21 Free Cheatsheets! Year 12 MATHS METHODS Unit 3 & 4 MATHS METHODS FREE Overview V1.98

FREE LESSONS AT: MathsMethods.com.au

You can download this book for free, get video lessons, exam questions and much more! All for free! Just sign up with your email.

Purpose of this book

Hello!

This is a brief overview of *Units 3 & 4 Mathematical Methods* to help you learn and revise more efficiently.

It was originally designed as a reference book for students who use the *online video tutorials* on **Maths**Methods.com.au but has since been used by many as their Bound Reference. Each page has a <u>clickable link</u> to direct you to the relevant video tutorial if you have access and there's plenty of other <u>free resources</u> if you don't!

Please note, like many of our resources, this overview is designed to reinforce *understanding* and may not use the exact notation you need to use when doing tests and exams.

Do well and I hope this overview makes the year a little less stressful for you :)

Kind regards

Alexander Bell | Author & Founder of MathsMethods.com.au

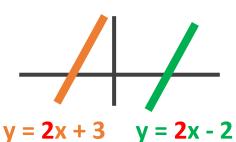
1. Purpose of the Book (Read First!)	page 2
2. Contents	page 3 to 8
3. TOPIC 1: Functions and Relations	page 9
4. Linear Equations	page 10
5. How to draw Parabolas	page 11
6. List of Main Functions	page 12
7. How to Sketch Any Function	page 13
8. Transformations	page 14
9. Matrix Transformations	page 15
10. Domain and Range	page 16
11. Reading Any Function	page 17
12. Sketching Functions in Intercept Form	page 18
13. Types of Functions – One to One and One to Many	page 19
14. Types of Functions – Odd, Even and Hybrid	page 20

15. Sum and Product of Functions	page 21
16. Inverse Functions	page 22
17. Composite Functions f(g(x))	page 23
18. Factorising Polynomials	page 24
19. Sketching Fraction Power Functions	page 25
20. Strictly Increasing	page 26
21. TOPIC 2: Algebra (Sin, Cos & Tan and Logs and Exponentials)	page 27
22. Exponential Laws	page 28
23. Understanding Logarithms	page 29
24. Log Laws	page 30
25. Sketching Logs and Exponentials	page 31
26. Inverse Functions: Logs and Exponentials	page 32
27. Sin, Cos and Tan Definitions	page 33
28. Radians	page 34

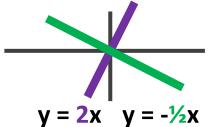
29. Exact Values	page 35
30. Exact Values – for larger numbers	page 36
31. Finding Angles (θ)	page 37
32. General Solutions for Sin, Cos and Tan	page 38
33. Understanding Sin, Cos & Tan Graphs	page 39
29. Sketching Sin, Cos & Tan Graphs	page 40
30. Sketching a Tough Cosine Graph	page 41
31. TOPIC 3: Calculus	page 42
32. What is Calculus?	page 43
33. The First Principle of Calculus	page 44
34. How to Sketch $f'(x)$ (The Derivative)	page 45
35. Finding $f'(x)$ (The Derivative)	page 46
36. Derivatives and Differentiating Definitions	page 47
37. Understanding dy/dx	page 48

38. The Chain Rule	page 49
39. The Chain Rule Formula List	page 50
40. The Product Rule and The Quotient Rule	page 51
41. Continuous and Differentiable	page 52
42. Finding the Equation of the Tangent Line	page 53
43. Stationary Points	page 54
44. Sketching using Stationary Points	page 55
45. Rate of Change	page 56
46. Antidifferentiation	page 57
47. How to Antidiff	
48. Why + <i>c</i> ?	page 59
49. Tougher Antidiffs	page 60
50. Approximate Area Under a Graph	
51. Integration – Exact Area	

56. Conditional and Independent Probability	52. Area Between Two Functions and Average Value	page 63
55. Basics of Probability	53. Kinematics – Displacement , Velocity and Acceleration	page 64
56. Conditional and Independent Probability	54. TOPIC 4: Probability and Statistics	page 65
56. Conditional and Independent Probability	55. Basics of Probability	page 66
58. Measures of Centre		page 67
59. Measures of Spread	57. Discrete Random Variables	page 68
59. Measures of Spread	58. Measures of Centre	page 69
61. Binomial Measure of Spread and Centre		page 70
62. Continuous Random Variables	60. Binomial Random Variables	page 71
63. Continuous Random Variables – Limits and Conditional	61. Binomial Measure of Spread and Centre	page 72
64. Continuous Random Variables – Measures of Centre page 7	62. Continuous Random Variables	page 73
· · · · · · · · · · · · · · · · · · ·	63. Continuous Random Variables – Limits and Conditional	page 74
65. Continuous Random Variables – Measures of Spread	64. Continuous Random Variables – Measures of Centre	page 75
	65. Continuous Random Variables – Measures of Spread	page 76


