Domain and Range, Period and Amplitude

2016 Sample Exam 2 Question 2 / 2014 Exam 2 Question 2

The linear function $f: D \to R$, f(x) = 4 - x has range [-2, 6). The domain D of the function is

A.
$$[-2,6)$$
 B. $(-2,2]$ **C.** R

B.
$$(-2, 2]$$

D.
$$(-2,6]$$
 E. $[-6,2]$

2016 Sample Exam 2 Question 3 / 2013 Exam 2 Question 1

The function with rule $f(x) = -3\tan(2\pi x)$ has period

$$\mathbf{A} \cdot \frac{2}{\pi}$$

$$C.\frac{1}{2}$$
 $D.\frac{1}{4}$

$$\mathbf{D}$$
.

2016 Sample Exam 2 Question 1 / 2014 Exam 2 Question 1

The population of wombats in a particular location varies according to the rule

 $n(t) = 1200 + 400 \cos\left(\frac{\pi t}{3}\right)$, where *n* is the number of wombats and *t* is the number of months after 1 March 2013.

a. Find the period and amplitude of the function *n*. 2 marks

2016 Exam 2 Question 1

The linear function $f: D \to R$, f(x) = 5 - x has range [-4, 5). The domain D is

A.
$$(0,9]$$
 B. $(0,1]$ **C.** $[5,-4)$ **D.** $[-9,0)$ **E.** $[1,9)$

2016 Exam 2 Question 2

Let
$$f: D \to R$$
, $f(x) = 1 - 2\cos\left(\frac{\pi x}{2}\right)$.

The period and range of this function are respectively

A. 4 and
$$[-2, 2]$$
 B. 4 and $[-1, 3]$ **C.** 1 and $[-1, 3]$ **D.** 4π and $[-1, 3]$ **E.** 4π and $[-2, 2]$

2016 Exam 2 Question 1

Let
$$f: [0, 8\pi] \to R$$
, $f(x) = 2\cos\left(\frac{x}{2}\right) + \pi$.

a. Find the period and range of f. 2 marks

2017 NHT Exam 2 Question 2

The function with rule $f(x) = 2 \sin\left(\frac{x}{4}\right) + 1$ has period

$$\mathbf{A}.\frac{\pi}{4}$$

B.
$$\frac{\pi}{2}$$
 C. π **D.** 4π **E.** 8π

2017 NHT Exam 2 Question 6

Let $f: D \to R$, $f(x) = \frac{3x - 5}{2 - x}$, where *D* is the maximal domain of *f*.

Which of the following are the equations of the asymptotes of the graph of f?

A.
$$x = 2$$
 and $y = \frac{5}{3}$ **B.** $x = 2$ and $y = -3$ **C.** $x = -2$ and $y = 3$

D.
$$x = -3$$
 and $y = 2$ **E.** $x = 2$ and $y = 3$

2017 Exam 2 Question 1

Let $f: R \to R$, $f(x) = 5\sin(2x) - 1$. The period and range of this function are respectively

A.
$$\pi$$
 and $[-1,4]$ **B.** 2π and $[-1,5]$ **C.** π and $[-6,4]$ **D.** 2π and $[-6,4]$ **E.** 4π and $[-6,4]$

2018 NHT Exam 1 Question 5

Let
$$h: R^+ \cup \{0\} \to R$$
, $h(x) = \frac{7}{x+2} - 3$.

a. State the range of h. 1 mark

2018 NHT Exam 2 Question 1

Let
$$f: R \to R$$
, $f(x) = 3 - 2\cos\left(\frac{\pi x}{4}\right)$.

The period and range of this function are respectively

A. 4 and [-2,2] **B.** 8 and [1,5] **C.**
$$8\pi$$
 and [1,5] **D.** 8π and [-2,2] **E.** $\frac{1}{2}$ and [-1,5]

2018 NHT Exam 2 Question 10

The range of the function
$$f: \left(\frac{-1}{\sqrt{2}}, \sqrt{2}\right] \to R, f(x) = 2x^3 - 3x + 4$$
 is

A. $(4 - \sqrt{2}, 4 + \sqrt{2})$
B. $\left(\frac{-1}{\sqrt{2}}, \sqrt{2}\right)$
C. $(4 - \sqrt{2}, 4 + \sqrt{2}]$
D. $\left(\frac{-1}{\sqrt{2}}, \sqrt{2}\right)$
E. $\left[4 - \sqrt{2}, 4 + \sqrt{2}\right]$

2018 NHT Exam 2 Question 11

The maximal domain of the function g, where $g(x) = \log_e(-2x)$, is

A.
$$R$$
 B. R^- **C.** R^+ **D.** $[0, \infty)$ **E.** $(-\infty, 0]$

2018 NHT Exam 2 Question 16

Let $f: R^+ \to R$, $f(x) = -\log_e(x)$ and $g: R \to R$, $g(x) = x^2 + 1$. The domain and range of f(g(x)) are respectively

A.
$$R$$
 and $R^+ \cup \{0\}$ **B.** R and R^- **C.** $[1, \infty)$ and $R^+ \cup \{0\}$ **D.** R^+ and $R^+ \cup \{0\}$ **E.** R and $R^- \cup \{0\}$

2018 Exam 2 Question 1

Let
$$f: R \to R$$
, $f(x) = 4\cos\left(\frac{2\pi x}{3}\right) + 1$.

