that  $x^2 2x + 2 > 0$  for all values of x.
- 9 A square has the same perimeter as a rectangle of length x cm and width y cm. Determine a simplified expression for the difference in their areas and, hence, show that when the perimeters are equal the square has the greatest area.
- **10** The equation  $x^2 + wx + t = 0$  has solutions  $\alpha$  and  $\beta$ , where the equation  $x^2 + px + q = 0$  has solutions  $3\alpha$  and  $3\beta$ . Determine the ratios w:p and t:q.



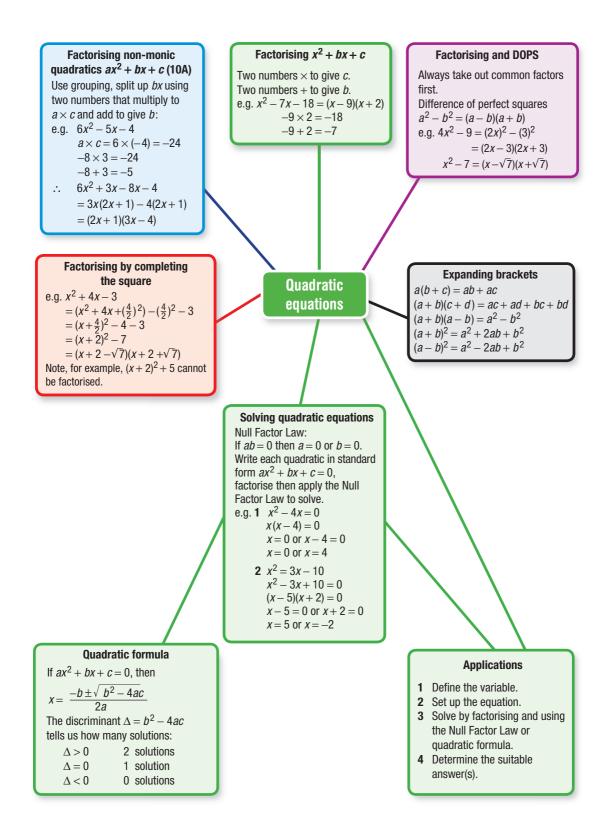
R

8 cm

С

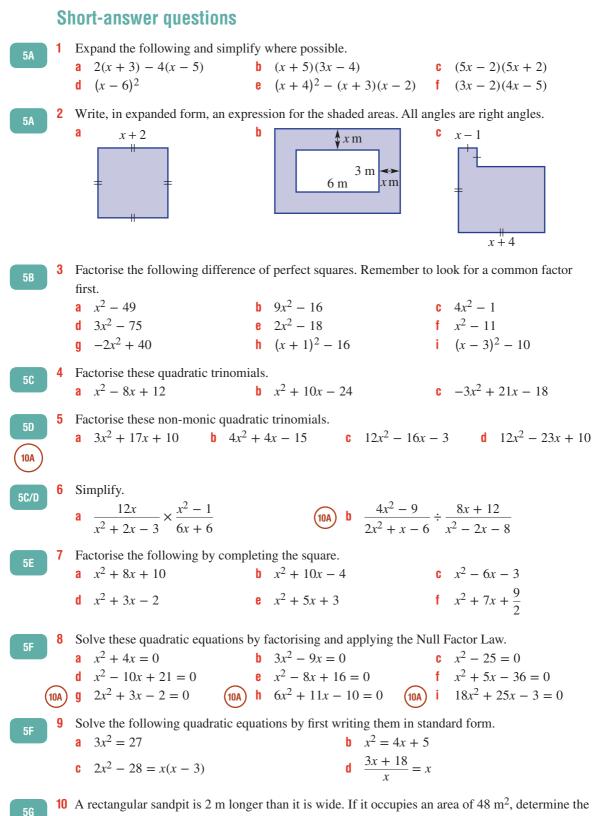
D

6 cm


A

Up for a challenge? If you get stuck

on a question, check out the 'Working


with unfamiliar problems' poster at the end of the book to help you.

