12

Revision of Chapters 9–11

12A Technology-free questions

1 Let $y = \frac{x^2 - 1}{x^4 - 1}$. **a** Find $\frac{dy}{dx}$. **b** Find $\{x : \frac{dy}{dx} = 0\}$.

2 Let
$$y = (3x^2 - 4x)^4$$
. Find $\frac{dy}{dx}$.

- **3** Let $f: \mathbb{R}^+ \to \mathbb{R}$, $f(x) = x^2 \log_e(2x)$. Find f'(x).
- **4** a Let $f: \mathbb{R} \to \mathbb{R}$, $f(x) = e^{2x+1}$. The tangent to the graph of f at the point where x = b passes through the point (0, 0). Find b.
 - **b** Let $f: \mathbb{R} \to \mathbb{R}$, $f(x) = e^{2x+1} + k$ where k is a real number. The tangent to the graph of f at the point where x = b passes through the point (0, 0). Find k in terms of b.
- 5 The line y = mx 8 is tangent to the curve $y = x^{\frac{1}{3}} + c$ at the point (8, *a*). Find the values of *a*, *c* and *m*.
- 6 Find the average value of the function with rule $f(x) = \frac{1}{3x+1}$ over the interval [0, 2].
- 7 Find an antiderivative of:

a
$$\frac{3}{5x-2}, x > \frac{2}{5}$$
 b $\frac{3}{(5x-2)^2}, x \neq \frac{2}{5}$

B If
$$f(3) = -2$$
 and $f'(3) = 5$, find $g'(3)$ where:
a $g(x) = 3x^2 - 5f(x)$
b $g(x) = \frac{3x+1}{f(x)}$
c $g(x) = [f(x)]^2$

Cambridge University Press

9 If
$$f(4) = 6$$
 and $f'(4) = 2$, find $g'(4)$ where:
a $g(x) = \sqrt{x} f(x)$
b $g(x) = \frac{f(x)}{x}$

- **10** Given that $f'(x) = \sqrt{3x+4}$ and $g(x) = x^2 1$, find F'(x) if F(x) = f(g(x)).
- **11** If $f(x) = 2x^2 3x + 5$, find: **a** f'(x) **b** f'(0) **c** $\{x : f'(x) = 1\}$
- **12** Find the derivative of $\log_{e}(3f(x))$ with respect to x.
- **13** The tangent to the graph of $y = \sqrt{a x}$ at x = 1 has a gradient of -6. Find the value of *a*.
- **14** The graph of $y = -x^2 x + 2$ is shown. Find the value of *m* such that regions *A* and *B* have the same area.

- **15** Let $f(x) = x^3 + 3x^2 4$. The graph of y = f(x) is as shown. Find:
 - **a** the coordinates of the stationary points

b
$$\int_{-2}^{2} f(x) \, dx$$

c
$$\int_0^{\infty} f(x) dx$$

d the area of the shaded region.

16 If
$$f(x) = \frac{1}{3x - 1}$$
, find $f'(2)$.

17 If
$$y = 1 - x^2$$
, prove that $x\frac{dy}{dx} + 2 = 2y$ for all values of x.

- **18** If $A = 4\pi r^2$, calculate $\frac{dA}{dr}$ when r = 3.
- **19** At what point on the graph of $y = 1.8x^2$ is the gradient 1?

20 If
$$y = 3x^2 - 4x + 7$$
, find the value of x such that $\frac{dy}{dx} = 0$.

1_

21 If $y = \frac{x^2 + 2}{x^2 - 2}$, find $\frac{dy}{dx}$.

22 If
$$z = 3y + 4$$
 and $y = 2x - 1$, find $\frac{dz}{dx}$.

ISBN 978-1-009-11049-5 © Michael Evans et al 2023 Photocopying is restricted under law and this material must not be transferred to another party.

