Glossary

A

Acceleration [p. 642] the rate of change of a particle's velocity with respect to time

Acceleration, average [p. 642] The average acceleration of a particle for the time interval $[t_1, t_2]$ is given by $\frac{v_2 - v_1}{t_2 - t_1}$, where v_2 is the velocity at time t_2 and v_1 is the velocity at time t_1 .

Acceleration, instantaneous [p. 642]

$$a = \frac{dv}{dt}$$

Addition rule for choices [p. 364] To determine the total number of choices from disjoint alternatives, simply add up the number of choices available for each alternative.

Addition rule for probability [p. 324] The probability of *A* or *B* or both occurring is given by $Pr(A \cup B) = Pr(A) + Pr(B) - Pr(A \cap B)$

Algorithm [p. 735] a finite, unambiguous sequence of instructions for performing a specific task

Amplitude of circular functions [p. 487]

The distance between the mean position and the maximum position is called the amplitude. The graph of $y = \sin x$ has an amplitude of 1.

Antiderivative [p. 595] To find the general antiderivative of f(x): If F'(x) = f(x), then $\int f(x) dx = F(x) + c$

where c is an arbitrary real number.

Antidifferentiation rules [pp. 596, 687]

$$\int x^n \, dx = \frac{x^{n+1}}{n+1} + c, \quad n \in \mathbb{Q} \setminus \{-1\}$$
$$= \int f(x) + g(x) \, dx = \int f(x) \, dx + \int g(x) \, dx$$
$$= \int k f(x) \, dx = k \int f(x) \, dx$$

Arrangements [p. 367] counted when order is important. The number of ways of selecting and arranging r objects from a total of n objects is

 $\frac{n!}{(n-r)!} = n \times (n-1) \times (n-2) \times \dots \times (n-r+1)$

Asymptote [pp. 138, 690] A straight line is an asymptote of the graph of a function y = f(x) if the graph of y = f(x) gets arbitrarily close to the straight line. An asymptote can be horizontal, vertical or oblique.

B

Binomial distribution [p. 397] The probability of observing *x* successes in *n* independent trials, each with probability of success p, is given by

$$Pr(X = x) = \binom{n}{x} p^{x} (1 - p)^{n-x}, \quad x = 0, 1, \dots, n$$

where $\binom{n}{x} = \frac{n!}{x! (n-x)!}$

Binomial experiment [p. 397]

- The experiment consists of a number, *n*, of identical trials.
- Each trial results in one of two outcomes, which are usually designated either a success, S, or a failure, F.
- The probability of success on a single trial, *p*, is constant for all trials.
- The trials are independent (so that the outcome of any trial is not affected by the outcome of any previous trial).

Bisection method [p. 253] A numerical method for solving polynomial equations. If the values of f(a) and f(b) have opposite signs, where a < b, then the equation f(x) = 0 has a solution in the interval [a, b]. The method is to bisect the interval and replace it with one half or the other.

ISBN 978-1-009-11045-7

© Michael Evans et al 2022

Photocopying is restricted under law and this material must not be transferred to another party.

C

Chain rule [p. 679] The chain rule can be used to differentiate a complicated function y = f(x) by transforming it into two simpler functions, which are 'chained' together:

 $x \xrightarrow{h} u \xrightarrow{g} y$

Using Leibniz notation, the chain rule is stated as

 $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$

Circle, general equation [p. 148] The general equation for a circle is

 $(x-h)^2 + (y-k)^2 = r^2$

where the centre of the circle is the point (h, k) and the radius is r.

Circular functions [pp. 478, 480] the sine, cosine and tangent functions

θ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
sin θ	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
cos θ	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
tan θ	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	undef

Circular functions, exact values [p. 484]

Coefficient [p. 206] the number that multiplies a power of x in a polynomial. E.g. for $2x^5 - 7x^2 + 4$, the coefficient of x^2 is -7.

