Irrational numbers

- 1 State which of the following are rational or irrational:
 - a $\sqrt{25}$
- b $\sqrt{361}$ c $\sqrt{33}$

d $\sqrt[3]{64}$

- e $\sqrt[3]{47}$
- f $\sqrt[3]{125}$
- g $\sqrt[3]{1000}$
- h ³√1729
- 2 Evaluate the following, rounding your answers to two decimal places where necessary:
 - a $\sqrt{25}$
- b $\sqrt[3]{64}$
- c $\sqrt{33}$
- d $\sqrt[3]{26}$

- e $\sqrt{121}$
- f $\sqrt[3]{216}$
- g $\sqrt{83}$
- h √3√52

- **3** Is $\sqrt{15}$ an integer?
 - 4 Determine whether each of the following numbers is a surd:
 - a $\sqrt{2}$
- b $\sqrt{1}$
- $c \sqrt{50}$

d $\sqrt[3]{27}$

- e $\sqrt[3]{9}$
- f ³√8
- $q \sqrt{80}$
- h $\sqrt{144}$

Simplifying surds

- 7 Are the following expressions written in their simplest surd form?:
 - a $\sqrt{17}$
- b $\sqrt{14}$
- c $\sqrt{50}$
- d $5\sqrt{50}$

- e $7\sqrt{125}$
- f $11\sqrt{21}$
- $q \sqrt{63}$
- h $\sqrt{112}$

- 8 Simplify the following:
 - a $\sqrt{180}$
- **b** $\sqrt{125}$
- c $3\sqrt{54}$
- d $7\sqrt{32}$

- e $6\sqrt{100}$.
- f $\sqrt{25 \times 6}$
- g $\frac{1}{2}\sqrt[3]{8\times6}$.
- h $\sqrt[3]{24 \times 9}$.

- Simplify the following:
- b $\frac{16}{\sqrt{16}}$
- $\frac{\sqrt{64}}{8}$

Equivalent surd expressions

State whether the following equations are true or false:

a
$$\sqrt{11} + \sqrt{5} = \sqrt{16}$$

c
$$5 - \sqrt{5} = \sqrt{5}$$

e
$$\sqrt{16} + \sqrt{9} = 7$$

$$\sqrt{25} - \sqrt{9} = \sqrt{16}$$

b
$$\sqrt{4} + \sqrt{4} = 4$$

d
$$\sqrt{1} + \sqrt{4} = \sqrt{25}$$

f
$$\sqrt{32} + \sqrt{2} = 5\sqrt{2}$$

$$\text{h} \quad \sqrt{100} - \sqrt{64} = 2$$

Simplify the following:

a
$$10\sqrt{2} + 14\sqrt{2}$$

c
$$\sqrt{10} - 20\sqrt{10}$$

e
$$4\sqrt{3} - 12\sqrt{3}$$

$$9 6\sqrt{7} - 8\sqrt{7}$$

b
$$\sqrt{6} + 14\sqrt{6}$$

d
$$12\sqrt{2} - 3\sqrt{2}$$

f
$$18\sqrt{5} - 15\sqrt{5}$$

h
$$6\sqrt{2} + 13\sqrt{2}$$

4 Simplify the following:

a
$$5\sqrt{5} + 9\sqrt{5} - 7\sqrt{5}$$

c
$$7\sqrt{6} + 18\sqrt{6} - 9\sqrt{6}$$

e
$$8\sqrt{5} - 9\sqrt{5} - 14\sqrt{5}$$

b
$$10\sqrt{6} - 3\sqrt{6} + 20\sqrt{6}$$

d
$$19\sqrt{6} - 4\sqrt{6} - 2\sqrt{6}$$

f
$$18\sqrt{10} - 9\sqrt{10} - 7\sqrt{10}$$

a
$$8\sqrt{2} + 2\sqrt{11} + 2\sqrt{2} + 4\sqrt{11}$$

c
$$6\sqrt{7} + 7\sqrt{5} - 3\sqrt{7} + 8\sqrt{5}$$

e
$$20\sqrt{7} + 7\sqrt{11} + \sqrt{7} + 25\sqrt{11}$$

g
$$20\sqrt{11} + 26\sqrt{5} + 22\sqrt{5} - 15\sqrt{11}$$

b
$$10\sqrt{2} + 5\sqrt{3} + 4\sqrt{2} - 7\sqrt{3}$$

d
$$18\sqrt{7} - 9\sqrt{3} + 20\sqrt{7} + 11\sqrt{3}$$

f
$$7\sqrt{11} + 28\sqrt{5} - 25\sqrt{11} - 11\sqrt{5}$$

6 Simplify the following:

a
$$\sqrt{3} + \sqrt{48}$$

a
$$\sqrt{3}+\sqrt{48}$$
 b $\sqrt{180}+\sqrt{5}$ c $\sqrt{45}+\sqrt{80}$ d $\sqrt{245}-\sqrt{5}$

c
$$\sqrt{45} + \sqrt{80}$$

d
$$\sqrt{245} - \sqrt{5}$$

e
$$\sqrt{48} - \sqrt{12}$$

f
$$3\sqrt{27} + 2\sqrt{12}$$

e
$$\sqrt{48} - \sqrt{12}$$
 f $3\sqrt{27} + 2\sqrt{12}$ g $3\sqrt{192} - 2\sqrt{108}$ h $\frac{3\sqrt{2}}{2} + \frac{\sqrt{2}}{6}$.

$$h \frac{3\sqrt{2}}{2} + \frac{\sqrt{2}}{6}$$
.