The period of this function is

2018 Exam 2 Question 2

The maximal domain of the function f is $R \setminus \{1\}$. A possible rule for f is

$$\mathbf{A}.f(x) = \frac{x^2 - 5}{x - 1}$$

$$\mathbf{B}.f(x) = \frac{x+4}{x-5}$$

A.
$$f(x) = \frac{x^2 - 5}{x - 1}$$
 B. $f(x) = \frac{x + 4}{x - 5}$ **C.** $f(x) = \frac{x^2 + x + 4}{x^2 + 1}$ **D.** $f(x) = \frac{5 - x^2}{1 + x}$ **E.** $f(x) = \sqrt{x - 1}$

$$\mathbf{D}.f(x) = \frac{5 - x^2}{1 + x}$$

$$\mathbf{E}.\ f(x) = \sqrt{x - 1}$$

2018 Exam 2 Question 3

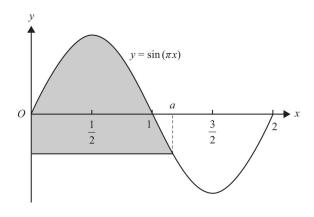
Consider the function $f:[a,b) \to R$, $f(x) = \frac{1}{x}$, where a and b are positive real numbers.

The range of f is

A.
$$\left[\frac{1}{a}, \frac{1}{b}\right]$$
 B. $\left(\frac{1}{a}, \frac{1}{b}\right]$ C. $\left[\frac{1}{b}, \frac{1}{a}\right]$ D. $\left(\frac{1}{b}, \frac{1}{a}\right]$ E. $[a, b)$

2019 NHT Exam 1 Question 4

A function g has rule $g(x) = \log_e(x - 3) + 2$.


a. State the maximal domain of *g* and the range of *g* over its maximal domain. 2 marks

2019 NHT Exam 1 Question 7

The shaded region in the diagram below is bounded by the vertical axis, the graph of the function with rule $f(x) = \sin(\pi x)$ and the horizontal line segment that meets the graph at x = a, where $1 \le a \le \frac{3}{2}$.

Let A(a) be the area of the shaded region.

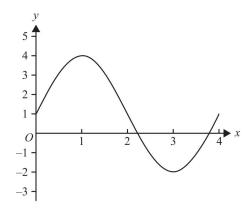
$$A(a) = \frac{1}{\pi} - \frac{1}{\pi} \cos(a\pi) - a\sin(a\pi).$$

b. Determine the range of values of A(a). 2 marks

2019 NHT Exam 2 Question 1

The maximal domain of the function with rule $f(x) = x^2 + \log_e(x)$ is

- **B.** $(0, \infty)$ **C.** $[0, \infty)$ **D.** $(-\infty, 0)$ **E.** $[1, \infty)$


2019 NHT Exam 2 Question 2

The diagram below shows one cycle of a circular function. The amplitude, period and range of this function are respectively

A. 3. 2 and
$$[-2.4]$$

B. 3,
$$\frac{\pi}{2}$$
 and [-2, 4]

B. 3,
$$\frac{\pi}{2}$$
 and [-2, 4] **D.** 4, $\frac{\pi}{4}$ and [-2, 4]

2019 NHT Exam 2 Question 4

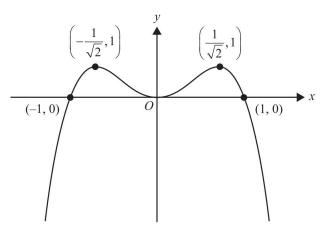
The graph of the function $f: D \to R$, $f(x) = \frac{2x-3}{4+x}$, where D is the maximal domain, has asymptotes

A.
$$x = -4, y = 2$$
 B. $x = \frac{3}{2}, y = -4$ **C.** $x = -4, y = \frac{3}{2}$ **D.** $x = \frac{3}{2}, y = 2$ **E.** $x = 2, y = 1$

2019 NHT Exam 2 Question 2

The wind speed at a weather monitoring station varies according to the function $v(t) = 20 + 16\sin\left(\frac{\pi t}{14}\right)$ where v is the speed of the wind, in kilometres per hour (km/h), and t is the time, in minutes, after 9 am.

a. What is the amplitude and the period of v(t)? 2 marks


2019 Exam 1 Question 8

The function $f: R \to R$, $f(x) = 4x^2 - 4x^4$. Part of the graph of f is shown below.

The graph of f touches the x-axis at the origin.