66. Normal Distribution - Basics	page 77
67. Normal Distribution - Examples	page 78
68. Normal Distribution – Using the Calculator	page 79
69. The Basics of Statistics	page 80
70. Sampling Distributions	page 81
71. Large Populations	page 82
72. Binomial and Normal Approximations	page 83
73. Confidence Intervals	page 84
74. Margin of Error	page 85
75. Final Thoughts & Extra Resources!	page 86
76. Distribution Information and Disclaimer	

Covered in detail in video tutorials, see LINEAR EQUATIONS


Gradient-Intercept Form

y = mx + c

m means gradient c means y-intercept Parallel means the same gradient

Perpendicular means *m*

Intercept Form

ax + by = c

To find x-intercept, make y = 0

To find y-intercept, make x = 0

Simultaneous equations means solving two or more equations at the same time.

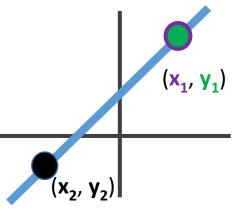
$$y = x$$

$$y = 4 - x$$

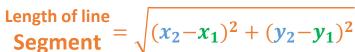
Substitution

$$y = 4 - x$$

Elimination

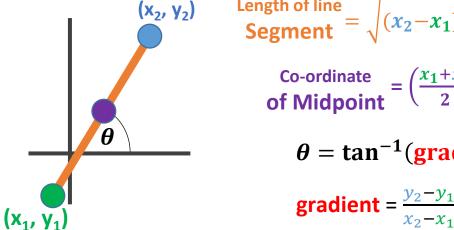

$$y + y = x + 4 - x$$

Two point Form


$$y - y_1 = m(x - x_1)$$

 $(\mathbf{x}_1, \mathbf{y}_1)$ is any point on the line

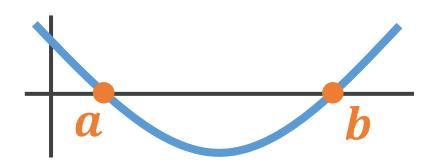
 (x_2, y_2) is any different point on the line



(0, c)

$$\theta = \tan^{-1}(\text{gradient})$$

gradient =
$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{\text{rise}}{\text{run}}$$

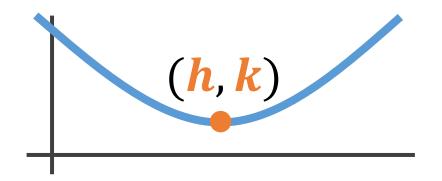

For more resources, see **Maths**Methods.com.au Want FREE RESOURCES on this topic? See LINEAR EQUATIONS (FREE VIDEO SERIES)

Covered in detail in video tutorials, see PARABOLAS & QUADRATICS

Intercept Form

y = d(x - a)(x - b)

- 1. See if positive or negative
- 2. Draw in x intercepts (which are a and b)
- 3. Find y intercept (make x = 0)

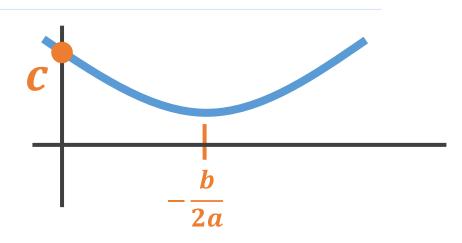


Turning Point Form

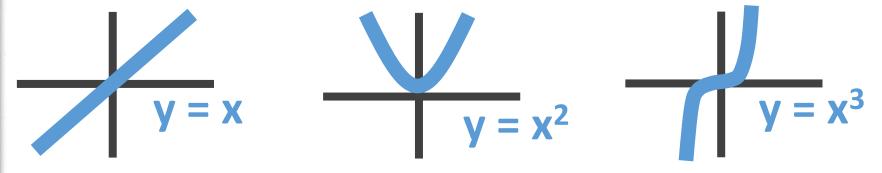
$$y = a(x - h)^2 + k$$

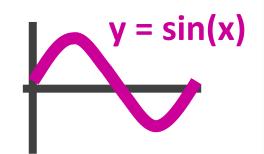
MathsMethods.com.au

- 1. See if positive or negative
- 2. Draw in turning point (h, k)
- 3. Find intercepts (make x = 0 and then y = 0)

