

Essential Mathematics for the Victorian Curriculum CORE Year 10

Cambridge University Press

The area of a two-dimensional shape is the number of square units contained within its boundaries.

Some of the common area formulas are as follows.

The 'height' in a triangle, parallelogram or trapezium should be **perpendicular** (at 90°) to the base.

The formula for finding the area (*A*) of a circle of radius *r* is given by the equation: $A = \pi r^2$.

When the diameter (*d*) of the circle is given, determine the radius before calculating the area of the circle: $r = d \div 2$.

A sector is a portion of a circle including two radii.

The angle of a sector of a circle determines the fraction of the circle. A full circle is 360°.

• This sector is $\frac{\theta}{360}$ of a circle.

 $A = \pi r^2$

• The area of a sector is given by $A = \frac{\theta}{360} \times \pi r^2$

Surface area of a cylinder

A **cylinder** is a solid with a circular **cross-section**.

- The net contains two equal circles and a rectangle. The rectangle has one side length equal to the circumference of the circle.
- TSA = 2 circles + 1 rectangle
 - $=2\pi r^2+2\pi rh$
- Another way of writing $2\pi r^2 + 2\pi rh$ is $2\pi r(r+h)$.

Volume is the amount of three-dimensional space within an object.

The volume of a solid with a uniform cross-section is given by $V = A \times h$, where:

- *A* is the area of the cross-section.
- *h* is the perpendicular (at 90°) height.

Capacity is the volume of a given object measured in litres or millilitres.

Units for capacity include:

• 1 L = 1000 mL

• $1 \text{ cm}^3 = 1 \text{ mL}$

Measurement Summary Notes

Use decimals in Measurement

Finding Circumference

Converting AREA Units

AREA consists of Square Units, so we need to SQUARE all our Lengths.

Area of 2D shapes

Volume of 3D shapes

Surface Area of 3D Shapes

Name of the Solid	Figure	Total Surface Area	Nomenclature		
Cube	a	6a ²	a : side of cube	Ą	Nets
Cuboid	h	2(1b + bh +h1)	l : length b : breadth h : height		Cuboid
Cone		πr(l+r)	r : radius of base h : height l : slant height	Square-based Pyramid	Triangular Prism
Cylinder	h	2πr(r+h)	r : radius of base h : height	Cone	Cylinder
Sphere	· 1/	4πr ²	r : radius	8	

Pythagoras Theorem

Trigonometry

Α

Essential Mathematics for the Victorian Curriculum IS CORE Year 10 Pl

ISBN 978-1-108-87859-3 © Greenwood et al. 2021 Camb Photocopying is restricted under law and this material must not be transferred to another party.

Cambridge University Press