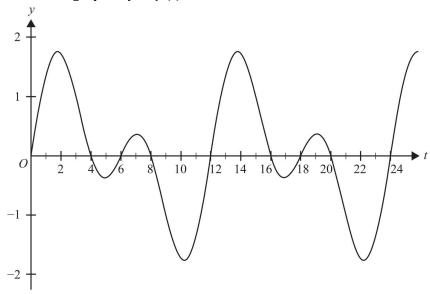
Let g be a function with the same rule as f. Let $h: D \to R$, $h(x) = \log_e(g(x)) - \log_e(x^3 + x^2)$, where D is the maximal domain of h.

b. State *D*. 1 mark

c. State the range of *h*. 2 marks

2019 Exam 2 Question 1

Let $f: R \to R$, $f(x) = 3\sin\left(\frac{2x}{5}\right) - 2$. The period and range of f are respectively


A. 5π and [-3,3] **B.** 5π and [-5,1] **C.** 5π and [-1,5] **D**. $\frac{5\pi}{2}$ and [-5,1] **E**. $\frac{5\pi}{2}$ and [-3,3]

2019 Exam 2 Question 3

During a telephone call, a phone uses a dual-tone frequency electrical signal to communicate with the telephone exchange. The strength, f, of a simple dual-tone frequency signal is given by the function

$$f(t) = \sin\left(\frac{\pi t}{3}\right) + \sin\left(\frac{\pi t}{6}\right)$$
, where t is a measure of time and $t \ge 0$.

Part of the graph of y = f(t) is shown below.

a. State the period of the function. 1 mark

2020 Exam 2 Question 5

The graph of the function $f: D \to R$, $f(x) = \frac{3x+2}{5-x}$, where D is the maximal domain, has asymptotes

A.
$$x = -5, y = \frac{3}{2}$$
 B. $x = -3, y = 5$ **C.** $x = \frac{2}{3}, y = -3$ **D.** $x = 5, y = 3$ **E.** $x = 5, y = -3$

2020 Exam 2 Question 18

Let $a \in (0, \infty)$ and $b \in R$. Consider the function $h: [-a, 0) \cup (0, a] \to R$, $h(x) = \frac{a}{x} + b$.

The range of *h* is

A.
$$[b-1, b+1]$$
 C. $(-\infty, b-1) \cup (b+1, \infty)$ **E.** $[b-1, \infty)$

B.
$$(b-1, b+1)$$
 D. $(-\infty, b-1] \cup [b+1, \infty)$

2020 Exam 2 Question 20

Let $f: R \to R$, $f(x) = \cos(ax)$, where $a \in R \setminus \{0\}$, be a function with the property f(x) = f(x+h), for all $h \in Z$

Let $g: D \to R$, $g(x) = \log_2(f(x))$ be a function where the range of g is [-1, 0]. A possible interval for D is

A.
$$\left[\frac{1}{4}, \frac{5}{12}\right]$$
 B. $\left[1, \frac{7}{6}\right]$ **C.** $\left[\frac{5}{3}, 2\right]$ **D.** $\left[-\frac{1}{3}, 0\right]$ **E.** $\left[-\frac{1}{12}, \frac{1}{4}\right]$

2021	NHT	Exam	1	Question	9
			_	Question	_

A differentiable function $f: R \to R$ has the following properties:

- f'(x) = f(x)(4 f(x))
- The range of f is (0, 4).
- f'(0) = 3 if f(0) = 1
- The graph of *f* has zero stationary points.

c. State the range of f'. 1 mark

2021 NHT Exam 2 Question 1

Let $f: R \to R$, $f(x) = -(\cos(2x) + \cos(4x))$ and $g: R \to R$, $g(x) = 2\cos(x)$.

a. State the period and the amplitude of *g*. 1 mark

2021 Exam 1 Question 3

Consider the function $g: R \to R$, $g(x) = 2\sin(2x)$.

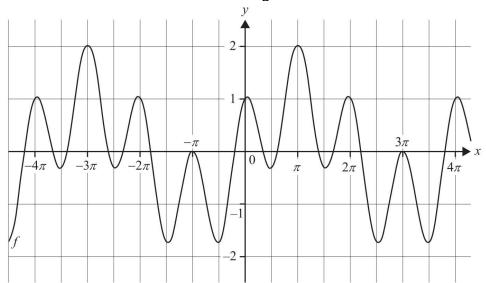
a. State the range of *g*. 1 mark

b. State the period of g. 1 mark

2021 Exam 2 Question 1

The period of the function with rule $y = \tan\left(\frac{\pi x}{2}\right)$ is

A. 1 **B.** 2 **C.** 4 **D.** 2π **E.** 4π


2021 Exam 2 Question 3

Let $q(x) = \log_e(x^2 - 1) - \log_e(1 - x)$.

 ${\bf a.}$ State the maximal domain and the range of $q.\,2$ marks

2021 Exam 2 Question 5

Part of the graph of $f: R \to R$, $f(x) = \sin(\frac{x}{2})\cos(2x)$ is shown below.

a. State the period of f. 1 mark