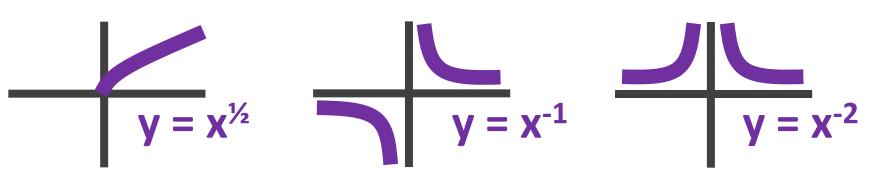


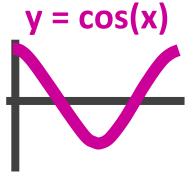
General Form

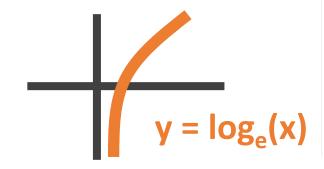

- 1. See if positive or negative
- 2. Draw in y-intercept
- 3. Find x-intercepts if there are any
- $x \text{ intercepts} = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$

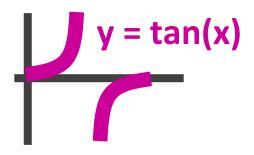

 $y = ax^2 + bx + c$

4. Find turning point




Covered in detail in video tutorials, see **HOW TO SKETCH ANY FUNCTION**


Maths Methods.com.au





(-2,3)

Covered in detail in video tutorials, see <u>TRANSLATION – MOVING FUNCTIONS</u> and <u>STRETCHING AND REFLECTING</u>

$$y = \frac{4}{4-x} + 1$$

$$y=3\sqrt{6-2x}+1$$

1.
$$y = 3(6-2x)^{\frac{1}{2}}+1$$

2.
$$y = 3(-2(x-3)^{\frac{1}{2}} + 1$$

$$4-x$$
1. $y = 4(4-x)^{-1} + 1$

2.
$$y = 4(-(x-4))^{-1} + 1$$

2.
$$y = 3(-2(x-3)^{\frac{1}{2}} + 1)$$

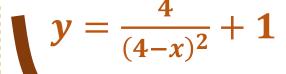
$$2. y = 3(-2(x-3)^{\frac{1}{2}} + 1$$

5. Negative in front of x, flip around the y-axis

(4,1)

MathsMethods.com.au

5. Negative in front of y,

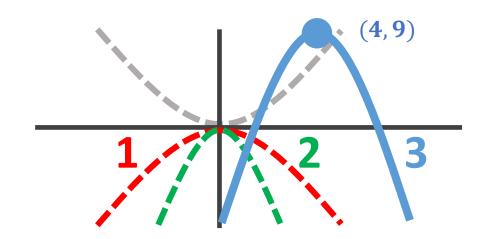

flip around the x-axis

5. Negative in front of
$$x$$
, flip around the y -axis

$$y = -\sqrt{2x+4}+3$$

1.
$$y = -(2x+4)^{\frac{1}{2}} + 3$$

$$y = -(2(x+2))^{\frac{1}{2}} + 3$$



5. Negative in front of
$$x$$
, flip around the y -axis $(4, 1)$

1.
$$y = 4(4-x)^{-2} + 1$$

2.
$$y = 4(-(x-4))^{-2} + 1$$

Want FREE RESOURCES on this topic? See HOW TO SKETCH ANY FUNCTION

$$x^2 \rightarrow -(2(x-4))^2 + 9$$

$$-f(x) = -x^2$$

$$f(2x) = -(2x)^2$$

- 2. Followed by a dilation of factor ½ from the y-axis
- $f(x-4)+9=-(2(x-4))^2+9$

MathsMethods.com.au

3. Then a translation of 4 units in positive x-direction and 9 units in the positive y-direction

$$f\left(\frac{1}{a}x\right)$$
 is a dilation of factor a from the y-axis (in the x-direction)

f(-x) is a reflection in the y-axis -f(x) is a reflection in the x-axis

bf(x) is a dilation of factor b from the x-axis (in the y-direction)

f(x) + k is a translation along the y-axis f(x - h) is a translation along the x-axis