Multiplication

1 Are the following statements true or false?

a
$$\sqrt{8^2} = (\sqrt{8})^2$$

b
$$\sqrt{5^2} = \left(\sqrt{5 \times 5}\right)^2$$

c
$$\sqrt{2^2} = \sqrt{2+2}$$

d
$$\sqrt{8^2} = \sqrt{16} \times \sqrt{4}$$

2 Complete the following statements by following the example:

$$\sqrt{9\times4}=\sqrt{9}\times\sqrt{4}=3\times2=6$$

a
$$\sqrt{36 \times 25} = \sqrt{\square} \times \sqrt{\square} = \square \times \square = \square$$
 b $\sqrt{9 \times 11} = \sqrt{\square} \times \sqrt{\square} = \square \sqrt{\square}$

$$\mathbf{b} \quad \sqrt{9 \times 11} = \sqrt{\square} \times \sqrt{\square} = \square \sqrt{\square}$$

c
$$\sqrt{49 \times 5} = \sqrt{\square} \times \sqrt{\square} = \square \sqrt{\square}$$
 d $\sqrt{64 \times 3} = \sqrt{\square} \times \sqrt{\square} = \square \sqrt{\square}$

d
$$\sqrt{64 \times 3} = \sqrt{\square} \times \sqrt{\square} = \square \sqrt{\square}$$

3 Simplify the following:

a
$$\sqrt{75}$$

a
$$\sqrt{75}$$
 b $\sqrt{19} \times \sqrt{17}$ c $\left(6\sqrt{8}\right)^2$

$$(6\sqrt{8})^2$$

d
$$(6\sqrt{3})^2$$

4 Simplify the following:

a
$$\sqrt{5} \times \sqrt{7}$$

b
$$8 \times 10\sqrt{5}$$

c
$$\sqrt{7} \times \sqrt{3} \times \sqrt{1}$$

d
$$\sqrt{55} \times \sqrt{11}$$

e
$$4\sqrt{11} \times 5$$

g
$$7\sqrt{22} \times \sqrt{2}$$

h
$$\sqrt{180} \times \sqrt{48}$$

i
$$8\sqrt{15} \times 8\sqrt{5}$$
 j $5\sqrt{17} \times 8\sqrt{3}$

j
$$5\sqrt{17} \times 8\sqrt{3}$$

k
$$17\sqrt{35} \times 4\sqrt{5}$$
 I $8\sqrt{51} \times 9\sqrt{3}$

$$1 8\sqrt{51} \times 9\sqrt{3}$$

5 Simplify the following:

a
$$\sqrt{11} \left(\sqrt{7} + 4 \right)$$

b
$$\sqrt{7} (3 + \sqrt{3})$$

c
$$\sqrt{2} (\sqrt{11} - 6)$$

$$\text{a} \quad \sqrt{11} \left(\sqrt{7} + 4 \right) \qquad \qquad \text{b} \quad \sqrt{7} \left(3 + \sqrt{3} \right) \qquad \qquad \text{c} \quad \sqrt{2} \left(\sqrt{11} - 6 \right) \qquad \qquad \text{d} \quad 3 \sqrt{3} \left(\sqrt{13} - 5 \right)$$

$$\text{e} \quad \sqrt{3} \left(\sqrt{11} + \sqrt{13} \right) \quad \text{f} \quad 4\sqrt{7} \left(\sqrt{2} - \sqrt{11} \right) \quad \text{g} \ 3\sqrt{5} \left(\sqrt{55} + \sqrt{11} \right) \quad \text{h} \quad 8\sqrt{2} \left(\sqrt{3} - 3\sqrt{7} \right)$$

f
$$4\sqrt{7} (\sqrt{2} - \sqrt{11})$$

g
$$3\sqrt{5}\left(\sqrt{55}+\sqrt{11}\right)$$

h
$$8\sqrt{2}(\sqrt{3}-3\sqrt{7})$$

6 Simplify the following:

a
$$\sqrt{15} \div \sqrt{5}$$

b
$$\sqrt{55} \div \sqrt{5}$$

a
$$\sqrt{15} \div \sqrt{5}$$
 b $\sqrt{55} \div \sqrt{5}$ c $\sqrt{51} \div \sqrt{17}$