23 If
$$y = (5 - 7x)^9$$
, calculate $\frac{dy}{dx}$.
24 If $y = 3x^{\frac{1}{3}}$, find $\frac{dy}{dx}$ when $x = 27$.
25 If $y = \sqrt{5 + x^2}$, find $\frac{dy}{dx}$ when $x = 2$.
26 Find $\frac{dy}{dx}$ when $x = 1$, given that $y = (x^2 + 3)(2 - 4x - 5x^2)$.
27 If $y = \frac{x}{1 + x^2}$, find $\frac{dy}{dx}$ when $x = 1$.
28 If $y = \frac{2 + x}{x^2 + x + 1}$, find $\frac{dy}{dx}$ when $x = 0$.
29 Let $f(x) = \frac{1}{2x + 1}$.
a Use the definition of derivative to find $f'(x)$.
b Find the gradient of the tangent to the graph of f at the point (0, 1).
30 Let $f(x) = x^3 + 3x^2 - 1$. Find:
a $\{x : f'(x) = 0\}$ b $\{x : f'(x) > 0\}$ c $\{x : f'(x) < 0\}$
31 Let $y = \frac{x}{1 - x}$.
a Find $\frac{dy}{dx}$. b Write $\frac{dy}{dx}$ in terms of y .
32 If $y = (x^2 + 1)^{-\frac{3}{2}}$, find $\frac{dy}{dx}$.
33 If $y = x^4$, prove that $x\frac{dy}{dx} = 4y$.
34 Show that $f : \mathbb{R} \to \mathbb{R}$, $f(x) = 2x^5$ is a strictly increasing function for \mathbb{R} by showing that $f'(x) > 0$, for all non-zero x , and showing that, if $b > 0$, then $f(b) > f(0)$, and if $0 > b$, then $f(0) > f(b)$.
35 Evaluate each of the following integrals:
a $\int_0^{\frac{3}{2}} 2\sin(\frac{x}{2}) dx$ b $\int_0^{\frac{3}{2}} e^{\frac{x}{2}} dx$ c $\int_{\frac{1}{2}} \frac{1}{2x} dx$

d $\int_{-1}^{-\frac{1}{2}} \frac{1}{2x} dx$ **e** $\int_{3}^{4} \frac{1}{2(x-2)^{2}} dx$ **f** $\int_{2}^{4} \frac{1}{(3x-2)^{2}} dx$

36 Let $f: (0, \infty) \to \mathbb{R}$, $f(x) = a\sqrt{x+1} - x - 1$ where *a* is a constant, $a \ge 4$.

a Find the coordinates of the local maximum of the graph of y = f(x) in terms of *a*

b i If f(3) = 16 find the value of *a*.

- ii Find the equation of the tangent to the graph at the point (35, 24)
- **iii** Find the coordinates of the intercepts of the tangent with each of the axes.

- **37** Show that $f: \mathbb{R} \to \mathbb{R}$, $f(x) = -2x^3 + 1$ is a strictly decreasing function for \mathbb{R} .
- **38** Let $f: \mathbb{R} \to \mathbb{R}$, $f(x) = e^{-mx+2} + 4x$ where *m* is a positive rational number.
 - **a** Find the *x*-coordinate of the stationary point of the graph of y = f(x) in terms of *m*.
 - **b** Find the values of *m* for which the *x*-coordinate of this stationary point is negative.
- **39** For each of the following functions, find the coordinates of the points on the graph at which the tangent passes through the origin:
 - **a** $y = x \sin x$, $-\pi \le x \le \pi$ **b** $y = x \cos(2x)$, $-\pi \le x \le \pi$
- **40** Let $f(x) = 3\sin(\pi x)$ for $-2 \le x \le 2$.
 - **a** Sketch the graph of y = f(x) for $-2 \le x \le 2$.
 - **b** Find the equation of the tangent to the graph where $x = \frac{1}{2}$.
 - **c** Evaluate $\int_0^{\frac{1}{2}} f(x) \frac{x}{4} dx$.
- **41** The diagram shows the graph of the function

$$f(x) = 4 + \frac{2}{x}, \quad 0 < x \le 2$$

and the lines y = 5 and y = 8. Find the area of the shaded region.

- **42** A function *h* has a rule of the form $h(x) = (ax^2 + b)e^{cx}$. Find the values of the constants *a*, *b* and *c*, given that the function has the following three properties:
 - h(0) = -4
 - h'(0) = 8
 - the graph of *h* has a local minimum at x = -1.
- **43** A right-angled triangle has sides 12 cm, 16 cm and 20 cm as shown. A rectangle is inscribed in the triangle with one side along the hypotenuse and a vertex on each of the other two sides of the triangle. What are the dimensions of the largest such rectangle?

E 4

Multiple-choice questions

- The derivative of the function f is $f'(x) = x^4(x-4)(x+7)$. At how many points of f 1 will the graph have a local maximum.
 - **A** 0 **C** 2 **D** 3 **B** 1
- **2** The absolute maximum value of $f(x) = 2x^3 x^2 2x + 1$ on the closed interval [-2, 2]occurs at
 - **B** $\frac{1-\sqrt{13}}{6}$ **C** 2 **D** $\frac{1+\sqrt{13}}{6}$ **E** 0 A -2
- 3 The gradient of the curve with equation y = sin(2x) + 1 at (0, 1) is
 - **C** 0 **A** 1 **B** -1 **D** 2 **E** -2
- 4 Let $f: (0, 3\pi] \to \mathbb{R}$, $f(x) = e^{\frac{x}{\sqrt{3}}} \cos x$. There are values of x for which f'(x) = 0. The sum of these values is **A** $\frac{10\pi}{2}$ **B** $\frac{17\pi}{5}$ **C** $\frac{7\pi}{2}$ **D** $\frac{4\pi}{3}$ **E** $\frac{7\pi}{3}$