Positive Power

$$x^2 = 1 \times x \times x$$

$$x^1 = 1 \times x$$

$$x^{0} = 1$$

Covered in detail in video tutorials, see **EXPONENTIAL LAWS (POWER LAWS)**

Negative Power

$$\frac{x^m}{x^n} = x^{m-n}$$

$$x^{-1} = \frac{1}{x}$$

$$x^{-n} = \frac{1}{x^n}$$

Fraction Power

$$x^{\frac{1}{2}} = \sqrt{x}$$

$$x^{\frac{1}{m}} = \sqrt[m]{x}$$

$$x^{\frac{m}{n}} = \sqrt[n]{x^m} = \left(\sqrt[n]{x}\right)^m$$

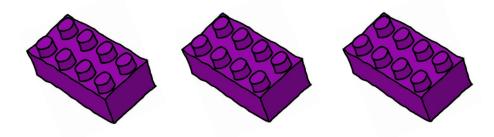
Maths Methods.com.au

$$x^m x^n = x^{m+n}$$

$$(x^m)^n = x^{mn}$$

$$\left(\frac{x}{y}\right)^n = \frac{x^n}{y^n}$$

Log is power


log₂ = 3

How many 2s are multiplied together

 $2^3 = 8$

Logarithm is a Greek word

Logos means how many there are

Arithmos means number

2

Logarithm originally means how many numbers

$$y = -3e^{(2x+1)} - 2$$

1) Find any reflections

reflected in x-axis

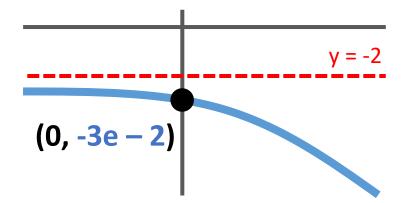
2) Find asymptote y = -2

3) Find intercepts

y-intercept,
$$x = 0$$

no x-intercepts

Maths Methods


$$y = -3e^{2x+1} - 2$$

$$y = -3e^{2(0)+1}-2$$

$$y = -3e^1 - 2$$

4) Domain R, Range (C, ∞)

Domain R, Range (-∞, -2)

$$y = log_e(-2x + 4) - 3$$

1) Find any reflections reflected in y-axis

2) Find asymptote (-2x+4) = 0 x = 2

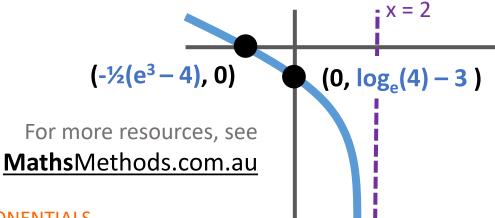
3) Find intercepts

y-intercept,
$$x = 0$$

$$y = \log_e(4) - 3$$

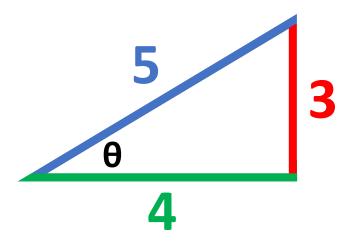
x-intercept, y = 0

$$0 = \log_{e}(-2x + 4) - 3$$


$$3 = \log_{e}(-2x + 4)$$

$$e^3 = -2x + 4$$

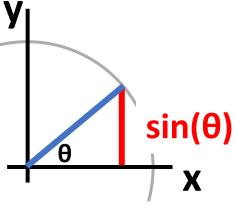
$$x = -\frac{1}{2}(e^3 - 4)$$

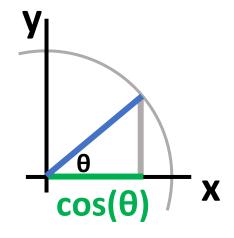

4) Domain (asymptote, ∞), Range R

Domain (-∞, 2), Range R

Covered in detail in video tutorials, see **DEFINITIONS OF SIN AND COS** and **THE UNIT CIRCLE**