d
$$\sqrt{21} \div \sqrt{3}$$

e
$$\sqrt{91} \div \sqrt{7}$$

f
$$40\sqrt{7} \div 8$$

$$g \quad 10\sqrt{55} \div \sqrt{11}$$

h
$$15\sqrt{22} \div \sqrt{11}$$

i
$$4\sqrt{35} \div 2\sqrt{5}$$
 j $\sqrt{27} \div \sqrt{3}$

$$\sqrt{27} \div \sqrt{3}$$

$$\mathbf{k} \quad 3\sqrt{20} \div \sqrt{5}$$

$$1 \quad 5\sqrt{8} \div \sqrt{2}$$

m
$$40\sqrt{96} \div 10\sqrt{6}$$
 n $50\sqrt{24} \div 10\sqrt{6}$ o $\sqrt{25} \div \sqrt{81}$

n
$$50\sqrt{24} \div 10\sqrt{6}$$

o
$$\sqrt{25} \div \sqrt{81}$$

p
$$\sqrt{162} \div \sqrt{8}$$

7 Simplify the following:

a
$$\sqrt{\frac{28}{7}}$$

b
$$\sqrt{\frac{9}{45}}$$

$$\sqrt{\frac{64}{4}}$$

d
$$\sqrt{\frac{48}{144}}$$

e
$$\frac{\sqrt{12}}{\sqrt{36}}$$

f
$$\frac{\sqrt{56}}{\sqrt{14}}$$

$$\sqrt{\frac{64}{4}}$$

h
$$\frac{\sqrt{72}}{\sqrt{32}}$$

Binomial products

1 Expand the following brackets:

a
$$(5-\sqrt{13})(5+\sqrt{13})$$

c
$$(8\sqrt{5}-6)(8\sqrt{5}+6)$$

e
$$(7\sqrt{11} - \sqrt{7})(7\sqrt{11} + \sqrt{7})$$

b
$$(\sqrt{11}-11)(\sqrt{11}+11)$$

d
$$\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)$$

f
$$(5\sqrt{3} + 3\sqrt{5})(5\sqrt{3} - 3\sqrt{5})$$

2 Expand the following brackets:

a
$$(\sqrt{3}-13)^2$$

$$(3\sqrt{3}+8)^2$$

e
$$(3\sqrt{2} + 4\sqrt{13})^2$$

b
$$(\sqrt{7} + \sqrt{3})^2$$

d
$$(4\sqrt{2} - \sqrt{13})^2$$

f
$$(5\sqrt{2}-\sqrt{32})^2$$

3 Expand the following brackets:

a
$$(\sqrt{11}+10)(\sqrt{3}-9)$$

c
$$(11\sqrt{2}-\sqrt{7})(13\sqrt{3}-\sqrt{5})$$

e
$$(17\sqrt{3} - 8\sqrt{8})(\sqrt{24} - \sqrt{5})$$

b
$$(\sqrt{11} - \sqrt{13})(\sqrt{7} - \sqrt{2})$$

d
$$(4\sqrt{2}-\sqrt{7})(3\sqrt{3}+\sqrt{8})$$

f
$$(\sqrt{90} - 7\sqrt{7})(\sqrt{72} - 6\sqrt{5})$$

Equivalent expressions

4 Consider the following equation:

$$\left(3\sqrt{35} - 2\sqrt{7}\right)^2 = x - y\sqrt{5}$$

- Expand and simplify the left hand side of the equation.
- **b** State the values of x and y.
- 5 Consider the following equation:

$$\left(\sqrt{m}+n\right)^2 = 16 + 6\sqrt{7}$$

- a Expand and simplify the left hand side of the equation.
- **b** State the values of m and n.

Conjugates

Find the conjugate of each of the following:

a
$$5 + \sqrt{5}$$

b
$$6-\sqrt{v}$$

c
$$\sqrt{6} + \sqrt{3}$$

d
$$\sqrt{n}-\sqrt{5}$$

e
$$\sqrt{5} + y$$

e
$$\sqrt{5} + y$$
 f $2 - 9\sqrt{3}$

g
$$3+6\sqrt{8}$$

h
$$7 - 2\sqrt{9}$$

i
$$3\sqrt{7} + 4\sqrt{3}$$

j
$$9\sqrt{2}-3\sqrt{r}$$

k
$$4\sqrt{s} + 8\sqrt{t}$$

$$1 \quad 2\sqrt{w} - 9\sqrt{x}$$

Rationalise monomial denominators

3 Evaluate the following:

a
$$(\sqrt{3} + \sqrt{10}) \times (\sqrt{3} - \sqrt{10})$$

b
$$(\sqrt{3} + \sqrt{10}) \times (\sqrt{3} + \sqrt{10})$$

c
$$(-(\sqrt{3}+5)) \times \sqrt{3}$$

d
$$\left(\sqrt{5}+\sqrt{12}\right) imes\left(\sqrt{5}-\sqrt{12}\right)$$

e
$$(-2\sqrt{5} - \sqrt{12}) \times \sqrt{12}$$

f
$$(2\sqrt{5} - \sqrt{12}) \times (5\sqrt{5} - \sqrt{12})$$

4 Rationalise the denominator of the given expressions. Express your answer in simplest surd form:

a
$$\frac{1}{\sqrt{7}}$$

b
$$\frac{2}{\sqrt{6}}$$

c
$$\frac{3}{\sqrt{13}}$$

d
$$\frac{\sqrt{13}}{\sqrt{2}}$$

e
$$\frac{\sqrt{21}}{\sqrt{7}}$$

f
$$\frac{\sqrt{5}}{\sqrt{30}}$$

g
$$\frac{4\sqrt{30}}{\sqrt{6}}$$

h
$$\frac{11\sqrt{7}}{13\sqrt{3}}$$

$$i - \frac{6\sqrt{22}}{5\sqrt{11}}$$

$$-\frac{14\sqrt{10}}{6\sqrt{5}}$$

$$k = \frac{8\sqrt{32}}{20\sqrt{7}}$$

$$-\frac{15\sqrt{18}}{19\sqrt{8}}$$

5 Rationalise the denominator of the given expressions. Express your answer in simplest surd form:

a
$$\frac{\sqrt{5}+9}{\sqrt{7}}$$

$$\begin{array}{cc} \mathsf{b} & \frac{\sqrt{5}+3}{\sqrt{5}} \end{array}$$

$$\mathsf{c} \quad \frac{4-\sqrt{12}}{\sqrt{10}}$$

d
$$\frac{\sqrt{7}-3}{\sqrt{3}}$$

e
$$\frac{10\sqrt{2}+7}{\sqrt{11}}$$

$$\frac{15-2\sqrt{3}}{\sqrt{2}}$$

g
$$\frac{3\sqrt{5}+12}{\sqrt{20}}$$

h
$$\frac{6\sqrt{14}-11}{\sqrt{5}}$$

$$i \quad \frac{\sqrt{39} + \sqrt{6}}{\sqrt{3}}$$

$$j = \frac{\sqrt{7} - \sqrt{13}}{\sqrt{15}}$$

$$\frac{1}{\sqrt{12}}$$
 k $\frac{6\sqrt{2} + 10\sqrt{10}}{\sqrt{12}}$

k
$$\frac{6\sqrt{2} + 10\sqrt{10}}{\sqrt{12}}$$
 I $\frac{-20\sqrt{5} + 7\sqrt{11}}{\sqrt{6}}$

6 Rationalise the denominator of each fraction and then find the sum. Express your answer in simplest surd form:

a
$$\frac{1}{\sqrt{3}} + \frac{3}{\sqrt{3}}$$

$$\frac{b}{\sqrt{7}} + \frac{1}{\sqrt{7}}$$

c
$$\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}}$$

d
$$\frac{1}{\sqrt{5}} - \frac{1}{\sqrt{10}}$$

e
$$\frac{2}{\sqrt{14}} + \frac{4}{\sqrt{7}}$$

$$f = \frac{6}{\sqrt{3}} = \frac{3}{\sqrt{6}}$$

g
$$\frac{3}{\sqrt{11}} - \frac{5}{\sqrt{22}}$$
 h $\frac{\sqrt{2}}{\sqrt{7}} + \frac{\sqrt{7}}{\sqrt{2}}$

$$h \quad \frac{\sqrt{2}}{\sqrt{7}} + \frac{\sqrt{7}}{\sqrt{2}}$$

Index laws

1 Write the following expressions in simplest index form:

a
$$2^{12} imes 2^9$$

b
$$2^8 imes 11^8$$

$$\text{c} \quad 11^{12} \div 11^8 \qquad \qquad \text{d} \quad 21^5 \div 3^5$$

d
$$21^5 \div 3^5$$

$$e (5^{12})^4$$

f
$$15^{17} \div 15^8 \div 15^8$$

g
$$(23^8)^9 \times 23^7$$

a
$$2^{12} \times 2^{9}$$
 b $2^{8} \times 11^{8}$ c $11^{12} \div 11^{8}$ d $21^{9} \div 3^{8}$ e $\left(5^{12}\right)^{4}$ f $15^{17} \div 15^{8} \div 15^{5}$ g $\left(23^{8}\right)^{9} \times 23^{7}$ h $\frac{\left(17^{5}\right)^{8}}{17^{32}}$