Combinations [p. 373] see selections

Complement, A' [pp. 309, 322] the set of outcomes that are in the sample space, ε , but not in *A*. The probability of the event *A'* is Pr(A') = 1 - Pr(A)

Complementary relationships [p. 503]

$$\sin\left(\frac{\pi}{2} - \theta\right) = \cos\theta \qquad \sin\left(\frac{\pi}{2} + \theta\right) = \cos\theta$$
$$\cos\left(\frac{\pi}{2} - \theta\right) = \sin\theta \qquad \cos\left(\frac{\pi}{2} + \theta\right) = -\sin\theta$$

Conditional probability [p. 331] the probability of an event *A* occurring when it is known that some event *B* has occurred, given by

$$\Pr(A \mid B) = \frac{\Pr(A \cap B)}{\Pr(B)}$$

Constant function [p. 177] a function $f: \mathbb{R} \to \mathbb{R}, f(x) = a$

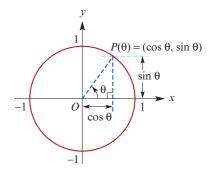
Continuous function [p. 604] A function f is continuous at the point x = a if the following conditions are met:

- f(x) is defined at x = a
- $\lim_{x \to a} f(x) = f(a)$

We say that a function is continuous everywhere if it is continuous for all real numbers.

Coordinates [p. 32] an ordered pair of numbers that identifies a point in the Cartesian plane; the first number identifies the position with respect to the *x*-axis, and the second number identifies the position with respect to the *y*-axis

Cosine function [p. 478] cosine θ is defined as the *x*-coordinate of the point *P* on the unit circle where *OP* forms an angle of θ radians with the positive direction of the *x*-axis.



Cubic function [p. 205] A polynomial of degree 3 is called a cubic, and is a function *f* with rule $f(x) = ax^3 + bx^2 + cx + d$, where $a \neq 0$.

D

Definite integral [pp. 703, 708] $\int_{a}^{b} f(x) dx$ denotes the signed area enclosed by the graph of y = f(x) between x = a and x = b. *See also* fundamental theorem of calculus

Degree of a polynomial [pp. 76, 206] given by the highest power of *x* with a non-zero coefficient. For example, the polynomial $2x^5 - 7x^2 + 4$ has degree 5.

Dependent trials or events [p. 393] The probability of one event is influenced by the outcome of another event. *See* sampling without replacement

Derivative function [p. 571] also called the gradient function. The derivative f' of a function f is given by

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

ISBN 978-1-009-11045-7 © Michael Evans et al 2022 Photocopying is restricted under law and this material must not be transferred to another party. **Desk check** [p. 739] To carry out a desk check of an algorithm, you carefully follow the algorithm step by step, and construct a table of the values of all the variables after each step.

Difference of two cubes [p. 222] $x^{3} - y^{3} = (x - y)(x^{2} + xy + y^{2})$

Difference of two squares [pp. 79, 83]

 $x^2 - y^2 = (x - y)(x + y)$

Differentiable [p. 607] A function *f* is said to be differentiable at the point x = a if $\lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$ exists.

Differentiation rules [pp. 576, 684]

- Power: $f(x) = x^n$, $f'(x) = nx^{n-1}$, for $n \in \mathbb{Q} \setminus \{0\}$
- Constant: f(x) = c, f'(x) = 0
- Sum: f(x) = g(x) + h(x), f'(x) = g'(x) + h'(x)
- Multiple: f(x) = k g(x), f'(x) = k g'(x)

Dilation from the *x***-axis** [p. 270] A dilation of factor *b* from the *x*-axis is described by the rule $(x, y) \rightarrow (x, by)$. The curve with equation y = f(x) is mapped to the curve with equation y = bf(x).

Dilation from the *y***-axis** [p. 270] A dilation of factor *a* from the *y*-axis is described by the rule $(x, y) \rightarrow (ax, y)$. The curve with equation y = f(x) is mapped to the curve with equation $y = f(\frac{x}{a})$.

Discontinuity [p. 604] A function is said to be discontinuous at a point if it is not continuous at that point.

