Chapter 3 Financial Maths

	Recurrence Relation	Application	Explicit Rules	Graphs	Mathematica
					command#
Arithmetic Sequences D Common difference	$t_0 = \mathbf{a}, t_{n+1} = t_n + \mathbf{D}$ D = any term – previous term = $t_1 - t_0 = t_2 - t_1 = t_3 - t_2$	Linear growth or decay For linear growth, D > 0. For linear decay, D < 0.	$t_n = \frac{t_0}{1} + n * \frac{D}{2}$		1 Table/List 2 Graph 3 Write Explicit Rule 4 Future value 9 Finding D 10 Finding D with %
Geometric Sequences R Common Ratio	$t_0 = \mathbf{a}, t_{n+1} = \mathbf{R} * t_n$ Common ratio R = $\frac{\text{any term}}{\text{the previous term}} = \frac{t_1}{t_0} = \frac{t_2}{t_1} = \frac{t_3}{t_2} = \dots$	Exponential Growth or decay Graphs of geometric sequences for R > 0 are: - ↑ increasing when R is greater than 1 (R > 1), - ↓ decreasing towards zero when R is less than 1 and greater than zero (0 < R < 1).	$t_n = \mathbf{R}^n * \mathbf{t_0}$		5 Table/List 6 Graph 7 Write Explicit Rule 8 Future value 11 Finding R 12 Finding R ↓ 13 Finding R ↑
Arithmetic Sequences	$v_0 = principal, v_{n+1} = v_n + D$ $D = \frac{r}{100} \times v_0$	Simple Interest	$v_n = v_0 + n * D$		16a Interest in \$ 16b Table graph 16c Future Value
D	$v_{0} = \underline{Initial Value}, v_{n+1} = v_{n} - \underline{D}$ $D = \frac{r}{100} \times v_{0}$	Flat Rate Depreciation	$v_n = v_0 - n * D$	A, 100 	18a depreciate \$ 18b Table graph 18c Future Value
difference	$v_{0} = Initial Value, v_{n+1} = v_{n} - D$ $D = Unit cost in dollars$	Unit Cost Depreciation	$v_n = v_0 - n * D$	A. 100	<mark>19a</mark> Table graph <mark>19b</mark> Future Value
Geometric Sequences R	$v_0 = principal, v_{n+1} = \mathbf{R} * v_n$ $\mathbf{R} = 1 + \frac{r}{100}$	Compound Interest	$v_n = \mathbf{R}^n * v_0$		17a Common Ratio 17b Table graph 17c Future Value
Common Ratio Growth Factor Decay factor	$v_{0} = Initial Value, v_{n+1} = R * v_{n}$ $R = 1 - \frac{r}{100}$	Reduced Balance Depreciation	$v_n = \mathbf{R}^n * \mathbf{v_0}$		20a Common Ratio 20b Table graph 20c Future Value

Note: Yellow parts need real number, blue parts are formula to calculate, Letter P indicates Compounding monthly etc. Needing rate per month, Monthly Ratio etc.