$$i = \frac{19^9 \times 19^4}{19^8}$$

$$j = \frac{12^6}{12^4} \times 12^5$$

$$(13^5)^2 \times 13^3$$

3 Evaluate the following expressions:

a
$$6^5 imes 6^3$$

b
$$7^3 \times 3^3$$

c
$$4^8 \div 4^3$$

d
$$(5^4)^2$$

$$\textbf{e} \quad 35^5 \div 5^5 \qquad \qquad \textbf{f} \quad 2^4 \times 4^4$$

f
$$2^4 \times 4^4$$

$${\rm g} \quad 11^{18} \div 11^9 \div 11^7 \qquad {\rm h} \quad \left(3^3\right)^2$$

h
$$(3^3)^2$$

i
$$\frac{6^5 \times 6^9}{6^{12}}$$

j
$$7^{27} \div 7^{30} \div 7^3$$

j
$$7^{27} \div 7^{30} \div 7^3$$
 k $\frac{12^{10} \times 12^4}{12^{11}}$ l $\frac{\left(6^8\right)^6}{6^{46}}$

$$\frac{\left(6^{8}\right)^{6}}{6^{46}}$$

Negative bases

4 Write the following expressions in simplest index form:

$$\mathbf{a} \quad \left(-11\right)^{10} \times \left(-11\right)^3$$

b
$$(-7)^8 \times 3^8$$

c
$$(-5)^2 \times 3^2$$

d
$$(-3)^{12} \div (-3)^5$$

$$(-12)^{20} \div (-12)^{19}$$

f
$$(-30)^{50} \div (-30)^{47}$$

$$g (-48)^3 \div (-6)^3$$

h
$$(-33)^{11} \div (-3)^{11}$$

i
$$(-35)^5 \div 5^5$$

$$(-42)^2 \div 7^2$$

6 Evaluate the following expressions:

a
$$(-4)^{11} \div (-4)^7$$

$$\mathbf{a} \quad (-4)^{11} \div (-4)^7 \qquad \quad \mathbf{b} \quad (-2)^3 \times (-2)^3 \qquad \quad \mathbf{c} \quad (-3)^3 \times (-3)^2 \qquad \quad \mathbf{d} \quad 4^3 \times (-5)^3$$

c
$$(-3)^3 \times (-3)^2$$

d
$$4^3 \times (-5)^3$$

$$\mathsf{f} \quad 15^5 \div \left(-3\right)^5$$

g
$$2^3 \times (-3)^3$$

h
$$(-14)^{11} \div 2^1$$

i
$$(-7)^2 \times 5^2$$

$$j \quad (-9)^4 \times (-3)^4$$

$$\mathsf{i} \quad \left(-7\right)^2 \times 5^2 \qquad \qquad \mathsf{j} \quad \left(-9\right)^4 \times \left(-3\right)^4 \qquad \quad \mathsf{k} \quad \left(-100\right)^6 \div 50^6 \qquad \quad \mathsf{I} \quad 60^3 \div \left(-3\right)^3$$

$$1 \quad 60^3 \div (-3)^3$$

Fractional bases

7 Write the following in simplest index form:

a
$$(\frac{1}{3})^4$$

b
$$(\frac{3}{8})^3$$

$$(\frac{4}{16})^8$$

$$(\frac{15}{6})^2$$

$$(\frac{10}{33})^5$$

$$(\frac{2}{35})^6$$

$$(\frac{5}{18})^3$$

h
$$(\frac{29}{41})^7$$

$$(\frac{11}{13})^9$$

$$(\frac{20}{3})^2$$

$$(\frac{17}{4})^4$$

$$(\frac{31}{50})^5$$

2 Evaluate the following expressions:

a
$$6^{\circ}$$

$$\text{b} \quad 3^3 \times 3^0$$

c
$$7^2 \div 7^2$$

d
$$(6 \times 19)^0$$

$$(-3)^0$$

$$\mathsf{f} - 4^0$$

$$(\frac{2}{3})^0$$

$$\text{h} \quad 7 \left(14 \times 18\right)^0$$

Negative indices

- 4 Consider the following expressions:
 - i Identify the base.

ii Identify the power.