Discrete random variable [p. 387] a random variable *X* which can take only a countable number of values, usually whole numbers

Discriminant, Δ **, of a quadratic** [p. 110]

the expression $b^2 - 4ac$, which is part of the quadratic formula. For the quadratic equation $ax^2 + bx + c = 0$:

- If $b^2 4ac > 0$, there are two solutions.
- If $b^2 4ac = 0$, there is one solution.
- If $b^2 4ac < 0$, there are no real solutions.

Disjoint sets [pp. 165, 323] If sets *A* and *B* have no elements in common, we say *A* and *B* are disjoint and write $A \cap B = \emptyset$.

Displacement [p. 640] The displacement of a particle moving in a straight line is defined as the change in position of the particle.

Distance between two points [p. 34] The distance between points $A(x_1, y_1)$ and $B(x_2, y_2)$ is $AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

Division of polynomials [p. 211] When we divide the polynomial P(x) by the polynomial D(x) we obtain two polynomials, Q(x) the quotient and R(x) the remainder, such that

P(x) = D(x)Q(x) + R(x)

and either R(x) = 0 or R(x) has degree less than D(x).

Domain [p. 169] the set of all the first coordinates of the ordered pairs in a relation

E

Element [p. 165] a member of a set.

- If x is an element of a set A, we write $x \in A$.
- If x is *not* an element of a set A, we write $x \notin A$.

Empty set, \emptyset [pp. 165, 322] the set that has no elements

Even function [p. 245] A function f is even if f(-x) = f(x). This means that the graph is symmetric about the *y*-axis.

Event [p. 305] a subset of the sample space. It may consist of a single outcome, or it may consist of several outcomes.

Exponential function [p. 424] a function $f(x) = ka^x$, where k is a non-zero constant and the base a is a positive real number other than 1

F

Factor [p. 211] a number or expression that divides another number or expression without remainder

Factor theorem [p. 218] If $\beta x + \alpha$ is a factor of a polynomial P(x), then $P\left(-\frac{\alpha}{\beta}\right) = 0$. Conversely, if $P\left(-\frac{\alpha}{\beta}\right) = 0$, then $\beta x + \alpha$ is a factor of P(x).

Factorise [p. 82] express as a product of factors

Formula [p. 22] an equation containing symbols that states a relationship between two or more quantities; e.g. $A = \ell w$ (area = length × width). The value of *A*, the subject of the formula, can be found by substituting given values of ℓ and *w*.

Function [p. 175] a relation such that for each *x*-value there is only one corresponding *y*-value. This means that, if (a, b) and (a, c) are ordered pairs of a function, then b = c.

Function, one-to-one [p. 183] different *x*-values map to different *y*-values. For example, the function y = x + 1 is one-to-one. But $y = x^2$ is not one-to-one, as both 2 and -2 map to 4.

Glossary 759

Fundamental theorem of calculus [p. 705]

If f is a continuous function on an interval [a, b], then

 $\int_{a}^{b} f(x) \, dx = F(b) - F(a)$

where *F* is any antiderivative of *f* and $\int_{a}^{b} f(x) dx$ is the definite integral from *a* to *b*.

G

Gradient function see derivative function

Gradient of a line [pp. 36, 37] The gradient is

 $m = \frac{\text{rise}}{\text{run}} = \frac{y_2 - y_1}{x_2 - x_1}$

where (x_1, y_1) and (x_2, y_2) are the coordinates of two points on the line. The gradient of a vertical line (parallel to the *y*-axis) is undefined.

Η

Horizontal-line test [p. 183] If a horizontal line can be drawn anywhere on the graph of a function and it only ever intersects the graph a maximum of once, then the function is *one-to-one*.

Hybrid function see piecewise-defined function

I

Implied domain see maximal domain

Indefinite integral see antiderivative

Independent events [p. 339] Two events *A* and *B* are independent if $Pr(A \cap B) = Pr(A) \times Pr(B)$ or Pr(A | B) = Pr(A) or Pr(B | A) = Pr(B)

Independent trials *see* sampling with replacement

Index laws [p. 425]

- To multiply two powers with the same base, add the indices: $a^m \times a^n = a^{m+n}$
- To divide two powers with the same base, subtract the indices: $a^m \div a^n = a^{m-n}$
- To raise a power to another power, multiply the indices: $(a^m)^n = a^{m \times n}$
- Rational indices: $a^{\frac{m}{n}} = (\sqrt[n]{a})^m$
- For base $a \in \mathbb{R}^+ \setminus \{1\}$, if $a^x = a^y$, then x = y.