C 3

- **5** A polynomial with rule y = P(x) has a local maximum at (-3, 7), a local minimum at (2, 2) and a local maximum at (6, 7). There are no other points on the graph of y = P(x)with zero gradient. How many solutions does the equation P(x) = 0 have?
 - **A** 1

D 4

D -8

- E 5
- 6 Points P and Q lie on the curve $y = x^3$. The x-coordinates of P and Q are 2 and 2 + hrespectively. The gradient of the secant PQ is
- **D** $\frac{(2+h)^3 h^3}{h}$ **E** $12 + 6h + h^2$ **A** $\frac{h^3 - 8}{h - 2}$ **B** 12 + 6*h* **C** 12 7 If $f(x) = \frac{3}{r}$, then $\frac{f(x+h) - f(x)}{h}$ is equal to **A** $\frac{-3}{x(x+h)}$ **B** $\frac{3}{x^2}$ **C** $\frac{-3}{x^2}$ **D** $\frac{-3}{h(x+h)}$ **E** f'(x)8 The gradient of $y = ce^{2x}$ is equal to 11 when x = 0. The value of c is **E** $5e^{-2}$ **C** 5 **A** 0 **B** 1 D 5.5 **9** The graph of $y = bx^2 - cx$ crosses the x-axis at the point (4, 0). The gradient at this point is 1. The value of c is A 8 **C** 4 **E** 2
- **B** 1

B 2

- **10** For the graph of y = f(x) shown, f'(x) = 0 at
 - A 3 points **B** 2 points
 - **C** 5 points **D** 0 points
 - **E** none of these

11 Let $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 4 - e^{-2x}$. The graph of f'(x) is best represented by С A v v $\oint y = 4$ $\succ x$ \overline{O} 0 X 0 D E v y = 4х \overline{O} 0 The graph of y = f(x) is shown on the right. The graph 12 v that best represents the graph of y = f'(x) is

13 Consider all right cylinders for which the sum of the height and the circumference is 30 cm. What is the radius of the cylinder with maximum volume?

v = f(x)

x

12B Multiple-choice questions 541

Revision

14 Let $f(x) = 3x^2 + 2$. If g'(x) = f'(x) and g(2) = 29, then g(x) = 1**A** $3x^3 + 5$ **B** $3x^2 - 3$ **C** $\frac{x^3}{3} + 2x$ **D** $3x^2 + 17$ **E** 6x + 17**15** If $f(x) = e^{kx} + e^{-kx}$, then f'(x) > 0 for **C** x < 0**D** x < 0A $x \in \mathbb{R}$ **B** $x \ge 0$ $\mathbf{E} x > 0$ **16** If g is a differentiable function and g(x) < 0 for all real numbers x and if f'(x) = $(x^2 - 9)g(x)$, which of the following is true? A f has a local maximum at x = -3 and a local minimum at x = 3**B** *f* has a local minimum at x = -3 and a local maximum at x = 3**C** f has a local minimums at x = -3 and x = 3**D** f has a local maximums at x = -3 and x = 3**E** f has stationary points of inflexion at x = -3 and x = 3**17** Rainwater is being collected in a water tank. The volume, $V \text{ m}^3$, of water in the tank after time t minutes is given by $V = 2t^2 + 3t + 1$. The average rate of change of volume of water between times t = 2 and t = 4, in m³/min, is **A** 11 **B** 13 **C** 15 **D** 17 E 19 **18** P(x, f(x)) and Q(x + h, f(x + h)) are two points on the graph of the function $f(x) = x^2 - 2x + 1$. The gradient of the line joining P and Q is given by **B** 2xh - 4x - 2h + 2 **C** $2xh - 2h - h^2$ **A** 2x - 2**D** $2xh - 2h + h^2$ E 2x - 2 + h**19** The graph of y = f(x) is shown. A possible graph of the gradient function f'with rule given by f'(x) is 0 A f'(x)B f'(x)0

20 Which one of the following gives the gradient of the tangent to a curve with the equation y = f(x) at the point x = 2?