a
$$10^{-7}$$

$$b 2^{-4}$$

$$c 13^{-10}$$

$$\mathsf{d} \quad (-5)^{-8}$$

5 Complete the following tables:

а

2^5	2^4	2^3	2^2	2^1	2^0	2^{-1}
32	16					

b

10^5	10^{4}	10^{3}	10^2	10^{1}	10^{0}	10^{-1}
100 000	10 000					

6 Express the following expressions with a positive index:

$$6^{-10}$$

$$(-9)^{-7}$$

$$d 9^{-1}$$

$$e 17^{-6}$$

$$\mathsf{f}$$
 55^{-1}

$$\mathbf{g} \quad \left(-12\right)^{-8}$$

$$h - 45^{-5}$$

$$i - 8^{-11}$$

$$\mathbf{j} \quad (-20)^{-3}$$

$$k - 7^{-6}$$

$$\left[-5\right] ^{-1}$$

7 Express the following expressions with a negative index:

a
$$\frac{1}{3}$$

b
$$\frac{1}{37}$$

$$c \frac{1}{5}$$

d
$$\frac{1}{4^7}$$

$$\mathbf{e} \quad \frac{1}{-15^3}$$

$$f = \frac{1}{10^5}$$

g
$$\frac{1}{(-24)^{10}}$$

$$h \quad \frac{1}{25^3}$$

$$\frac{1}{13^{11}}$$

$$j = \frac{1}{7^8}$$

$$\mathbf{k} \quad \frac{1}{16^{12}}$$

$$\mathsf{I} - \frac{1}{\left(-45\right)^7}$$

Scientific notation

1 Express the following numbers as basic numerals:

a
$$2 \times 10^7$$

b
$$4.13 \times 10^4$$

c
$$9 imes 10^{-3}$$

$$\text{d} \quad 8.97 \times 10^5$$

e
$$5.03 imes 10^5$$

$$\mathsf{f} = 3.014 imes 10^3$$

g
$$8 \times 10^6$$

$$h \quad 1.3008 \times 10^7$$

2 Express the following numbers in scientific notation:

$$\frac{1}{10000}$$

$$f = \frac{3}{100\,000}$$

$$\frac{92}{1000}$$

4 Express the following numbers as decimals:

a
$$8.29 \times 10^{0}$$

b
$$7 \times 10^{-3}$$

b
$$7 \times 10^{-3}$$
 c 5.28×10^{-2}

d
$$4.7 \times 10^{-6}$$

e
$$2.13 \times 10^{-7}$$

f
$$3.62 imes 10^{-4}$$

g
$$6.4 imes 10^{-5}$$

h
$$9.72 imes 10^{-2}$$

Scientific notation and calculators

1 Write the output on your calculator when you enter the following:

a
$$1.6 imes 10^6$$

b
$$1.8 imes 10^{-4}$$

c
$$2.7 imes 10^{-2}$$

d
$$3.32 \times 10^5$$

e
$$7.45 imes 10^{-7}$$

$$\text{f} \quad 6.2 \times 10^3$$

g
$$4.35 imes 10^8$$

$$\text{h} \quad 8.16 \times 10^{-5}$$

2 Write the following in scientific notation:

a
$$254$$

$$d = 0.000314$$

3 Find the value of the following in scientific notation:

a
$$82.97 \times 7.1 \times 10^4$$

$$\text{b} \quad 81\,000^2 \times 4\,100\,000$$

c
$$3.808 \times 10^{15} \div (5.6 \times 10^8)$$

d
$$\left(8.3\times10^{10}\right)\times\left(7.9\times10^{6}\right)$$

Positive fractional indices

- 1 Write the following in surd form:
 - a $12^{\frac{1}{2}}$
- b $15^{\frac{1}{2}}$
- c $7^{\frac{1}{3}}$
- d 35¹/₄

- $e^{21^{\frac{1}{3}}}$
- f 31 ¹/₆
- a $10^{\frac{1}{5}}$
- h $24^{\frac{1}{2}}$

- 2 For each of the following expressions:
 - i Write in surd form.
 - b $64^{\frac{1}{2}}$
- ii Evaluate the expression.

- a $36\frac{1}{2}$
- c $81^{\frac{1}{2}}$
- d 25½

- $e^{49^{\frac{1}{2}}}$
- f $100^{\frac{1}{2}}$
- $q 121^{\frac{1}{2}}$
- h $256^{\frac{1}{2}}$

- 7 Evaluate:
 - a $1000^{\frac{1}{3}}$
- b $64^{\frac{1}{3}}$
- c $256^{\frac{1}{4}}$
- d $32^{\frac{1}{5}}$

- $e^{64\frac{1}{6}}$
- f $1^{\frac{1}{6}}$
- $g = 27^{\frac{1}{3}}$
- h $16^{\frac{1}{4}}$

- $64^{\frac{1}{3}}$
- j $125^{\frac{1}{3}}$
- $k = 128^{\frac{1}{7}}$
- $1 216^{\frac{1}{3}}$

- 8 Write each of the following with a fractional index:
 - a $\sqrt[3]{5}$
- b $\sqrt[8]{23}$
- $c \sqrt[6]{6}$
- d $\sqrt[3]{10}$

- e $\sqrt[4]{15}$
- f √√18
- q $\sqrt[5]{31}$
- h ⁸√57

- 9 Write each of the following with a fractional index:
- a $\left(\sqrt[8]{19}\right)^7$ b $\left(\sqrt[3]{7}\right)^8$ c $\left(\sqrt[5]{12}\right)^6$
- d $\left(\sqrt[6]{45}\right)^5$

- e $\sqrt[4]{5^3}$
- f $\sqrt[7]{13^4}$
- $q \sqrt[9]{21^5}$
- h $\sqrt[5]{11^{12}}$

- 10 Write the following in surd form:
 - a 19⁵
- b $7^{\frac{3}{2}}$
- c 11⁶
- $\mathsf{d} \hspace{0.1cm} 24^{\frac{8}{7}}$

Negative fractional indices

- 13 For each of the following expressions:
 - Write in surd form.

ii Evaluate the expression.