Chapter summary



|          | Chapter checklist: Success criteria                                                                                                                                                                                                  | V |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| A        | <b>1.</b> I can apply the distributive law to expand and simplify.<br>e.g. Expand and simplify $2x(3x - 5) - 3(3x - 5)$ .                                                                                                            |   |
| A        | <b>2.</b> I can expand a binomial product.<br>e.g. Expand and simplify $(2x - 3)(x + 4)$ .                                                                                                                                           |   |
| <b>A</b> | <b>3.</b> I can expand to form a difference of perfect squares.<br>e.g. Expand $(3x + 2)(3x - 2)$ .                                                                                                                                  |   |
| A        | 4. I can expand a perfect square.<br>e.g. Expand $(x + 5)^2$ .                                                                                                                                                                       |   |
| B        | 5. I can factorise by taking out a common factor.<br>e.g. Factorise $12x^2 - 18x$ .                                                                                                                                                  |   |
| В        | <b>6.</b> I can factorise a difference of perfect squares.<br>e.g. Factorise $9x^2 - 16$ .                                                                                                                                           |   |
| B        | <b>7.</b> I can factorise a difference of perfect squares involving surds.<br>e.g. Factorise $x^2 - 7$ using surds.                                                                                                                  |   |
| B        | 8. I can factorise using grouping.<br>e.g. Factorise $x^2 - ax + 2x - 2a$ by grouping.                                                                                                                                               |   |
| C        | <b>9.</b> I can factorise a monic trinomial.<br>e.g. Factorise $x^2 - 8x - 20$ .                                                                                                                                                     |   |
| C        | <b>10.</b> I can factorise a trinomial with a common factor.<br>e.g. Factorise $3x^2 - 24x + 45$ .                                                                                                                                   |   |
| C        | <b>11. I can multiply and divide algebraic fractions by first factorising.</b><br>e.g. Simplify by first factorising $\frac{x^2 - 4}{x + 2} \times \frac{3x + 12}{x^2 + 2x - 8}$ .                                                   |   |
| D        | <b>12.</b> I can factorise a non-monic quadratic.<br>e.g. Factorise $5x^2 + 13x - 6$ .                                                                                                                                               |   |
| E        | <b>13.</b> I can factorise by completing the square.<br>e.g. Factorise $x^2 + 6x + 2$ by completing the square.                                                                                                                      |   |
| E        | <b>14.</b> I can recognise when a quadratic cannot be factorised.<br>e.g. Factorise $x^2 - 3x + 4$ by completing the square if possible.                                                                                             |   |
| F        | <b>15.</b> I can solve a quadratic equation by factorising and applying the Null Factor Law.<br>e.g. Solve $3x^2 - 9x = 0$ .                                                                                                         |   |
| F        | <b>16.</b> I can solve a quadratic equation by first rearranging into standard form.<br>e.g. Solve $x^2 = 2x + 3$ .                                                                                                                  |   |
| G        | <ul> <li>17. I can solve a word problem using a quadratic model.</li> <li>e.g. The area of a rectangle is 60 m<sup>2</sup> and its length is 4 metres more than its width.</li> <li>Find the dimensions of the rectangle.</li> </ul> |   |
| H        | <b>18.</b> I can solve a quadratic equation using completing the square.<br>e.g. Solve $x^2 + 4x + 22 = 0$ by first completing the square.                                                                                           |   |
| il       | <b>19.</b> I can determine the number of solutions of a quadratic equation.<br>e.g. Use the discriminant to determine the number of solutions of the equation $2x^2 - 3x - 5 = 0$ .                                                  |   |
|          | <b>20. I can use the quadratic formula to solve a quadratic equation.</b><br>e.g. Find the exact solutions to $2x^2 + 3x - 4 = 0$ using the quadratic formula.                                                                       |   |

**Chapter review** 



dimensions of the sandpit by solving a suitable equation.

**11** Solve these quadratic equations by first completing the square. a  $x^2 + 4x - 3 = 0$ **b**  $x^2 - 6x + 1 = 0$  $x^2 - 3x - 2 = 0$ d  $x^2 + 5x - 5 = 0$ **12** For each quadratic equation, determine the number of solutions by finding the value of the 51 discriminant. **a**  $x^2 + 2x + 1 = 0$ **b**  $x^2 - 3x - 3 = 0$ c  $2x^2 - 4x + 3 = 0$ d  $-3x^2 + x + 5 = 0$ **13** Use the quadratic formula to give exact solutions to these quadratic equations. 51 a  $x^2 + 3x - 6 = 0$ **b**  $x^2 - 2x - 4 = 0$ **c**  $2x^2 - 4x - 5 = 0$ d  $-3x^2 + x + 3 = 0$ **Multiple-choice questions** 1  $(x + 5)^2$  is equivalent to: 5A **B**  $x^2 + 5x$ A  $x^2 + 25$ **C**  $x^2 + 5x + 25$ **D**  $x^2 + 10x + 25$ **E**  $x^2 + 50$ 2 2(2x-1)(x+4) is equivalent to: **B**  $4x^2 + 14x - 8$  **E**  $4x^2 + 10x + 8$ A  $4x^2 + 15x - 4$  $8x^2 + 28x - 16$ **D**  $8x^2 + 18x - 4$ 3  $4x^2 - 25$  in factorised form is: **B**  $(2x-5)^2$ A 4(x-5)(x+5)**C** (2x-5)(2x+5)**E** 2(2x + 1)(x - 25)**D** (4x + 5)(x - 5)4 The fully factorised form of  $2x^2 - 10x - 28$  is: A 2(x+2)(x-7)**B** (2x + 7)(x + 4)2(x-4)(x-1)**D** (2x-2)(x+14)E(x-2)(x+7)5  $\frac{x^2 + x - 20}{8x} \times \frac{2x + 8}{x^2 - 16}$  simplifies to: **A**  $\frac{x-20}{8}$  **B**  $\frac{x+5}{4x}$  **C**  $\frac{x+5}{x-4}$  **D** x-5E  $\frac{x^2 - 20}{16}$ 6 The term that needs to be added to make  $x^2 - 6x$  a perfect square is: **B** \_9 **C** −3 A 18 **D** 9 **E** 3 7 The solution(s) to  $2x^2 - 8x = 0$  are: 5F **A** x = 0, x = -4**B** x = 2**C** x = 0, x = 4**E** x = 0, x = 2**D** x = 48 For  $8x^2 - 14x + 3 = 0$ , the solutions for x are: 5F **B**  $\frac{3}{4}, -\frac{1}{2}$ **C**  $\frac{1}{4}, \frac{3}{2}$ **A**  $\frac{1}{8}, -\frac{1}{3}$ 10A **D**  $\frac{3}{4}, -\frac{1}{2}$ **E**  $-\frac{1}{2}, -\frac{3}{8}$ 

