Logarithms

Logarithm

A logarithm is a quantity representing the exponent to which a fixed number (the base) must be raised to produce a given power. That is, the logarithm is the exponent of a power (exponential) with a given base.

The notation for a logarithm is read similar to that for sine, cosine, and tangent of an angle.

That is, $\log_2(16)$ is read as "the logarithm, base 2, of 16".

index / exponent / logarithm $2^4 = 16$

index / exponent / logarithm $\log_2(16) = 4$ base power

While calling logarithms exponents would be convenient, the concept of a logarithm was derived 150 years before the direct connection between logarithms and exponents was identified and so the name stuck.

Evaluating Logarithms

To evaluate the logarithm $\log_a(y)$ where $y = a^x$, ask yourself "what power of the base, a, is y?" The answer is the *x*th power: therefore the logarithm (exponent) is *x*. That is, $\log_a(y) = x$, where $y = a^x$.

Example

 $\log_3(9)$: What power of 3 is 9? The second power of 3, $3^2 = 9$. Therefore, $\log_3(9) = 2$.

Example

 $\log_{9}(3)$: What power of 9 is 3? The half power of 9, $9^{\frac{1}{2}} = 3$. Therefore, $\log_9(3) = \frac{1}{2}$.

Example

 $\log_2(0)$: What power of 2 is 0? No power of 2 is 0. Therefore, $\log_2(0)$ is undefined.

Example

 $\log_3\left(\frac{1}{9}\right)$: What power of 3 is $\frac{1}{9}$? The negative second power of 3, $3^{-2} = \frac{1}{2}$. Therefore, $\log_3\left(\frac{1}{\alpha}\right) = -2$.

Example

 $\log_2(1)$: What power of 2 is 1? The zeroth power of 2, $2^0 = 1$. Therefore, $\log_2(1) = 0$.

Example

 $\log_2(-8)$: What power of 2 is -8? All real powers of 2 are positive. Therefore, $\log_2(-8)$ is not a real number.

Estimating the Value of Logarithms

Most logarithms are not rational numbers. Therefore, it is beneficial to be able to approximate the value of a logarithm by considering powers of the base that are nearby.

Example

Between what two rational numbers is $\log_2(10)$: $2^3 = 8$ and $2^4 = 16$ So, $3 < \log_2(10) < 4$

Example

Between what two rational numbers is $\log_2\left(\frac{1}{10}\right)$: Between what powers of 2 is $\frac{1}{10}$? $2^{-4} = \frac{1}{16}$ and $2^{-3} = \frac{1}{8}$ So, $-4 < \log_2\left(\frac{1}{10}\right) < -3$

Example

Between what two rational numbers is $\log_3(50)$: $3^3 = 27$ and $3^4 = 81$ So, $3 < \log_3(50) < 4$

Example

Between what two rational numbers is $\log_9(5)$: Between what powers of 9 is 5? $9^{\frac{1}{2}} = 3$ and $9^{1} = 9$ So, $\frac{1}{2} < \log_9(5) < 1$

Example

Between what rational numbers is $\log_2(50)$: Between what powers of 2 is 10? Between what powers of 3 is 50? Between what powers of 2 is 50? $2^5 = 32$ and $2^6 = 64$ So, $5 < \log_2(50) < 6$

Example

Between what two rational numbers is $\log_8\left(\frac{1}{2}\right)$: Between what powers of 8 is $\frac{1}{2}$? $8^{-\frac{1}{3}} = \frac{1}{2}$ and $8^{-1} = \frac{1}{8}$ So, $-1 < \log_8\left(\frac{1}{3}\right) < -\frac{1}{3}$

Applying Exponentials as Operations

Usually with exponentials we apply an exponent to a number to obtain its powers, such as $2 = 2 \Rightarrow 2^3 = 8$.

However, we can also make the number we start with the exponent by introducing a base.

Example	Example	Example
3 + 4 = 7	7 - 4 = 3	x = 2
two to the power of both sides $\Rightarrow 2^{3+4} = 2^7$	two to the power of both sides $\Rightarrow 2^{7-4} = 2^3$	three to the power of both sides $\Rightarrow 3^x = 9$

Applying Logarithms as Operations

We can apply a logarithm to a number to find out, for a given base, what exponent gives it as a power.

Example	Example	Example
8 = 8	40 = 40	x = 4
logarithm base 2 of both sides $\Rightarrow \log_2(8) = 3$	logarithm base 2 of both sides $\Rightarrow \log_2(40) = 5.3219 \dots$	logarithm base 2 of both sides $\Rightarrow \log_2(x) = 2$

Exponentials and Logarithms as Inverses

The exponential finds the power given an exponent, the logarithm finds the exponent given a power. That is, exponentials, a^x , and logarithms, $\log_a(y)$, are inverse operations in the same way that addition and subtraction, multiplication and division, and powers and roots are.

Logarithm of an Exponential: $\log_a(a^x) = x$

The logarithm asks, "what is the exponent with this base whose power is this number?". If we apply a logarithm to an exponential with the same base, you get the exponent. For example, $\log_2(2^4)$ asks $2^{\Box} = 2^4$, $\Box = 4 = \log_2(2^4)$

Example
$2^3 = 8$
logarithm base 2 of both sides
$\Rightarrow \log_2(2^3) = \log_2(8)$
$\Rightarrow 3 = \log_2(8)$

Example $3^4 = 81$ logarithm base 3 of both sides $\Rightarrow \log_3(3^4) = \log_3(81)$ $\Rightarrow 4 = \log_3(81)$

Example

 $2^{5.3219...} = 40$ logarithm base 2 of both sides $\Rightarrow \log_2(2^{5.3219...}) = \log_2(40)$ $\Rightarrow 5.3219... = \log_2(40)$

Exponential of a Logarithm: $a^{\log_a(x)} = x$

The exponential asks, "what is the power of this base whose exponent this number?". If we exponentiate a logarithm using the same base you get the power. For example, $2^{\log_2(16)}$ asks $\log_2(\Box) = \log_2(16)$, $\Box = 16 = 2^{\log_2(16)}$

Example	Example	Example
$\log_3(81) = 4$	$\log_6(12) + \log_6(18) = 3$	$5\log_6(36) = 10$
three to the power of both sides	six to the power of both sides	six to the power of both sides
$\Rightarrow 3^{\log_3(81)} = 3^4$	$\Rightarrow 6^{\log_6(12) + \log_6(18)} = 6^3$	$\Rightarrow 6^{5\log_6(36)} = 6^{10}$
$\Rightarrow 81 = 3^4$	$\Rightarrow 6^{\log_6(12)} \times 6^{\log_6(18)} = 216$	$\Rightarrow \left(6^{\log_6(36)}\right)^5 = 6^{10}$
	$\Rightarrow 12 \times 18 = 216$	$\Rightarrow (6^2)^5 = 6^{10}$