Inequality [p. 19] a mathematical statement that contains an inequality symbol rather than an equals sign; e.g. 2x + 1 < 4

Integers [p. 166]
$$\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$$

Integration (definite), properties [p. 712]

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$
$$\int_{a}^{a} f(x) dx = 0$$
$$\int_{a}^{b} k f(x) dx = k \int_{a}^{b} f(x) dx$$
$$\int_{a}^{b} f(x) \pm g(x) dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx$$
$$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$$

Intersection of sets [pp. 165, 322] The intersection of two sets *A* and *B*, written $A \cap B$, is the set of all elements common to *A* and *B*.

Interval [p. 167] a subset of the real numbers of the form [a, b], [a, b), (a, ∞) , etc.

Inverse function [p. 191] For a one-to-one function *f*, the inverse function f^{-1} is defined by $f^{-1}(x) = y$ if f(y) = x, for $x \in \operatorname{ran} f, y \in \operatorname{dom} f$.

Irrational number [p. 166] a real number that is not rational; e.g. π and $\sqrt{2}$

Law of total probability [p. 334] In the case of two events, *A* and *B*:

Pr(A) = Pr(A | B) Pr(B) + Pr(A | B') Pr(B')

Leading term [p. 206] The leading term, $a_n x^n$, of a polynomial is the term of highest index among those terms with a non-zero coefficient. E.g. the leading term of $2x^5 - 7x^2 + 4$ is $2x^5$.

Limit [p. 601] The notation $\lim_{x\to a} f(x) = \ell$ says that the limit of f(x), as *x* approaches *a*, is ℓ . We can also say: 'As *x* approaches *a*, f(x) approaches ℓ .'

Limits, properties [p. 602]

- Sum: $\lim_{x \to a} (f(x) + g(x)) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$
- Multiple: $\lim_{x \to a} (kf(x)) = k \lim_{x \to a} f(x)$
- Product: $\lim_{x \to a} (f(x) g(x)) = \lim_{x \to a} f(x) \lim_{x \to a} g(x)$

Quotient:
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$$
, if $\lim_{x \to a} g(x) \neq 0$

Linear equation [p. 2] a polynomial equation of degree 1; e.g. 2x + 1 = 0

Linear function [p. 177] a function $f : \mathbb{R} \to \mathbb{R}$, f(x) = mx + c; e.g. f(x) = 3x + 1

Literal equation [p. 5] an equation for the variable *x* in which the coefficients of *x*, including the constants, are pronumerals; e.g. ax + b = c

Logarithm [p. 445] If $a \in \mathbb{R}^+ \setminus \{1\}$ and $x \in \mathbb{R}$, then the statements $a^x = y$ and $\log_a y = x$ are equivalent.

Logarithm laws [p. 445]

 $\log_a(mn) = \log_a m + \log_a n$

$$\log_a\left(\frac{m}{n}\right) = \log_a m - \log_a n$$

$$\log_a\left(\frac{1}{n}\right) = -\log_a n$$

- $\ \ \, \blacksquare \ \, \log_a(m^p) = p \log_a m$
- $\log_a 1 = 0 \text{ and } \log_a a = 1$

Logarithms, change of base [p. 450]

 $\log_a c = \frac{\log_b c}{\log_b a}$

Μ

Maximal domain [pp. 173, 184] When the rule for a relation is given and no domain is specified, then the domain taken is the largest for which the rule has meaning.

Maximum and minimum value [p. 635] For a continuous function f defined on an interval [a, b]:

- if *M* is a value of the function such that $f(x) \le M$ for all $x \in [a, b]$, then *M* is the *absolute maximum* value of the function
- if *N* is a value of the function such that $f(x) \ge N$ for all $x \in [a, b]$, then *N* is the *absolute minimum* value of the function.