- a $49^{-\frac{1}{2}}$
- b $121^{-\frac{1}{2}}$
- c $81^{-\frac{1}{4}}$
- d $8^{-\frac{1}{3}}$

- $e^{64^{-\frac{1}{3}}}$
- f $128^{-\frac{1}{7}}$
- a $125^{-rac{1}{3}}$
- h $256^{-\frac{1}{4}}$

1 Solve for x in each of the following.

a i
$$5^x = 25$$

b i
$$2^x = \frac{1}{4}$$

c i
$$9^x = 27$$

ii
$$2^x = 8$$

ii
$$5^x = \frac{1}{125}$$

ii
$$4^x = 8$$

2 Solve for x in each of the following.

a
$$3^x = 27$$

b
$$2^x = 8$$

$$6^x = 36$$

d
$$9^x = 81$$

e
$$5^x = 125$$

$$4^x = 64$$

$$3^x = 81$$

h
$$6^x = 216$$

$$5^x = 625$$

$$2^x = 32$$

$$k 10^x = 10000$$

$$1 7^x = 343$$

3 Solve for x in each of the following.

a
$$7^x = \frac{1}{49}$$

b
$$9^x = \frac{1}{81}$$

c
$$11^x = \frac{1}{121}$$

d
$$4^x = \frac{1}{256}$$

e
$$3^x = \frac{1}{243}$$

$$f \quad 5^{-x} = \frac{1}{125}$$

g
$$3^{-x} = \frac{1}{9}$$

h
$$2^{-x} = \frac{1}{64}$$

i
$$7^{-x} = \frac{1}{343}$$

4 Solve for x in each of the following.

a
$$9^x = 27$$

b
$$8^x = 16$$

c
$$25^x = 125$$

d
$$16^x = 64$$

e
$$81^x = 9$$

$$f 216^x = 6$$

g
$$32^x = 2$$

h
$$10000^x = 10$$

$$7^{-x} = 49$$

$$j 4^{-x} = 256$$

$$k 16^{-x} = 64$$

$$1 25^{-x} = 125$$

6 Solve for x in each of the following.

a
$$2^{x+1} = 8^x$$

b
$$3^{2x+1} = 27^x$$

$$7^{x+9} = 49^{2x}$$

d
$$5^{x+3} = 25^{2x}$$

$$6^{2x+3} = 216^{2x}$$

$$f \quad 9^{x+12} = 81^{x+5}$$

$$27^{x+3} = 9^{2x}$$

h
$$25^{x+3} = 125^{3x}$$

i
$$32^{2x+3} = 128^{2x}$$

I $49^{2x-3} = 343^{2x-1}$

$$j \quad 27^{2x+3} = 9^{2x-1}$$

$$8^{x-1} = 27^{2x-6}$$

Complete this table and graph all three relations on the same set of axes before discussing the points below.

х	-3	-2	-1	0	1	2	3
$y_1=2^x$	1/8			1		4	
$y_2 = -2^x$							
$y_3 = 2^{-x}$							

- Discuss the shape of each graph.
- · Where does each graph cut the y-axis?
- · Do the graphs have x-intercepts? Why not?
- What is the one feature they all have in common?

BUILDING UNDERSTANDING

- Consider the exponential rule y = 3x.
 - a Complete this table.

X	-2	-1	0	1	2
у		1 3	1		

b Plot the points in the table to form the graph of $y = 3^x$.

Sketch the graph of the following on the same set of axes, labelling the y-intercept and the point where x = 1.

a
$$y = 2^x$$

$$b \quad y = 6^x$$

6 a Find the coordinates on the graph of $y = 3^x$, where:

$$\mathbf{i} \quad x = 0$$

ii
$$x = -1$$

iii
$$y = 1$$

iv
$$y=9$$

Imagine you have an antique car valued at \$100 000 and you hope that it will increase in value at 10% p.a. The 10% increase is to be added to the value of the car each year.

· Complete this table.

Yea	ar	0	1	2	3
Val	lue (\$)	100 000	100 000 × 1.1 =	100 000 × 1.1 ×	=

BUILDING UNDERSTANDING

- 1 An antique ring is purchased for \$1000 and is expected to grow in value by 5% per year. Round your answers to the nearest cent.
 - a Find the increase in value in the first year.
 - b Find the value of the ring at the end of the first year.
 - C Find the increase in value in the second year.
 - d Find the increase in value in the third year.
 - e Find the value of the ring at the end of the fifth year.
- 2 The mass of a limestone 5 kg rock exposed to the weather is decreasing at a rate of 2% per annum.
 - a Find the mass of the rock at the end of the first year.
 - **b** State the missing numbers for the mass of the rock (M kg) after t years.