SOH CAH TOA

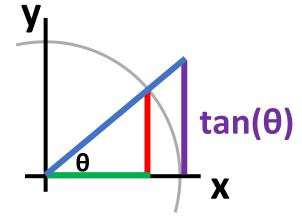

$$sin(\theta) = \frac{Length of Opposite}{Length of Hypotenuse} = \frac{3}{5}$$

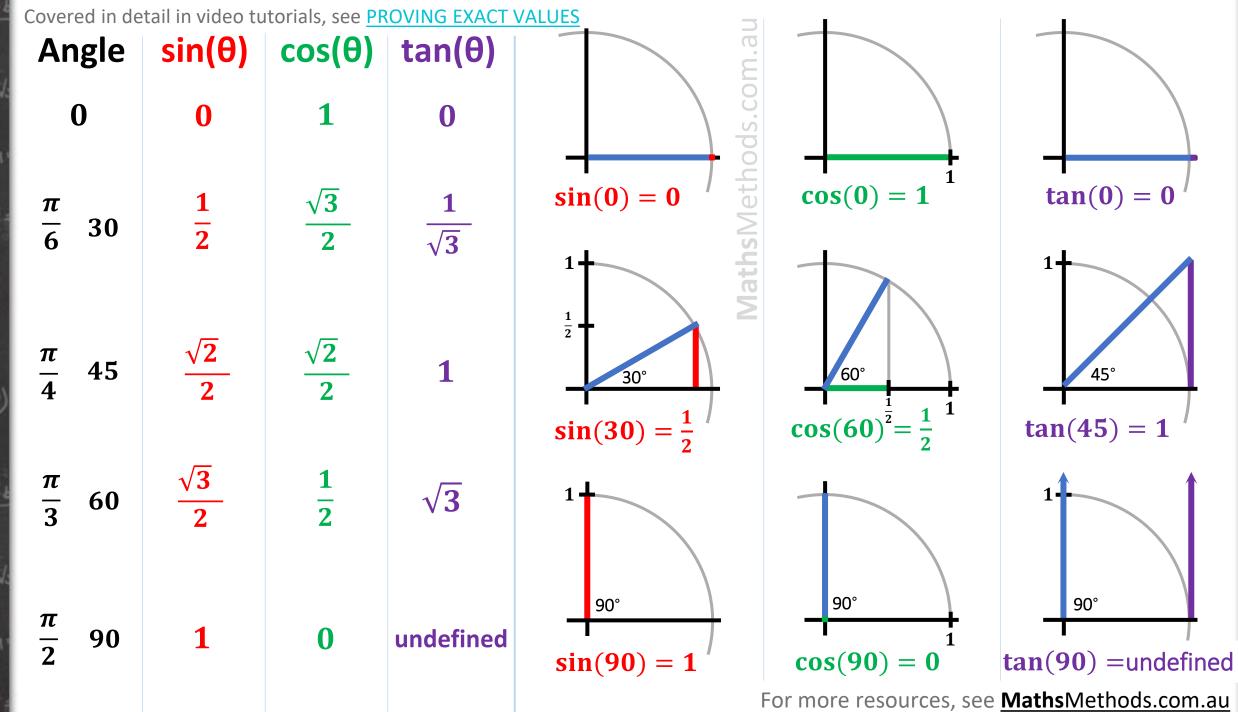

$$cos(\theta) = \frac{Length \text{ of } Adjacent}{Length \text{ of } Hypotenuse} = \frac{4}{5}$$

$$tan(\theta) = \frac{Length \text{ of } Opposite}{Length \text{ of } Adjacent} = \frac{3}{4}$$

In a unit circle, **hypotenuse** always = 1

 $sin(\theta)$ = Length of **Opposite** $cos(\theta)$ = Length of **Adjacent**




MathsMethods.com.au

Tangent is a line which touches a circle only at one point.

 $tan(\theta)$ is the length of the tangent, cut off by the x axis and the radius.

Graphing SIN or COS in two different forms

Covered in detail in video tutorials, see **SKETCHING SIN, COS & TAN**

$$y = Asin(k(x - b))$$

- 1. Draw in starting point and amplitude
- 2. Period = $\frac{2\pi}{k} = \pi$
- 3. Divide period into 4 = $\frac{\pi}{4}$
- 4. Add and subtract this to starting point

$$y = 3\sin 2\left(x - \frac{\pi}{4}\right)$$

$$0 / \frac{\pi}{4} = \frac{\pi}{2} = \frac{3\pi}{4} = \pi$$

y = Asin(kx) + c

- 1. Draw in vertical translation and A
- 2. Period = $\frac{2\pi}{k} = \pi$
- 3. Write in period and divide it by 4
- 4. Find intercepts (see next page)

$$y = 3\cos(2x) + 1$$

$$\frac{1}{\pi}$$

$$\frac{2\pi}{2}$$

Graphing **TAN**

$$y = Atan(k(x - b)) + c$$

- 1. Draw in starting point (b, c)
- 2. Period = $\frac{\pi}{k} = \frac{\pi}{2}$
- 3. Divide period into 2 = $\frac{\pi}{4}$
- 4. Add and subtract this to starting point
- 5. Draw in asymptotes

$$y = 3\tan\left(2\left(x - \frac{\pi}{4}\right)\right) + 1$$

$$\frac{\pi}{4} \quad \frac{\pi}{2} \quad \frac{3\pi}{4} \quad \pi$$

Want FREE RESOURCES on this topic? See SKETCHING CIRCULAR FUNCTIONS

Derivative of \boldsymbol{x}

$$f(x) = 5x^4 \qquad f'(x) = 4 \times 5x^3$$

- Multiply the \boldsymbol{x} by the power
- Minus one from the power

$$f(x) =$$
any number $f'(x) = 0$

example

$$f(x) = 6x^5 - 3x^{\frac{2}{3}} + 2x^{-1} - 4$$

$$f'(x) = 5 \times 6x^4 - \frac{2}{3} \times 3x^{-\frac{1}{3}} + -1 \times 2x^{-2} + 0$$