Midpoint of a line segment [p. 33] If P(x, y) is the midpoint of the line segment joining $A(x_1, y_1)$ and $B(x_2, y_2)$, then

$$x = \frac{x_1 + x_2}{2}$$
 and $y = \frac{y_1 + y_2}{2}$

Monic polynomial [p. 206] a polynomial whose leading term has coefficient 1; e.g. $x^3 + 4x^2 + 5$

Multiplication rule for choices [p. 365] When sequential choices are involved, the total number of possibilities is found by multiplying the number of choices at each successive stage.

Multiplication rule for probability [p. 333] the probability of events *A* and *B* both occurring is $Pr(A \cap B) = Pr(A \mid B) \times Pr(B)$

Multi-stage experiment [p. 317] a random experiment that could be considered to take place in more than one stage; e.g. tossing two coins

Mutually exclusive [p. 323] Two events *A* and *B* are said to be mutually exclusive if they have no outcomes in common, i.e. if $A \cap B = \emptyset$.

Ν

n! [p. 369] The notation n! (read as '*n* factorial') is an abbreviation for the product of all the integers from *n* down to 1:

 $n! = n \times (n-1) \times (n-2) \times (n-3) \times \dots \times 2 \times 1$

Natural numbers [p. 166] $\mathbb{N} = \{1, 2, 3, 4, ...\}$

 ${}^{n}C_{r}$ [p. 374] the number of combinations of *n* objects in groups of size *r*:

 ${}^{n}C_{r} = \frac{n!}{r! (n-r)!}$ An alternative notation for ${}^{n}C_{r}$ is $\binom{n}{r}$.

Newton's method [p. 649] A method for finding successive approximations to a solution of an equation f(x) = 0 using the iterative formula $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$

Normal line, equation [p. 617] Let (x_1, y_1) be a point on the curve y = f(x). If f is differentiable at $x = x_1$, the equation of the normal at (x_1, y_1) is $y - y_1 = \frac{-1}{f'(x_1)}(x - x_1)$

Null factor theorem [p. 87] If ab = 0, then a = 0 or b = 0.

0

Odd function [p. 245] A function *f* is odd if f(-x) = -f(x). The graph of an odd function has rotational symmetry about the origin.

Ordered pair [p. 169] a pair of elements, denoted (x, y), where x is the first coordinate and y is the second coordinate

P

Period of a function [p. 487] A function f with domain \mathbb{R} is periodic if there is a positive constant a such that f(x + a) = f(x) for all x. The smallest such a is called the period of f. For example, the period of the sine function is 2π , as $\sin(x + 2\pi) = \sin x$.

Permutations [p. 367] see arrangements

Piecewise-defined function [p. 187] a function which has different rules for different subsets of its domain

Polynomial function [p. 206] A polynomial has a rule of the type

 $y = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0, \quad n \in \mathbb{N} \cup \{0\}$ where a_0, a_1, \dots, a_n are numbers called coefficients. **Position** [pp. 554, 639] For a particle moving in a straight line, the position of the particle relative to a point O on the line is determined by its distance from O and whether it is to the right or left of O. The direction to the right of O is positive.

Power function [p. 245] a function of the form $f(x) = x^r$, where *r* is a non-zero real number

Probability [p. 304] a numerical value assigned to the likelihood of an event occurring. If the event *A* is impossible, then Pr(A) = 0; if the event *A* is certain, then Pr(A) = 1; otherwise 0 < Pr(A) < 1.

Probability distribution [p. 388] a function, denoted p(x) or Pr(X = x), which assigns a probability to each value of a discrete random variable *X*

Probability table [p. 327] a table used for illustrating a probability problem diagrammatically

Pseudocode [pp. 735, 747] a notation for describing algorithms that is less formal than a programming language

Pythagorean identity [p. 504] $\cos^2 \theta + \sin^2 \theta = 1$

Q [p. 166] the set of all rational numbers

Quadratic formula [p. 106] The solutions of the quadratic equation $ax^2 + bx + c = 0$, where $a \neq 0$, are given by

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Quadratic function [p. 76] A quadratic has a rule of the form $y = ax^2 + bx + c$, where *a*, *b* and *c* are constants and $a \neq 0$.