$$A = \frac{f(x+h) - f(x)}{h} = B f(2+h) - f(2) = C = \frac{f(2+h) - f(2)}{h}$$

$$D \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = E \lim_{h \to 0} \frac{f(2+h) - f(2)}{h}$$
21 Let $f(x) = \begin{cases} -6 & \text{if } x \le -3 \\ 2x & \text{if } -3 < x < 1 \\ -2(x-2)^2 + 10 & \text{if } x \ge 1 \end{cases}$
The maximal set of values of x for which f is strictly increasing is
$$A = [-3, 2] = B (-3, 2) = C (-3, 1) \cup (1, 2)$$
22 The maximum value of $-x^2 + 4x + 3$ is
$$A = 2 = B = 3 = C + 2\sqrt{7} = D = 7 = 15$$
23 The functions f and g are differentiable and $g(x) \ne 0$ for all x. Let $h(x) = f(x) \times g(x)$. If $f(2) = 4, g(2) = -3, f'(2) = -6$ and $g'(2) = 7$ then $h'(2)$ is equal to.
$$A = 0 = B -40 = C -42 = D -46 = E 46$$
24 The graph of the curve with equation $y = x^2 - x^3$ has stationary points where x is equal to
$$A = 0 = 0 = C -42 = D -46 = E 46$$
25 Consider the tangent to the graph of $y = x^2 + 3x$ at the point (2, 10). Which of the following points lies on this tangent?
$$A = (2, 3) = B + (1, 4) = C + (-1, -2) = D + (-2, -18) = (10, 7)$$
26 If $f(x) = \int_0^x \sqrt{t^3 + 4t} dt$ then $f'(1)$ is equal to
$$A = \frac{3}{2} = B = \frac{9}{4} = C = 7 = D + \sqrt{5} = \sqrt{7}$$
27 If $f'(x) = x^2 + \frac{1}{x}$ and $f(1) = \frac{1}{3}$, then $f(x)$ is equal to
$$A = \frac{x^3}{3} + \log_e x = B + \frac{x^3}{3} + \log_e x + \frac{2}{3} = C + \frac{x^3}{3} - \log_e x - \frac{1}{3}$$

Cambridge University Press

D
$$\frac{-x^3}{3} + \log_e x + \frac{2}{3}$$
 E $\frac{x^3}{3} - \log_e x + \frac{1}{3}$
28 If $y = F(x)$ and $\frac{dy}{dx} = f(x)$, then $\int_2^3 f(x) \, dx$ is equal to
A $f(3) - f(2)$ **B** $F'(3) - F'(2)$ **C** $F(3) - F(2)$ **D** $f(x) + c$ **E** $F(3) - f(2)$

A
$$\int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} \sin x \, dx$$

B $\int_{\pi}^{\frac{3\pi}{2}} \sin x \, dx + \int_{\frac{\pi}{2}}^{\pi} \sin x \, dx$
C $\int_{\frac{3\pi}{2}}^{\frac{\pi}{2}} \sin x \, dx + \int_{\frac{\pi}{2}}^{\pi} \sin x \, dx$
D $\int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} \sin x \, dx + \int_{\pi}^{\frac{\pi}{2}} \sin x \, dx$
E $\pi \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} \sin^2 x \, dx$

30 The area of the shaded region of the graph is given by **A** $\int_0^2 (x+1) dx - \int_2^0 (x+1) dx$ **B** $\int_{-2}^2 (x+1) dx$ **C** $\int_0^2 (x+1) dx + \int_{-2}^0 (x+1) dx$ **D** $\int_{-1}^2 (x+1) dx - \int_{-2}^{-1} (x+1) dx$ **E** $\int_{-1}^2 (x+1) dx + \int_{-2}^{-1} (x+1) dx$

31 If
$$\frac{dy}{dx} = \frac{1}{x^2}$$
 and $y = 2$ when $x = 1$, then
A $y = \frac{-1}{x}$
B $y = \frac{-1}{x} + 3$
C $y = \frac{-2}{x^3}$
D $y = \frac{2}{x^3}$
E $y = \frac{1}{x} + 1$

32 If
$$\int_0^{16} \frac{1}{2x+1} dx = \log_e k$$
, then k is
A 33 **B** $\sqrt{33}$

33 Let $f: (-1, \infty) \to \mathbb{R}$, $f(x) = 8\sqrt{x+1} - x - 1$. The tangent to y = f(x) at the point (a, f(a)) is parallel to the line connecting the positive *x*-axis intercept and the *y*-axis intercept. The value of *a* is

A
$$\frac{1}{9}$$
 B $\frac{77}{4}$ **C** 7 **D** 19 **E** 20

v = x + 1

2

0

х

Revision

12B Multiple-choice questions 545

ISBN 978-1-009-11049-5

© Michael Evans et al 2023

Photocopying is restricted under law and this material must not be transferred to another party.

