Deriving the Anti-Derivatives of Functions

Anti-Derivatives of Specific Functions

Rules for the anti-derivatives of specific can be found by applying the derivative rule in reverse.

Power Functions

We know that $\frac{1}{1} (x^n) = nx^{n-1}, n \in$ $d \sim n$ $n-1$ \sim ∞ $\frac{d}{dx}(x^n) = nx^{n-1}, n \in \mathbb{Q}$ This can be thought of as multiply by the exponent then subtract 1 from the exponent.

Reversing this process: add 1 to the exponent then divide by the increased exponent.

$$
\int x^n dx = \frac{x^{n+1}}{n+1} + c, \qquad n \neq -1
$$

Transforming to $f(ax + b)$: $\frac{d}{dx}((ax + b)^{n+1}) = a(n + 1)(ax + b)^n$. Revers d (($(3n+1)$ ($(4)($ $(3n+1)$) $\frac{d}{dx}((ax+b)^{n+1}) = a(n+1)(ax+b)^n$. Reversing this process $\int (ax + b)^n dx \frac{1}{(ax + b)^{n+1}} (ax + b)^{n+1} + c = \frac{(ax + b)}{(ax + b)^n} + c$ $\frac{1}{a(n+1)}(ax+b)^{n+1} + c = \frac{(ax+b)^{n+1}}{a(n+1)} + c, \quad n \neq -1$ $(ax + b)^{n+1}$ $\frac{(m+1)}{a(n+1)} + c$, $n \neq -1$ Fower runctions

We know that $\frac{d}{dx}(x^n) = nx^{n-1}, n \in \mathbb{Q}$

This can be thought of as multiply by the exponent then subtract 1 from the

exponent.

Reversing this process: add 1 to the exponent then divide by the increase Reversing this process: add 1 to the exponent then divide by the increased

exponent.
 $\int x^n dx = \frac{x^{n+1}}{n+1} + c, \qquad n \neq -1$

Transforming to $f(ax + b)$: $\frac{d}{dx}((ax + b)^{n+1}) = a(n + 1)(ax + b)^n$. Reversing this process
 $\int (ax + b)^n dx \frac{1}{a(n$

Hyperbolas

For $n = -1$.

 $\frac{1}{2}$ is not $\frac{1}{2}$. 1 \boldsymbol{x} $1 -1 -1$ $1+1$ 0 1 1 $\frac{1}{x} = x^{-1} \Rightarrow x^{-1+1} = x^0 = 1$, but $\frac{d}{dx}(1) = 0 \neq \frac{1}{x}$ $\frac{d}{dx}(1) = 0 \neq \frac{1}{x}$ 1 \boldsymbol{x}

 $d \sim 1$ $\frac{d}{dx}(\log_e(x)) = \frac{1}{x}$. Reversing this process: $\int \frac{1}{x} dx = \log_e(x) + c$. $1 \qquad \qquad$ $1 \qquad \qquad$ $\frac{1}{x}$. Reversing this process: $\int \frac{1}{x} dx = \log_e(x) + c$. $1\,$ \sim \sim \sim $\frac{1}{x}dx = \log_e(x) + c.$

Since the domain of $\log_e(x)$ is $x > 0$ not $x \in \mathbb{R} \setminus \{0\}$ like it is for $\frac{1}{x}$ the domain of the $\frac{-}{x}$ the domain of the anti-derivative must be restricted. Depending on whether positive or negative x values are used are required, indicates what domain should be used for the anti-derivative.

If the domain is $x < 0$, the anti-derivative must be $\log_e(-x)$ so that the values of the log are real.

$$
\int \frac{1}{x} dx = \log_e(x) + c, \qquad x > 0
$$
\n
$$
\int \frac{1}{x} dx = \log_e(-x) + c, \qquad x < 0
$$

Transformed Hyperbolas

For $\int \frac{1}{1-x} dx$, we write the logarithm in terms of x rather than *l* 1 $\frac{1}{kx}$ dx, we write the logarithm in terms of x rather than kx .

Break the fraction up: $\int \frac{1}{1-x} dx = \int \frac{1}{1-x} dx = \frac{1}{1-x} \int \frac{1}{1-x} dx = \frac{1}{1-x} \log_e(x) + c, x > 0$ $1, \t11, \t11, \t1, \t...$ $\frac{1}{kx}dx = \int \frac{1}{kx}dx = \frac{1}{k}\int \frac{1}{x}dx = \frac{1}{k}\log_e(x) + c, x > 0$ $11, 11, 1, ...$ $\frac{1}{k} \frac{1}{x} dx = \frac{1}{k} \int \frac{1}{x} dx = \frac{1}{k} \log_e(x) + c, x > 0$ 1 $\frac{1}{k}\int \frac{1}{x} dx = \frac{1}{k} \log_e(x) + c, x > 0$ $1, 1, \ldots$ $\frac{1}{x}dx = \frac{1}{k}\log_e(x) + c, x > 0$ $1\,$ \ldots \ldots $\frac{1}{k} \log_e(x) + c, x > 0$

Transforming to
$$
f(ax + b)
$$
: $\frac{d}{dx}(\log_e(ax + b)) = \frac{a}{ax + b}$. Reversing this process
\n
$$
\int \frac{1}{ax + b} dx = \frac{1}{a} \log_e(ax + b) + c, x > -\frac{b}{a} \qquad \int \frac{1}{ax + b} dx = \frac{1}{a} \log_e(-(ax + b)) + c, x < -\frac{b}{a}
$$

Exponential Functions

We know that $\frac{1}{1}$ (e^x) = e^x . Reversin $d \sim r$ $\frac{d}{dx}(e^x) = e^x$. Reversing this process: $\int e^x dx = e^x + c$ Transforming to $f(ax + b)$: $\frac{d}{dx}(e^{ax+b}) = ae^{ax+b}$. d $\alpha x + b$ $\alpha x + b$ $\frac{d}{dx}(e^{ax+b}) = ae^{ax+b}.$.

Reversing this process: $\int e^{ax+b} dx = -e^{ax+b} + c$ 1 $a x + b$. $\frac{1}{a}e^{ax+b} + c$

Circular Functions

We know that
$$
\frac{d}{dx}(\sin(x)) = \cos(x)
$$
 and $\frac{d}{dx}(\cos(x)) = -\sin(x)$.

Reversing these processes:

$$
\int \sin(x) dx = -\cos(x) + c
$$
\n
$$
\int \cos(x) dx = \sin(x) + c
$$
\n
$$
\int dx \oint_{-\cos(x)}^{\sin(x)} \int \frac{dx}{dx}
$$

Transforming to
$$
f(ax + b)
$$
:
\n
$$
\frac{d}{dx}(\sin(ax + b)) = a\cos(ax + b)
$$
 and
$$
\frac{d}{dx}(\cos(ax + b)) = -a\sin(ax + b).
$$

Reversing these processes:

$$
\int \sin(ax+b) dx = -\frac{1}{a}\cos(ax+b) + c \qquad \int \cos(ax+b) dx = \frac{1}{a}\sin(ax+b) + c
$$