Other derivatives

$$f(x) = e^x$$
 $f'(x) = e^x$

$$f(x) = \ln(x)$$
 $f'(x) = \frac{1}{x}$

MathsMethods.com.au

$$f(x) = \sin(x)$$
 $f'(x) = \cos(x)$

$$f(x) = \cos(x)$$
 $f'(x) = -\sin(x)$

$$f(x) = \tan(x)$$
 $f'(x) = (\sec(x))^2$


$$f'(x) = 5 \times 6x^4 - \frac{2}{3} \times 3x^{-\frac{1}{3}} + -1 \times 2x^{-2} + 0 \qquad (\sec(x))^2 = \frac{1}{(\cos(x))^2} \qquad f'(x) = y' = \frac{dy}{dx} = \frac{d}{dx}(y)$$

The Chain Rule

is used when functions are inside other functions

Covered in detail in video tutorials, see THE CHAIN RULE

$$y = f(g(x))$$

Steps of the Chain Rule

- 1. Determine outside function
- 2. Derive it but ignore inside function
- 3. Rewrite the inside function
- 4. Find derivative of inside function
- 5. Multiply it by derivative of the inside function

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

is exactly the same as

$$\frac{dy}{dx} = f'(g(x)) \times g'(x)$$

Chain Rule (short version)

- 1. Derive outside function
- 2. Multiply it by derivative of the inside function

example 1

$$y=2\big(x^3-5\big)^5$$

1.
$$5 \times 2(x^3 - 5)^4$$

$$\frac{dy}{dx} = 5 \times 2(x^3 - 5)^4 \times 3x^2 \qquad 2. \frac{dy}{dx} = \cos(3x^2 - 4) \times 6x$$

example 2

$$y = \sin(3x^2 - 4)$$

1.
$$f(x) = \sin(x)$$
$$f'(x) = \cos(x)$$

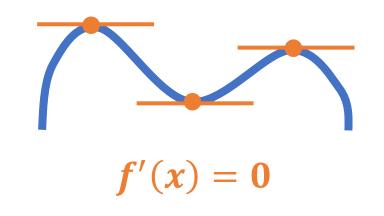
$$2. \frac{dy}{dx} = \cos(3x^2 - 4) \times 6x$$

 $\frac{dy}{dx} = f'(g(x)) \times g'(x)$

Covered in detail in video tutorials, see THE CHAIN RULE

$$f(x) = \sin(g(x)), \qquad f'(x) = g'(x)\cos(g(x))$$

$$f(x) = \cos(g(x)), \qquad f'(x) = -g'(x)\sin(g(x))$$


$$f(x) = \tan(g(x)), \qquad f'(x) = g'(x)\sec^2(g(x))$$

MathsMethods.com.au

$$f(x) = e^{g(x)}, \qquad f'(x) = g'(x)e^{g(x)}$$

$$f(x) = \ln(g(x)), \qquad f'(x) = \frac{g'(x)}{g(x)}$$

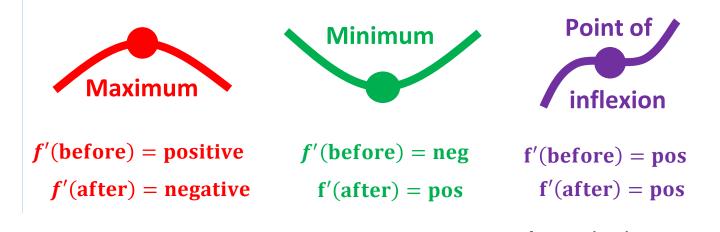
Stationary point means where the gradient of the curve is zero.

Types of S.P absolute maximum point of inflexion local minimum

How to find stationary points $f(x) = 2x^3 + 1$

1. Find f'(x) = 0 and solve for x

$$f'(x) = 6x^2$$
 $6x^2 = 0$ $x = 0$


2. Sub x value into f(x) Stationary point

$$f(0) = 2(0)^3 + 1 = 1$$
 at $(0, 1)$

3. To find type: Sub in two \boldsymbol{x} values (before and after the S.P.)

$$f'(-1) = 6(-1)^2 = 6$$
 $f'(1) = 6(1)^2 = 6$ positive positive

It is a point of infection (see diagram below)

Brackets with any power*

$$f(x) = \int (3x+1)^{-5} dx$$

1. Add 1 to the power

$$-5 + 1 = -4$$

2. Multiply this by number in front of the \boldsymbol{x}

$$-4 \times 3 = -12$$

3. Divide by this number

$$f(x) = \frac{(3x+1)^{-4}}{-12} + c$$
*except -1

Brackets with a -1 power

$$f(x) = \int (3x+1)^{-1} dx$$

- 1. Put it inside **ln**
- 2. Divide by number in front of the \boldsymbol{x}

$$f(x) = \frac{1}{3}\ln|3x + 1| + c$$

$e^{x} f(x) = \int e^{7x} dx$

- 1. Write down e^{kx} again
- 2. Divide by number in front of the \boldsymbol{x}

$$f(x) = \frac{1}{7}e^{7x} + c$$

Sine and Cosine

$$f(x) = \int \cos(5x+2)dx$$

- 1. Rewrite with sin
- 2. Divide by number in front of the \boldsymbol{x}

$$f(x) = \frac{1}{5}\sin(5x+2) + c$$

$$f(x) = \int \sin(3x+2)dx$$

- 1. Rewrite with negative cos
- 2. Divide by number in front of the \boldsymbol{x}

$$f(x) = -\frac{1}{3}\cos(3x+2) + c$$

$$f(x) = \ln(3x^2 + 1)$$
 Find $f'(x)$ and therefore find $\int \frac{x}{3x^2 + 1} + e^{5x} dx$