ISBN 978-1-108-77290-7 © Greenwood et al. 2019 Photocopying is restricted under law and this material must not be transferred to another party

**A**  $x^2 + 2x + 3 = 0$  **B**  $x^2 + 3 = 0$  **D**  $2x^2 - x - 3 = 0$  **B**  $x^2 + 3 = 0$  **E**  $2x^2 - x + 3 = 0$ **C**  $2x^2 + x - 3 = 0$ 10 The product of two consecutive numbers is 72. If x is the smaller number, an equation to

When written in the standard form  $ax^2 + bx + c = 0$ ,  $\frac{x-3}{x} = 2x$  is:

| represent uns would be.     |                         |                             |
|-----------------------------|-------------------------|-----------------------------|
| <b>A</b> $x^2 + x + 72 = 0$ | <b>B</b> $2x - 71 = 0$  | <b>c</b> $x^2 + x - 72 = 0$ |
| <b>D</b> $x^2 + 1 = 72$     | <b>E</b> $x^2 = x + 72$ |                             |

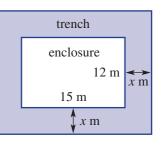
ISBN 978-1-108-77290-7

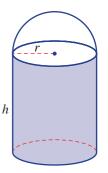
5F

#### **11** For $(x - 7)^2 - 3 = 0$ , the solutions for x are: **B** $-7 - \sqrt{3}, -7 + \sqrt{3}$ **A** $7 - \sqrt{3}, 7 + \sqrt{3}$ **C** 7. −3 **D** $-7 - \sqrt{3}, 7 + \sqrt{3}$ **E** 4.10 12 If $ax^2 + bx + c = 0$ has exactly two solutions, then: **A** $b^2 - 4ac = 0$ **B** $b^2 - 4ac > 0$ **D** $b^2 - 4ac \neq 0$ **E** $b^2 - 4ac < 0$ $b^2 - 4ac \le 0$

**Extended-response questions** 

nonnegant this would have


**D**  $b^2 - 4ac \neq 0$ 


- 1 A zoo enclosure for a rare tiger is rectangular in shape and has a trench of width x m all the way around it to ensure the tiger doesn't get far if it tries to escape. The dimensions are as shown.
  - **a** Write an expression in terms of x for:

Photocopying is restricted under law and this material must not be transferred to another party

- i the length of the enclosure and trench combined
- ii the width of the enclosure and trench combined.
- **b** Use your answers from part **a** to find the area of the overall enclosure and trench, in expanded form.
- **c** Hence, find an expression for the area of the trench alone.
- d Zoo restrictions state that the trench must have an area of at least 58 m<sup>2</sup>. By solving a suitable equation, find the minimum width of the trench.
- 2 The surface area S of a cylindrical tank with a hemispherical top is given by the equation  $S = 3\pi r^2 + 2\pi rh$ , where r is the radius and h is the height of the cylinder.
  - a If the radius of a tank with height 6 m is 3 m, determine its exact surface area.
  - **b** If the surface area of a tank with radius 5 m is  $250 \text{ m}^2$ , determine its height, to two decimal places.
  - **c** The surface area of a tank of height 6 m is found to be  $420 \text{ m}^2$ .
    - i Substitute the values and rewrite the equation in terms of *r* only.
    - ii Rearrange the equation and write it in the form  $ar^2 + br + c = 0$ .
    - iii Solve for r using the quadratic formula and round your answer to two decimal places.

© Greenwood et al. 2019





**Chapter review**