 $\mathbf{E} \quad \frac{n}{2} + a$ Cambridge University Press

12C Extended-response questions 547

58 Let $f(x) = \frac{a}{x^2} + x - 2$, $x \neq 0$ and *a* a real constant. There is a stationary point on the graph of *f* where x = 1 The value of *a* is **A** $\frac{1}{2}$ **B** 1 **C** -1 **D** 4 **E** 2

59 The tangent to the graph of $y = 2x^3 + ax^2 + 1$ at x = -1 passes through the origin. The value of *a* is

A 1 **B** $-\frac{7}{3}$ **C** $\frac{7}{3}$ **D** 5 **E** -5Let f be a one-to-one differentiable function such that f(A) = 11 f(G) = A

60 Let f be a one-to-one differentiable function such that f(4) = 11, f(6) = 4, f'(6) = 4, f(4) = 12, f'(4) = 12. The function g is differentiable and $g(x) = f^{-1}(x)$ for all x.

c $\frac{1}{12}$

$$g'(4)$$
 is equal to

A
$$\frac{1}{4}$$
 B 1

- 61 The graph shown is of a function with rule $y = (x + 3)^3(x - 4)$. Which of the following is *not* true?
 - A $\frac{dy}{dx} = 0$ when $x = \frac{9}{4}$ and x = -3 and at no other point.
 - **B** There is only one turning point on the graph.
 - The *x*-axis is a tangent to the graph where x = -3.
 - D There is only one stationary point on the graph.

$$E \quad y \ge \frac{-64\ 827}{256} \text{ for all values of } x.$$

62 The total area of the regions enclosed by the curve $y = e^{5x} - 2\sin 4x$, the *x*-axis and the lines x = -1 and x = 1 correct to two decimal places is

12C Extended-response questions

- **1** The amount of salt (*s* grams) in 100 litres of salt solution at time *t* minutes is given by $s = 50 + 30e^{-\frac{1}{5}t}$.
 - **a** Find the amount of salt in the mixture after 10 minutes.
 - **b** Sketch the graph of *s* against *t* for $t \ge 0$.
 - **c** Find the rate of change of the amount of salt at time *t* (in terms of *t*).
 - **d** Find the rate of change of the amount of salt at time *t* (in terms of *s*).
 - Find the concentration (grams per litre) of salt at time t = 0.
 - **f** Find the value of *t* for which the salt solution first reaches a concentration of 0.51 grams per litre.

2 A medium is kept at a constant temperature of 20° C. An object is placed in this medium. The temperature, T° C, of the object at time *t* minutes is given by

 $T = 40e^{-0.36t} + 20, \quad t \ge 0$

- **a** Find the initial temperature of the object.
- **b** Sketch the graph of T against t for $t \ge 0$.
- **c** Find the rate of change of temperature with respect to time (in terms of *t*).
- **d** Find the rate of change of temperature with respect to time (in terms of T).
- **3** A certain food is susceptible to contamination from bacterial spores of two types, *F* and *G*. In order to kill the spores, the food is heated to a temperature of 120° C. The number of live spores after *t* minutes can be approximated by $f(t) = 1000e^{-0.5t}$ for *F*-type spores and by $g(t) = 1200e^{-0.7t}$ for *G*-type spores.
 - **a** Find the time required to kill 50% of the *F*-type spores.
 - **b** Find the total number of live spores of both types when t = 0, and find the percentage of these that are still alive when t = 5.
 - **c** Find the rate at which the total number of live spores is decreasing when t = 5.
 - **d** Find the value of *t* for which the number of live *F*-type spores and the number of live *G*-type spores are equal.
 - On the same set of axes, sketch the graphs of y = f(t) and y = g(t) for $t \ge 0$.
- 4 An object falls from rest in a medium and its velocity, V m/s, after t seconds is given by $V = 100(1 e^{-0.2t})$.
 - **a** Sketch the graph of V against t for $t \ge 0$.
 - **b** Express the acceleration at any instant:
 - i in terms of t ii in terms of V.
 - **c** Find the value of *t* for which the velocity of the object is 80 m/s.
- 5 A manufacturer determines that the total cost, \$*C* per year, of producing a product is given by $C = 0.05x^2 + 5x + 500$, where *x* is the number of units produced per year. At what level of output will the average cost per unit be a minimum? (Use a continuous function to model this discrete situation.)
- 6 An object that is at a higher temperature than its surroundings cools according to Newton's law of cooling: $T = T_0 e^{-kt}$, where T_0 is the original excess of temperature and *T* is the excess of temperature after time *t* minutes.
 - **a** Prove that $\frac{dT}{dt}$ is proportional to T.
 - **b** If the original temperature of the object is 100° C, the temperature of its surroundings is 30° C and the object cools to 70° C in 20 minutes, find the value of *k* correct to three decimal places.
 - **c** At what rate is the temperature decreasing after 30 minutes?

