NAME	DESCRIPTION	EXAMPLE	Mathem atica
Row matrix	A matrix with only 1 row	[3 2 1-4]	Nil
Column matrix	A matrix with only I column	[2] 3]	Nil
Square matrix	the number of rows equals the number of columns	[5 4] 4 2] 2 × 2	Nil
Zero (Null) matrix	A matrix with all zero entries	$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$	Nil
Summing matrix	A row or column matrix in which all the elements are 1. To sum the rows of an m × n matrix, post-multiply the matrix by an n × 1 summing matrix. To sum the columns of an m × n matrix, pre-multiply the matrix by a 1 × m summing matrix.		4a Or 12 Step by step

NAME	DESCRIPTION	EXAMPLE	Mathe matica
Transpose of a matrix	a new matrix that is formed by interchanging the rows and columns.	$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix} \qquad \mathbf{A^T} = \begin{bmatrix} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \end{bmatrix}$	3d
Symmetric matrices	A matrix ${\bf A}$ is called <u>symmetric</u> if ${\bf A}^{T} = {\bf A}$	[2 3] [3 1] [3 4] [1 2 4 6] [3 1] [3 1 5] [4 5 3] [4 5 3 8] [6 7 8 5]	3d
Diagonal matrices	if all of the elements off the leading diagonal are zero.	$\begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 6 \end{bmatrix}$	Nil
ldentity matrices	This is denoted by the letter I and has zero entries except for 1's on the diagonal.	$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} I = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$	5a
Inverse matrices	A square matrix A has an inverse if there is a matrix A^{-1} such that: $AA^{-1} = I$	If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, then its inverse, A^{-1} , is given by $A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \frac{1}{\det(A)} \begin{bmatrix} d & -b \\ -a \end{bmatrix}$ provided $\frac{1}{ad - bc} \neq 0$; that is, provided $\det(A) \neq 0$.	5b inverse 5c Complicated Inverse 5d Determinant

	MATRICES OPERATIONS			
	Matrices Operations	Mathematica Commands	Matrices Operations	Mathematica Commands
	Insert matrix	1	Power of a Matrix	4b
	Define a matrix (given a letter name)	2	Simultaneous Equations/ Matrices	6a or 6b 6c Matrices → Equations 6d Equations → Matrices
se ed	Adding, subtracting, scalar multiplication	3	Solving unknow Matrix by given matrix equation	10
nt	Two matrices multiplication	4a or 12	Constructing a Matrix by given i, j rule	11

NAME	DESCRIPTION	EXAMPLE	Mathe matica
Triangular matrices	1. An upper triangular matrix: all elements below the leading diagonal are zeros. 2. A lower triangular matrix: all elements above the leading diagonal are zeros.	[1 2 3]	Nil
Binary matrices	A special kind of matrix that has only 1s and zeros as its elements.	$\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \qquad \begin{bmatrix} 0 \\ 1 \end{bmatrix} \qquad \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$	Nil
Permutation matrices	A square binary matrix in which there is only one '1' in each row and column.	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$	4a Or 12 Step by step

NAME	DESCRIPTION	EXAMPLE	Mathem atica
Transition matrices	Used to describe the way in which transitions are made between two states. Recurrence Relation: $S_0 = \underset{\text{initial value}}{\text{initial value}}, S_{n+1} = T * S_n$ Explicit Rule: $S_n = T^n * S_0$ Steady State: determine values for a long run $S = T^{50} * S_0 = T^{51} * S_0$	Rented in Bendigo Colac [0.8 0.1] [0.2 0.9] [0.8 colace Returned to	7 Or 9 to work previous matrix
Transition matrices With Extra	$ \begin{array}{l} \textbf{Recurrence Relation:} \\ S_0 = \underbrace{\textbf{initial value}}_{S_{n+1}} = T * S_n + \underbrace{\textbf{B}}_{S_n} \\ \textbf{Steady State:} \text{ determine values for a long run} \\ \textbf{S} = T^{50} * S_0 + \textbf{B} = T^{51} * S_0 + \textbf{B} \\ \end{array} $		7 Or 9 previous matrix 10 Extra matrix

THE INVERSE OF A MATRIX

• THIS SECTION FURTHER DEVELOPS THE ALGEBRA OF MATRICES. TO BEGIN, CONSIDER THE REAL NUMBER EQUATION

• TO SOLVE THIS EQUATION FOR X, MULTIPLY EACH SIDE OF THE EQUATION BY A^{-1} (PROVIDED THAT $A \neq 0$). AX = B

 $(A^{-1}A)X = A^{-1}B$

 $(I)X = A^{-1}B$

 $X = A^{-1}B$

<u> Module 1 - Matrices</u>

ypes of matrices:

- → Square matrix: a matrix that has the same number of rows and columns
- → Transpose matrix: swapping the rows and columns of the matrix an using the new order to make a new one

$$\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}^T = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

→ Binary matrix: a matrix made up of only 2 values

$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

→ Zero matrix: all elements are zero

- → Permutation matrix: a matrix with 1 in every row that only occurs once
- → Identity matrix: a matrix where the 1s are in the diagonal and the remaining elements are zeros

$$I = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 4 & 6 \\ 2 & 1 & 5 & 7 \\ 4 & 5 & 3 & 8 \end{bmatrix}$$
e diagonal

- → Symmetric matrix: where the elements reflect each other across the diagonal
- → Triangular matrix: where the elements above the leading diagonal are zeros (upper triangular) or below the diagonal (lower triangular)
- → Communication matrix: a square binary matrix where the 1s represent the direct (one-step) communication links.
- Speaker
- To identify two-step communication links (how to communicate through somebody to get to someone), square the original matrix.
- Add C and C2 to find the overall one- step and two-step communication matrix. T.
- Redundant communication link: when the sender and receiver are the same person.

