Deriving the Anti-Derivatives of Functions

Anti-Derivatives of Specific Functions

Rules for the anti-derivatives of specific can be found by applying the derivative rule in reverse.

Power Functions

We know that $\frac{d}{dx}(x^n) = nx^{n-1}$, $n \in \mathbb{Q}$ This can be thought of as multiply by the exponent then subtract 1 from the exponent.

Reversing this process: add 1 to the exponent then divide by the increased exponent.

$$\int x^n \, \mathrm{d}x = \frac{x^{n+1}}{n+1} + c, \qquad n \neq -1$$

Transforming to $f(ax + b): \frac{d}{dx} ((ax + b)^{n+1}) = a(n+1)(ax + b)^n$. Reversing this process $\int (ax + b)^n dx \frac{1}{a(n+1)} (ax + b)^{n+1} + c = \frac{(ax + b)^{n+1}}{a(n+1)} + c, \quad n \neq -1$

Hyperbolas

For n = -1,

if we were to add 1 to the exponent, the new exponent will be 0, but the derivative of x^0 is not $\frac{1}{x}$. $\frac{1}{x} = x^{-1} \Rightarrow x^{-1+1} = x^0 = 1$, but $\frac{d}{dx}(1) = 0 \neq \frac{1}{x}$

However, we know that $\frac{d}{dx}(\log_e(x)) = \frac{1}{x}$. Reversing this process: $\int \frac{1}{x} dx = \log_e(x) + c$.

Since the domain of $\log_e(x)$ is x > 0 not $x \in \mathbb{R} \setminus \{0\}$ like it is for $\frac{1}{x}$ the domain of the anti-derivative must be restricted. Depending on whether positive or negative x values are used are required, indicates what domain should be used for the anti-derivative.

If the domain is x < 0, the anti-derivative must be $\log_e(-x)$ so that the values of the log are real.

$$\int \frac{1}{x} \, dx = \log_e(x) + c, \qquad x > 0 \qquad \qquad \int \frac{1}{x} \, dx = \log_e(-x) + c, \qquad x < 0$$

Transformed Hyperbolas

For $\int \frac{1}{kx} dx$, we write the logarithm in terms of x rather than kx.

Break the fraction up: $\int \frac{1}{kx} dx = \int \frac{1}{kx} \frac{1}{x} dx = \frac{1}{k} \int \frac{1}{x} dx = \frac{1}{k} \log_e(x) + c, x > 0$

Transforming to
$$f(ax + b)$$
: $\frac{d}{dx}(\log_e(ax + b)) = \frac{a}{ax + b}$. Reversing this process
 $\int \frac{1}{ax + b} dx = \frac{1}{a}\log_e(ax + b) + c, x > -\frac{b}{a}$ $\int \frac{1}{ax + b} dx = \frac{1}{a}\log_e(-(ax + b)) + c, x < -\frac{b}{a}$

Exponential Functions

We know that $\frac{d}{dx}(e^x) = e^x$. Reversing this process: $\int e^x dx = e^x + c$ Transforming to f(ax + b): $\frac{d}{dx}(e^{ax+b}) = ae^{ax+b}$.

Reversing this process: $\int e^{ax+b} dx = \frac{1}{a}e^{ax+b} + c$

Circular Functions

We know that
$$\frac{d}{dx}(\sin(x)) = \cos(x)$$
 and $\frac{d}{dx}(\cos(x)) = -\sin(x)$.

Reversing these processes:

$$\int \sin(x) \, \mathrm{d}x = -\cos(x) + c \qquad \qquad \int \cos(x) \, \mathrm{d}x = \sin(x) + c$$

Transforming to
$$f(ax + b)$$
:
 $\frac{d}{dx}(\sin(ax + b)) = a\cos(ax + b)$ and $\frac{d}{dx}(\cos(ax + b)) = -a\sin(ax + b)$.

Reversing these processes:

$$\int \sin(ax+b) \, \mathrm{d}x = -\frac{1}{a} \cos(ax+b) + c \qquad \int \cos(ax+b) \, \mathrm{d}x = \frac{1}{a} \sin(ax+b) + c$$