1. Differentiate function

$$\frac{d}{dx}\ln(3x^2+1) = \frac{6x}{3x^2+1}$$

2. Make it look like inside the integral

$$\frac{d}{dx}\ln(3x^2+1) = \frac{6x}{3x^2+1}$$

$$\frac{1}{6} \times \frac{d}{dx} \ln(3x^2 + 1) = \frac{x}{3x^2 + 1}$$

$$e^{5x} + \frac{1}{6} \times \frac{d}{dx} \ln(3x^2 + 1) = \frac{x}{3x^2 + 1} + e^{5x}$$

3. Antidiff it!

MathsMethods.com.au

$$\int e^{5x} + \frac{1}{6} \times \frac{d}{dx} \ln(3x^2 + 1) dx = \int \frac{x}{3x^2 + 1} + e^{5x} dx$$

$$\frac{1}{5}e^{5x} + \frac{1}{6}\ln(3x^2 + 1) + c = \int \frac{x}{3x^2 + 1} + e^{5x} dx$$

$$\int \frac{x}{3x^2+1} + e^{5x} dx = \frac{1}{5}e^{5x} + \frac{1}{6}\ln(3x^2+1) + c$$

Kinematics is the subject about how objects move

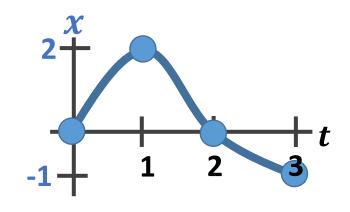
x = displacement

$$\frac{dx}{dt}$$
 = velocity

 $\frac{dv}{dt}$ = acceleration

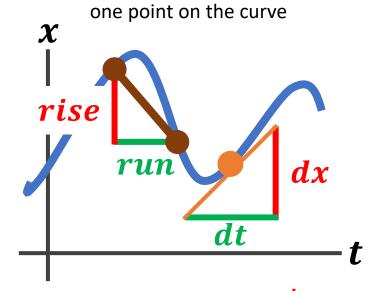
MathsMethods.com.au

Differentiate →


 $x = \frac{dx}{dt} = \frac{dv}{dt}$

← Antidifferentiate

Distance means how far something has moved



Displacement means how far away something is

time	0	1	2	3
Distance	0	2	4	5
Displacement	0	2	0	-1

Instantaneous means gradient

Average means $\frac{rise}{run}$

two points on the curve

instantaneous velocity =
$$\frac{dx}{dt}$$
average velocity =
$$\frac{rise}{run}$$

Covered in detail in video tutorials, see RANDOM VARIABLES and DISCRETE RANDOM VARIABLES

Discrete Random Variable is a letter that represents an outcome in terms of countable numbers

Usually use capital letter X

Races won (out of 3)

Sum of a die when rolling 3 times

$$Pr(X = 2)$$

$$Pr(X = 8)$$

MathsMethods.com.au

A few rules

If you add all the Pr(X), it will = 1

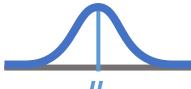

Pr(X = x) is always positive and never larger than 1

To find $Pr(a \le X \le b)$, just add up all Pr(X) from a to b

Want FREE RESOURCES on this topic? See DISCRETE RANDOM VARIABLES

Example: 10 balls in a bag: 4 blue and 6 orange

If picking 3 balls at a time (with replacement), what is probability of only getting one blue ball?

