Bernoulli Distribution

Bernoulli Trials and Distribution

A discrete random variable that has only two possible outcomes: a success or a fail. It is named after Jacob Bernoulli.

The trials are independent of each other (the outcome of one trial has no influence over the outcome of another).

		$\Pr(V - r) = \int (1 - p) dr$	x = 0	(0 successes)
Pr(success) = p	$\Pr(failure) = 1 - p$	$PI(X - X) = \begin{cases} p, \\ p, \end{cases}$	x = 1	(1 success)

Sampling with replacement has independent events. Without replacement has dependent events.

Example

A fair standard 6-sided die is rolled once. The probability of getting x 6s is given by

$$\Pr(X = x) = \begin{cases} \frac{5}{6}, & x = 0\\ \frac{1}{6}, & x = 1 \end{cases}$$

The probability of rolling a 6 is $Pr(X = 1) = \frac{1}{6}$

The probability of not rolling a 6 is $Pr(X = 0) = \frac{5}{6}$

Example

A game of chance has a 0.3 probability of winning. One game is played. The probability of getting x wins is given by

$$\Pr(X = x) = \begin{cases} 0.7, & x = 0\\ 0.3, & x = 1 \end{cases}$$

The probability of winning is Pr(X = 1) = 0.3

The probability of not winning is Pr(X = 0) = 0.7

Example

A fair coin is flipped once. The probability of getting *x* heads is given by

$$\Pr(X = x) = \begin{cases} 0.5, & x = 0\\ 0.5, & x = 1 \end{cases}$$

x	0	1
$\Pr(X = x)$	0.5	0.5

The probability of the coin landing on heads is Pr(X = 1) = 0.5

The probability of the coin not landing on heads is Pr(X = 0) = 0.5

x	0	1
$\Pr(X = x)$	5	1
	6	$\overline{6}$

x	0	1
$\Pr(X = x)$	0.7	0.3