7 Suppose that the spread of a cold virus through a population is such that the proportion, p(t), of the population which has had the virus up to time *t* days after its introduction into the population is given by

 $p(t) = 0.2 - 0.2e^{\frac{-t}{20}} + 0.1e^{\frac{-t}{10}}, \text{ for } t \ge 0$

- **a i** Find, correct to four decimal places, the proportion of the population which has had the virus up to 10 days after its introduction.
 - ii Find the proportion of the population that eventually catches the virus.
- **b** The number of new cases on day t is proportional to p'(t). Find how long after the introduction of the virus the number of new cases per day is at a maximum.
- 8 A real-estate firm owns the Shantytown Apartments, consisting of 70 garden-type apartments. The firm can find a tenant for all the apartments at \$500 each per month. However, for every \$20 per month increase, there will be two vacancies with no possibility of filling them. What price per apartment will maximise monthly revenue? (Use a continuous function to model this discrete situation.)
- 9 The amount of liquid, $V \text{ m}^3$, in a large pool at time *t* days is given by $V = \frac{5 \times 10^4}{(t+1)^2}$ for $t \ge 0$.
 - **a** Find the initial volume of the pool.
 - **b** Find the rate of change of volume with respect to time when t = 1.
 - Find the average rate of change for the interval t = 1 to t = 4.
 - **d** When is the amount of water in the pool less than 1 cubic metre?
 - Sketch the graph of V against t for $t \ge 0$.
- **10** Each week a factory produced N thousand bottle tops and the cost of production is reckoned to be \$1000C, where $C = (N^3 + 16)^{\frac{1}{4}}$.
 - **a** Sketch the graph of *C* against *N*. (Use a continuous model.)
 - **b** Calculate $\frac{dC}{dN}$. **c** What does $\frac{dC}{dN}$ represent?
- 11 A company produces items at a cost price of \$2 per item. Market research indicates that the likely number of items sold per month will be $\frac{800}{p^2}$, where p dollars is the selling price of each item. Find the value of p for which the company would expect to maximise its total monthly profit, and the corresponding number of items sold.
- **12** A curve with equation $y = (ax + b)^{-2}$ has y-axis intercept $(0, \frac{1}{4})$ and at this point the gradient is $-\frac{3}{4}$. Find the value(s) of *a* and *b* and sketch the graph.
- **13** The cost of running a ship at a constant speed of V km/h is $160 + \frac{1}{100}V^3$ dollars per hour.
 - **a** Find the cost of a journey of 1000 km at a speed of 10 km/h.
 - **b** Find the cost, C, of a journey of 1000 km at a speed of V km/h.

- **c** Sketch the graph of *C* against *V*.
- d Find the most economical speed for the journey, and the minimum cost.
- e If the ship has a maximum speed of 16 km/h, find the minimum cost.
- **14 a** A camper is on an island shore at point *A*, which is 12 km from the nearest point *B* on the straight shore of the mainland. He wishes to reach a town *C*, which is 30 km along the shore from *B*, in the least possible time. If he can row his boat at 5 km/h and walk at 8 km/h, how far along the shore from *B* towards *C* should he land?
 - **b** Repeat **a** if C is only 24 km from B.
- **15** To connect a house to a gas supply, a pipe must be installed connecting the point *A* on the house to the point *B* on the main, where *B* is 3 m below ground level and at a horizontal distance of 4 m from the building. If it costs \$25 per metre to lay pipe underground and \$10 per metre on the surface, find the length of pipe which should be on the surface to minimise costs.

$$g: \mathbb{R}^+ \to \mathbb{R}, \ g(x) = \frac{1}{x}$$

and $h: \mathbb{R}^+ \to \mathbb{R}, \ h(x) = \frac{1}{x^2}$

- **a** Find $\{x : g(x) > h(x)\}.$
- Find { x : g'(x) > h'(x) },
 i.e. find the set of *x* for which the gradient of *g* is greater than the gradient of *h*.

house A

3 m

x m

main

c On one set of axes, sketch the graphs of

$$f: \mathbb{R}^+ \to \mathbb{R}, \ f(x) = \frac{1}{x^3} \text{ and } h: \mathbb{R}^+ \to \mathbb{R}, \ h(x) = \frac{1}{x^2}$$

Find $\{x : h(x) > f(x)\}$ and $\{x : h'(x) > f'(x)\}$.

- **d** For $f_1: \mathbb{R}^+ \to \mathbb{R}$, $f_1(x) = \frac{1}{x^n}$ and $f_2: \mathbb{R}^+ \to \mathbb{R}$, $f_2(x) = \frac{1}{x^{n+1}}$, find $\{x: f_1(x) > f_2(x)\}$ and $\{x: f'_1(x) > f'_2(x)\}$.
- **17 a** Find the points $P(x, \frac{1}{x})$ on the curve $y = \frac{1}{x}$ for which the distance *OP* is a minimum, where *O* is the origin (0, 0).
 - **b** Find the points $P(x, \frac{1}{x^2})$ on the curve $y = \frac{1}{x^2}$ for which the distance *OP* is a minimum.
 - **c** Find the points $P(x, \frac{1}{x^n})$ on the curve $y = \frac{1}{x^n}$ for which the distance *OP* is a minimum, where *n* is a positive integer.