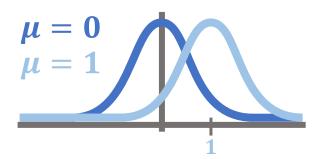


Outcome	X	Pr(X)
BBB	3	$0.4 \times 0.4 \times 0.4 = 0.064$
BBO	2	$0.4 \times 0.4 \times 0.6 = 0.096$
BOB	2	$0.4 \times 0.6 \times 0.4 = 0.096$
OBB	2	$0.6 \times 0.4 \times 0.4 = 0.096$
OOB	1	$0.6 \times 0.6 \times 0.4 = 0.144$
OBO	1	$0.6 \times 0.4 \times 0.6 = 0.144$
BOO	1	$0.4 \times 0.6 \times 0.6 = 0.144$
000	0	$0.6 \times 0.6 \times 0.6 = 0.216$

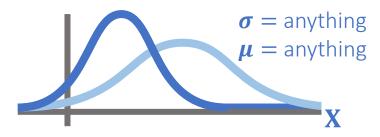
$$Pr(X = 1) = 0.144 + 0.144 + 0.144 = 0.432$$

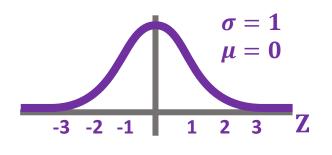

Covered in detail in video tutorials, see NORMAL DISTRIBUTION and NORMAL DISTRIBUTION – USING STANDARD NORMAL DISTRIBUTIONS

Normal Distribution is a probability density function that looks like this:



In a normal distribution mean = mode = median


Standard deviation is how stretched the distribution is

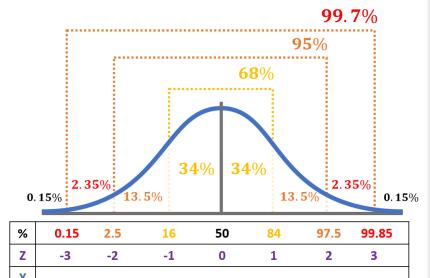

Mean is how far over it has been moved

Normal Distribution

Standard Normal Distribution

$$z = \frac{x - \mu}{\sigma}$$

z = how many standard deviations


x = value on x-axis

 $\mu = \text{value of the mean}$

 σ = value of one standard deviation

Using Standard Normal

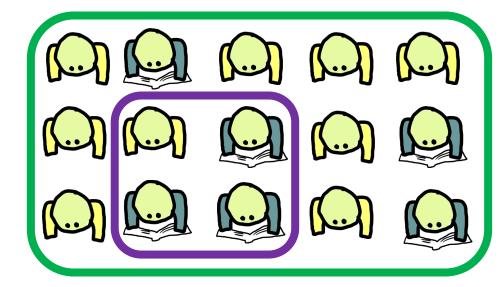
- L) Put in mean in X row
- 2) Add and subtract standard deviation

MathsMethods.com.au

Use this template for any normal distribution, just add the values in \mathbf{X} row. Then just read off the graph!

Covered in detail in video tutorials, see WHAT ARE STATISTICS?

Statistics is the subject of collecting, summarizing and showing information in a way that can be analyzed to learn more about the group.



Like Soft Drink	600
Don't like it	400

60% of people like Soft Drink!

Population basically means an entire group that has something in common

Sample means a small part of the population

Population proportion means how many have a certain attribute compared to the entire population

$$p = \frac{\text{How many with attribute}}{\text{Total popluation}}$$

Sample proportion means how many have a certain attribute compared to the entire sample

$$\hat{p} = \frac{\text{How many with attribute}}{\text{Total number in sample}} = \frac{1}{4}$$

Example. A bag has 6 orange balls and 4 blue ones. Find the probability there is one blue ball in a sample of 4.

$$Pr(B000) = \frac{4}{10} \times \frac{6}{9} \times \frac{5}{8} \times \frac{4}{7} = \frac{2}{21}$$

2. Find amount of combinations

$$\begin{pmatrix} 4 \\ 1 \end{pmatrix} = 4$$

3. Multiply Probability by combinations

$$\Pr(\hat{p} = \frac{1}{4}) = \frac{2}{21} \times 4 = \frac{8}{21}$$

For more resources, see **Maths**Methods.com.au

Want FREE RESOURCES on this topic? See STATISTICS (FREE VIDEO)

Final thoughts & extra resources!

Hope you have enjoyed this material! If you have any comments or feedback, please feel free to contact me at alex@mathsmethods.com.au. Good luck!

Free Exam Questions with Worked Solutions

Click here to access

Free Calculus Mini Course

Click here to access

Maths Methods Workshop

Register your seat!

Kind regards

Alex Bell | Founder of **Maths**Methods.com.au

Maths Methods Video Tutorials

The whole year in detail with plenty of practice questions and exam-style tests!

Year 12: Get instant access!

Year 11: Get instant access!

More Free resources!

Get informed about your last years in Secondary School. It's worth a read!

1. Understanding ATAR

How ATAR is Calculated
How SACs Affect Your ATAR
Why Life Doesn't Depend on ATAR

2. Study Techniques

How to Study Effectively

Exam Technique for Better Marks

How to Make a Bound Reference

3. More Resources

Maths Methods Discussion Group
Maths Methods Music Videos

Did you like these cheatsheets?

Get the full Maths Methods Overview!

The full 87 page downloadable book!

Maths Methods.com.au/overview