Quadratic, turning point form [p. 91] The turning point form of a quadratic function is $y = a(x - h)^2 + k$, where (h, k) is the turning point.

Quartic function [p. 205] A polynomial of degree 4 is called a quartic, and is a function *f* with rule $f(x) = ax^4 + bx^3 + cx^2 + dx + e$, where $a \neq 0$.

R

ℝ⁺ [p. 167] { x : x > 0 }, positive real numbers ℝ⁻ [p. 167] { x : x < 0 }, negative real numbers ℝ \ {0} [p. 167] real numbers excluding 0 ℝ² [p. 266] { $(x, y) : x, y \in \mathbb{R}$ }; i.e. ℝ² is the set of all ordered pairs of real numbers **Radian** [p. 475] One radian (written 1^c) is the angle subtended at the centre of the unit circle by an arc of length 1 unit.

Random experiment [p. 305] an experiment, such as the rolling of a die, in which the outcome of a single trial is uncertain but observable

Random variable [p. 387] a variable that takes its value from the outcome of a random experiment; e.g. the number of heads observed when a coin is tossed three times

Range [p. 169] the set of all the second coordinates of the ordered pairs in a relation

Rational number [p. 166] a number that can be written as $\frac{p}{q}$, for some integers p and q with $q \neq 0$

Rational-root theorem [p. 220]

Let $P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ be a polynomial of degree *n* with all coefficients a_i integers. Let α and β be integers such that the highest common factor of α and β is 1. If $\beta x + \alpha$ is a factor of P(x), then β divides a_n and α divides a_0 .

Rectangular hyperbola [p. 138] The basic rectangular hyperbola has equation $y = \frac{1}{x}$.

Reflection in the *x***-axis** [p. 271] A reflection in the *x*-axis is described by the rule $(x, y) \rightarrow (x, -y)$. The curve with equation y = f(x) is mapped to the curve with equation y = -f(x).

Reflection in the y-axis [p. 271] A reflection in the *y*-axis is described by the rule $(x, y) \rightarrow (-x, y)$. The curve with equation y = f(x) is mapped to the curve with equation y = f(-x).

Relation [p. 169] a set of ordered pairs; e.g. { (x, y) : $y = x^2$ }

Remainder theorem [p. 216] When a polynomial P(x) is divided by $\beta x + \alpha$, the remainder is $P\left(-\frac{\alpha}{\beta}\right)$.

Repeated factor of a polynomial [p. 235] a factor that occurs more than once in the factorised form of a polynomial. For example, x - a is a repeated factor of $P(x) = (x - a)^3(x - b)$.

S

Sample space, ε [p. 305] the set of all possible outcomes for a random experiment

Sampling with replacement [p. 396] selecting individual objects sequentially from a group of objects, and replacing the selected object, so that the probability of obtaining a particular object does not change with each successive selection

Cambridge University Press

Sampling without replacement [p. 393]

selecting individual objects sequentially from a group of objects, and not replacing the selected object, so that the probability of obtaining a particular object changes with each successive selection

Secant [p. 544] a straight line that passes through two points (a, f(a)) and (b, f(b)) on the graph of a function y = f(x)

Selections [p. 373] counted when order is not important. The number of ways of selecting *r* objects from a total of *n* objects is

$${}^{n}C_{r} = \frac{n!}{r! (n-r)!}$$

An alternative notation for ${}^{n}C_{r}$ is $\binom{n}{r}$.

Set difference [p. 166] The set $A \setminus B$ contains all the elements of A that are not in B.