12C Extended-response questions 551

18 The figure represents an intended basic design for a

workshop wall which is to have six equal windows
spaced so that each dashed line has length 2 m.
The total area of window space is to be 36 m².

- **a** Express the total area, $A \text{ m}^2$, of brickwork as a function of the window height, x m.
- **b** Sketch the graph of *A* against *x*.

- Find the dimensions of each window which will give a minimum amount of brickwork.
- **d** If building regulations require that both the height and the width of a window must not be less than 1 m, find the maximum amount of brickwork that could be used.
- **19** a Sketch the graph of the equation $y = x^2 a^2$. Label the points A, B at which it cuts the x-axis. Write down the coordinates of A and B.
 - **b** Find the area of the region between the *x*-axis and the graph.
 - **c** Draw a rectangle *ABCD* on your sketch, lying *below* the *x*-axis, with area equal to the area found in part **b**. What is the length of the side *BC*?
 - **d** If the vertex of the parabola is at point V, calculate the ratio $\frac{\text{length of } BC}{\text{length of } OV}$.
- **20** a Calculate $\int_{-3}^{1} (1 t^2) dt$ and illustrate the region of the Cartesian plane for which this integral gives the signed area.
 - **b** Show that $\int_{a}^{1} (1 t^2) dt = 0$ implies $a^3 3a + 2 = 0$.
 - **c** Find the values of *a* for which $\int_{a}^{1} (1 t^2) dt = 0$.
- **21** The rate of flow of water into a tank is given by $\frac{dV}{dt} = 10e^{-(t+1)}(5-t)$ for $0 \le t \le 5$, where *V* litres is the amount of water in the tank at time *t* minutes. Initially the tank is empty.
 - **a** i Find the initial rate of flow of water into the tank.
 - ii Find the value of t for which $\frac{dV}{dt} = 0$.
 - **iii** Find the time, to the nearest second, when the rate is 1 litre per minute.
 - iv Find the first time, to the nearest second, when $\frac{dV}{dt} < 0.1$.
 - **b** Find the amount of water in the tank when t = 5.
 - **c** Find the time, to the nearest second, when there are 10 litres of water in the tank.

22 It can be shown that
$$\int 2^x dx = \frac{2^x}{\ln 2} + c$$
.

- **a** Evaluate the definite integral $\int_0^2 2^x dx$.
- **b i** Find an approximation, *A*₁, to the definite integral using one trapezium as shown.

i Find the error
$$E_1 = A_1 - \int_0^2 2^x \, dx$$
.

- Find an approximation, A_2 , to the definite integral using two trapeziums as shown.
 - ii Find the error $E_2 = A_2 \int_0^2 2^x dx$.
- **d** Continuing in this way, find A_4 and E_4 , then find A_8 and E_8 . (You will notice that doubling the number of trapeziums decreases the error by about a factor of 4.)

- Repeat this procedure for the definite integral $\int_0^2 x^2 dx$. Find the approximations and errors using one, two, four and eight trapeziums. How many trapeziums would be needed for an approximation to be within 10^{-6} of the definite integral?
- **23** The graph of the function

$$f(x) = x - \ln x, \quad x > 0$$

is shown on the right.

a Determine f'(x) and show that:

i
$$f'(x) < 0$$
 for $0 < x < 1$

- f'(x) = 0 for x = 1
- iii 0 < f'(x) < 1 for x > 1.

- **c** Let *n* be an integer with $n \ge 2$. Find the value of *x* such that $f'(x) = \frac{1}{n}$.
- **d** Find the value of *a* such that the tangent to the graph of y = f(x) at point P(a, f(a)) passes through the origin.
- Determine the equation of the tangent to the graph of y = f(x) at $x = e^{-1}$.
- **f** Determine the equation of the tangent to the graph of y = f(x) at $x = e^n$, where *n* is a positive integer, and state the *y*-axis intercept of this tangent.
- **g** Differentiate $x \ln x$ and hence find an anti-derivative of $x \ln x$.
- **h** Evaluate $\int_{1}^{e} f(x) dx$.

24 Consider the function f given by

- $f(x) = x + \sin x \text{ for } -4\pi \le x \le 4\pi.$
- **a** Find f'(x) and f''(x).
- **b** Show that $f'(x) \ge 0$ for all x.
- Find the coordinates of the stationary points of inflection on the graph of *f*.

Now consider $g(x) = \frac{x}{2} + \sin x$ for $-2\pi \le x \le 2\pi$.