$$M = 5(1 - \underline{\hspace{1cm}})^t$$
$$= 5 \times \underline{\hspace{1cm}}^t$$

- C Use your rule to calculate the mass of the rock after 5 years, correct to two decimal places.
- 3 Decide if the following represent exponential growth or exponential decay.

a
$$A = 1000 \times 1.3^{t}$$

b
$$A = 350 \times 0.9^t$$

$$P = P_0 \left(1 + \frac{3}{100} \right)^t$$

d
$$T = T_0 \left(1 - \frac{7}{100} \right)^t$$

- 1 Form exponential rules for the following situations.
 - a Lara has a necklace that is valued at \$6000 and it is expected to increase in value by 12% per annum.
 - b A village's initial population of 2000 is decreasing by 8% per year.
- 3 The value of a house purchased for \$500000 is expected to grow by 10% per year. Let \$A be the value of the house after t years.
 - a Write the missing number in the rule connecting A and t.

- b Use your rule to find the expected value of the house after the following number of years. Round your answer to the nearest cent.
 - i 3 years

ii 10 years

iii 20 years

- 1 Consider \$500 invested at 10% p.a., compounded annually.
 - a How much interest is earned in the first year?
 - b What is the balance of the account once the first year's interest is added?
 - C How much interest is earned in the second year?
 - d What is the balance of the account at the end of the second year?
 - Use your calculator to work out 500(1.1)².
- 2 By considering an investment of \$4000 at 5% p.a., compounded annually, calculate the missing values in the table below.

Year	Amount (\$)	Interest (\$)	New amount (\$)
1	4000	200	4200
2	4200		
3			
4			
5			

- 4 State the missing numbers.
 - a \$700 invested at 8% p.a., compounded annually for 2 years.

$$A = (1.08)^{\Box}$$

b \$1000 invested at 15% p.a., compounded annually for 6 years.

$$A = 1000 ()^6$$

c \$850 invested at 6% p.a., compounded annually for 4 years.

$$A = 850 \left(\square \right)^{\square}$$

- 1 Determine the amount after 4 years if \$5000 is compounded annually at 6%. Round to the nearest cent.
- 2 Determine the amount after 5 years if:
 - **a** \$4000 is compounded annually at 5%
- **b** \$8000 is compounded annually at 8.35%
- c \$6500 is compounded annually at 16%
- d \$6500 is compounded annually at 8%.
- 3 Determine the amount if \$100000 is compounded annually at 6% for:
 - a 1 year

b 2 years

c 3 years

d 5 years

e 10 years

- f 15 years.
- 4 Calculate the number of periods (n) and the rates of interest (r) offered per period for the following. (Round the interest rate to three decimal places where necessary.)
 - a 6% p.a. over 3 years, paid bi-annually
- b 12% p.a. over 5 years, paid monthly
- c 4.5% p.a. over 2 years, paid fortnightly
- d 10.5% p.a. over 3.5 years, paid quarterly

- Which is better on an investment of \$100 for 2 years:

 A simple interest calculated at 20% p.a. or
 B compound interest calculated at 20% p.a. and paid annually?

 State the values of P, r and n for an investment of \$750 at 7.5% p.a., compounded annually for 5 years.
 State the values of I, P, r and t for an investment of \$300 at 3% p.a. simple interest over 300 months.
 Use the simple interest formula I = Prt/100 to find the simple interest on an investment of \$2000 at 4% p.a. over 3 years.
 - 1 Find the total amount of the following investments, using technology.
 - a \$7000 at 4% p.a., compounded annually for 5 years
 - **b** \$7000 at 4% p.a., simple interest for 5 years
 - 2 a Find the total amount of the following investments, using technology.
 - \$6000 at 6% p.a., compounded annually for 3 years
 - ii \$6000 at 3% p.a., compounded annually for 5 years
 - iii \$6000 at 3.4% p.a., compounded annually for 4 years
 - iv \$6000 at 10% p.a., compounded annually for 2 years
 - v \$6000 at 5.7% p.a., compounded annually for 5 years
 - b Which of the above yields the most interest?
 - 3 a Find the total amount of the following investments, using technology where possible.
 - i \$6000 at 6% p.a. simple interest for 3 years
 - ii \$6000 at 3% p.a. simple interest for 6 years
 - iii \$6000 at 3.4% p.a. simple interest for 7 years
 - iv \$6000 at 10% p.a. simple interest for 2 years
 - v \$6000 at 5.7% p.a. simple interest for 5 years
 - b Which of the above yields the most interest?
 - 4 a Determine the total simple and compound interest accumulated in the following cases.
 - i \$4000 at 6% p.a. payable annually for:
 - I 1 year II 2 years
- III 5 years
- IV 10 years.

- ii \$4000 at 6% p.a. payable bi-annually for:
 - I 1 year
- II 2 years
- III 5 years
- IV 10 years.