Set notation [p. 165]

- ∈ means 'is an element of'
- ∉ means 'is not an element of'
- \subseteq means 'is a subset of'
- \cap means 'intersection'
- ∪ means 'union'
- \emptyset is the empty set, containing no elements

Sets of numbers [p. 166]

- \mathbb{N} is the set of natural numbers
- \mathbb{Z} is the set of integers
- \bigcirc is the set of rational numbers
- \mathbb{R} is the set of real numbers

Signs of circular functions [p. 481]

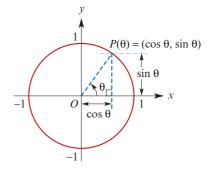
- 1st quadrantall are positive2nd quadrantsin is positive3rd quadranttan is positive4th quadrantcos is positive
 - $\begin{array}{c} e \\ S \\ T \\ C \end{array} x$

Simulation [p. 346] the process of finding an approximate solution to a probability problem by repeated trials using a simulation model

Simulation model [p. 346] a simple model which is analogous to a real-world situation. For example, the outcomes from a toss of a coin (head, tail) could be used as a simulation model for the sex of a child (male, female) under the assumption that in both situations the probabilities are 0.5 for each outcome.

Simultaneous equations [p. 11] equations of two or more lines or curves in the Cartesian plane, the solutions of which are the points of intersection of the lines or curves

Sine function [p. 478] sine θ is defined as the *y*-coordinate of the point *P* on the unit circle where *OP* forms an angle of θ radians with the positive direction of the *x*-axis.



Speed [p. 641] the magnitude of velocity

Speed, average [pp. 543, 641]

average speed = $\frac{\text{total distance travelled}}{\text{total time taken}}$

Stationary point [pp. 624, 627] A point with coordinates (a, f(a)) on a curve y = f(x) is said to be a stationary point if f'(a) = 0.

Straight line, equation given two points [p. 45] $y - y_1 = m(x - x_1)$, where $m = \frac{y_2 - y_1}{x_2 - x_1}$

Straight line, gradient-intercept form [p. 42]

The gradient-intercept form of the equation of a straight line is y = mx + c, where *m* is the gradient and *c* is the *y*-axis intercept.

Straight lines, parallel [p. 54] Two straight lines are parallel to each other if and only if they have the same gradient (or if both are vertical).

Straight lines, perpendicular [p. 55]

Two straight lines are perpendicular to each other if and only if the product of their gradients is -1 (or if one is horizontal and the other vertical).

Strictly decreasing [p. 589] A function f is strictly decreasing on an interval if a < b implies f(a) > f(b).

Strictly increasing [p. 589] A function *f* is strictly increasing on an interval if a < b implies f(a) < f(b).

Subset [p. 165] A set *B* is called a subset of a set *A* if every element of *B* is also an element of *A*. We write $B \subseteq A$.

Sum of two cubes [p. 222] $x^{3} + y^{3} = (x + y)(x^{2} - xy + y^{2})$

Tangent function [p. 480] The tangent function is given by

 $\tan \theta = \frac{\sin \theta}{\cos \theta}$

Tangent line, equation [p. 616] Let (x_1, y_1) be a point on the curve y = f(x). Then, if *f* is differentiable at $x = x_1$, the equation of the tangent at (x_1, y_1) is given by $y - y_1 = f'(x_1)(x - x_1)$

Translation [p. 266] A translation of *h* units in the positive direction of the *x*-axis and *k* units in the positive direction of the *y*-axis is described by the rule $(x, y) \rightarrow (x + h, y + k)$, where *h* and *k* are positive numbers. The curve with equation y = f(x) is mapped to the curve with equation y - k = f(x - h).

Tree diagram [pp. 319, 334] a diagram representing the outcomes of a multi-stage experiment

U

Union of sets [pp. 165, 322] The union of two sets *A* and *B*, written $A \cup B$, is the set of all elements which are in *A* or *B* or both.

V

Velocity [pp. 557, 640] the rate of change of a particle's position with respect to time

Velocity, average [pp. 555, 640]

average velocity = $\frac{\text{change in position}}{\text{change in time}}$

Velocity, instantaneous [pp. 557, 640] $v = \frac{dx}{dt}$

Venn diagram [pp. 165, 322] a diagram showing sets and the relationships between sets

Vertical-line test [p. 175] used to identify whether a relation is a function or not. If a vertical line can be drawn anywhere on the graph and it only ever intersects the graph a maximum of once, then the relation is a *function*.

Z

 \mathbb{Z} [p. 166] the set of all integers

Zero polynomial [p. 206] The number 0 is called the zero polynomial.