- **d** Solve the equation g'(x) = 0 for $-2\pi \le x \le 2\pi$.
- Find the coordinates of the stationary points on the graph of g.

12D Algorithms and pseudocode

An introduction to pseudocode is given in Appendix A of this book and the reader is referred to that appendix for explanations of the terms used in this section. You may like to use a device to implement the algorithms in this section; see the coding appendices in the Interactive Textbook for instructions.

1 Consider the following two approximations for f'(a), where h is small:

•
$$f'(a) \approx \frac{f(a+h) - f(a)}{h}$$
 • $f'(a) \approx \frac{f(a+h) - f(a-h)}{2h}$

For each of the following functions describe an algorithm using pseudocode to compare these approximations at the given values.

a
$$f(x) = \sin(x), x = \frac{\pi}{3}$$
 b $f(x) = \log_e(x), x = 2.5$ **c** $f(x) = x^4 - \log_e x, x = 1$

Note: Use a while loop based on the closeness to the exact value of the derivative. Start with h = 0.5 and decrease by a factor of 2. That is, 0.5, 0.25, 0.125, ... Record the iteration number and use this to comment on the 'speed of convergence' of each method.

2 Newton's method

The following algorithm can be used to solve $-x^3 + 5x^2 - 3x + 4 = 0$ near x = 4. The table shows the result of executing the algorithm. The first row gives the initial values of x and f(x). The next rows give the values that are printed at the end of each pass of the while loop.

define $f(x)$: return $-x^3 + 5x^2 - 3x + 4$
define $Df(x)$: return $-3x^2 + 10x - 3$
$\begin{array}{l} x \leftarrow 3.8 \\ \text{while } f(x) > 10^{-6} \text{ or } f(x) < -10^{-6} \\ x \leftarrow x - \frac{f(x)}{Df(x)} \end{array}$
print $x, f(x)$
end while

	x	f(x)
Initial	3.8	9.928
Pass 1	4.99326923	-10.81199119
Pass 2	4.60526316	-1.44403339
Pass 3	4.53507148	-0.04308844
Pass 4	4.53284468	-0.00004266
Pass 5	4.53284247	0.00000000

The while instruction can be written more efficiently, using the absolute value function as while $|f(x)| > 10^{-6}$.

a Use the pseudocode algorithm for Newton's method to find an approximate solution of the given equation with the given starting value x_0 using a tolerance of 10^{-4} . Preferably use a device to implement your code..

i
$$\sin 2x = x, x_0 = 1$$

ii $\cos 2x = x, x_0 = 1$
ii $\log_e x = 0.25x, x_0 = 1$
v $\sin x - \log_e x = 3, x_0 = 2$
ii $(x - 2)^2 - \log_e x = 0, x_0 = 2$

ISBN 978-1-009-11049-Write the iterative rule for New of the seaf while the search of the sea

sheet

- Using Newton's method find the values of x_1 , x_2 and x_3 by completing three passes of 3 the while loop.
 - **a** $x^3 x 4 = 0$, $x_0 = 1.5$ **b** $x^4 x 13 = 0$, $x_0 = 2$
 - **c** $-x^3 2x^2 + 1 = 0$, $x_0 = 0.5$ **d** $e^x + x + 1 = 0$, $x_0 = 0.6$
- Halley's method Let f be a nicely behaved function, (f', f'') and f''' all defined). 4 Define the iterative rule:

$$x_{n+1} = x_n - \frac{2f(x_n)f'(x_n)}{2[f'(x_n)]^2 - f(x_n)f''(x_n)}$$

Describe an algorithm using Halley's method to solve the equation $\sin x = \frac{x}{4}$. Use $x_0 = 3$

5 The trapezium method for approximating areas In this question, we use pseudocode to describe algorithms including the trapezium method for estimating the area of the region between a graph and the x-axis

The algorithm given on the right finds the trapezoidal estimate for $\int_{0}^{5} f(x) dx$ using 10 strips, where $f(x) = x^3 + 2x^2 + 3$.

- **a** Find the estimate given by this algorithm. (Preferably use a device to implement the algorithm.)
- **b** Modify the code to find:
 - i the left-endpoint estimate using 10 rectangles
 - ii the right-endpoint estimate using 10 rectangles.
- c Modify the code to find an estimate of $\int_0^3 2^x dx$ using 100 strips.

```
define f(x):
   return x^3 + 2x^2 + 3
a \leftarrow 0
b \leftarrow 5
n \leftarrow 10
h \leftarrow \frac{b-a}{n}
left \leftarrow a
right \leftarrow a + h
sum \leftarrow 0
for i from 1 to n
       strip \leftarrow 0.5 \times (f(left) + f(right)) \times h
       sum \leftarrow sum + strip
       left \leftarrow left + h
       right \leftarrow right + h
end for
print sum
```