All of the non-zero elements in the leading diagonal of a communication matrix, or its powers, represent redundant links in the matrix.

→ <u>Dominance matrix</u>: an square binary matrix where the 1s represent the one step dominances between members of the group.

Add D and D2 to find the overall one-step and two - step dominance matrix. T.

Usually an arrow towards one member means it is being dominated.

Usually the row has the winner and the columns, the loser

· Matrix arithemetic

→ Addition and subtraction: matrices need to be the same order if they are added or subtracted.

$$A + B = \begin{bmatrix} 2 & 3 & 0 \\ 1 & 4 & 2 \end{bmatrix} + \begin{bmatrix} 1 & 2 & 3 \\ 2 & -2 & 1 \end{bmatrix}$$

- → Multiplication: using scalar multiplication (multiplying the matrix by a number)
- The number of columns of the first matrix must = number of rows of the second matrix
- Matrix 1 order: 2x3 and Matrix 2 order: 3x4
 So order of matrix 1 x matrix 2 = 2x4

$$AC = \begin{bmatrix} 6 & 0 \\ -4 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix}; \text{ order of } AC \ 2 \times 1$$

$$\text{order: } (2 \times 2) (2 \times 1)$$

- → Summing matrix:
- To sum the rows of an m x n matrix, post-multiply the matrix by an n x 1 summing matrix.
- To sum the columns of an m x n matrix, pre-multiply the matrix by a 1 x m summing matrix.
- $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \quad \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}$
- → Squaring matrices: only square matrices can be given powers

· The inverse matrix

- → When the inverse matrix is multiplied with its inverse, the product is an identity matrix.
- → Only square matrices can be inversed.
- \rightarrow Inverse of A = A⁻¹

· The determinant

- → When determinant is 0 = there is no inverse
- → When determinant is a negative or positive number = has an inverse

$$\rightarrow$$

If
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, then the determinant of matrix A is given by:
$$\det(A) = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = a \times d - b \times c$$

If
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, then its inverse, A^{-1} , is given by
$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \frac{1}{\det(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$
provided $\frac{1}{ad - bc} \neq 0$; that is, provided $\det(A) \neq 0$.

· Solving simultaneous equations with matrices

$$4x + 2y = 5$$
$$3x + 2y = 2$$

could be written as the matrix equation:

$$\begin{bmatrix} 4 & 2 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 5 \\ 2 \end{bmatrix}$$

$$X = A^{-1}C$$

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ -1.5 & 2 \end{bmatrix} \begin{bmatrix} 5 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3 \\ -3.5 \end{bmatrix} \text{ or } x = 3 \text{ and } y = -3.5$$

AX = B

To solve for X **pre-multiply** both sides by inverse of A so, $X = A^{-1} B$

To solve for X **post-multiply** both sides by inverse of A so, **X** = **BA**⁻¹

- → When equations are inconsistent: their graphs do not cross (parallel)
- Determinant = 0
- → When equations are dependent: the graphs coincide infinitely (no unique solution)
- Determinant = 0

· Transition matrices

→ Example:

- Transition matrix for the diagram: Returned to
- → Recurrence relation: $S_0 = initial matrix$, $S_{n+1} = T \times S_n$
- → Recurrence rule: $S_n = T^n \times S_0$
- → Steady state matrix: determining values for the long-run
- Given by $S = T^{50} / T^{51} \times S_0$ (note that n may be higher values for predicting larger numbers)

LIFE CYCLE TRANSITION DIAGRAM

Leslie matrices

An $m \times m$ Leslie matrix has the form

$$L = \begin{bmatrix} b_1 & b_2 & b_3 & \cdots & b_{m-1} & b_m \\ s_1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & s_2 & 0 & \cdots & 0 & 0 \\ 0 & 0 & s_3 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & s_{m-1} & 0 \end{bmatrix}$$

where:

- m is the number of age groups being considered
- s_i , the survival rate, is the proportion of the population in age group i that progress to age group i+1
- $lue{b}_i$, the birth rate, is the average number of female offspring from a mother in age group i during one time period.

Leslie matrix and its interpretation

From age group

$$L = \begin{bmatrix} 0 & 1.4 & 1.2 & 0.3 \\ 0.6 & 0 & 0 & 0 \\ 0 & 0.5 & 0 & 0 \\ 0 & 0 & 0.1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 To age group

This is a Leslie matrix with 4 age groups. The corresponding life-cycle transition diagram is shown here.

Recursive rules

The population matrix S_n is an $m \times 1$ matrix representing the size of each age group after n time periods. This is calculated using a recursive formula

 S_0 is the initial state matrix, $S_{n+1} = LS_n$

or the explicit rule

$$S_n = L^n S_0$$

Limiting behaviour of Leslie matrices

Often we will find that, after a long enough time, the proportion of the population in each age group does not change from one time period to the next. This happens if we can find a real number k such that $LS_{n+1} = kS_n$ for some sufficiently large n. This does not happen with every Leslie matrix as we see in Example 13.