
Chapter summary 185

Significant Figures

e.g. 213 270 is 2.13 × 105 in
scientific notation to 3 significant figures.
0.000429 1 is 4.3 × 10–4 in scientific
notation to 2 significant figures

These are counted from left to right
from the first non-zero digit

Index form am

a  is the base.
m is the index/power/exponent.

Index form    Expanded form 
       54    =    5 × 5 × 5 × 5 

e.g. 3 × a  × b × a  × a  × b  = 3a 3b2

Indices

Find the lowest common 
denominator and combine.

e.g. LCD is 6.x
2

2x
3

+
3x
6

4x
6

+=
7x
6

=

Adding/subtracting 
algebraic fractions

Algebra

Negative indices

a −m = 1
am

e.g. x−3 = 1
x 3

= 4 × 23 = 32e.g. 4
2−3

1
a−m = am

Factorising
This is the opposite of expanding
Factorised form    Expanded form
     2(x + 4)      =         2x + 8
Look for highest common
factor of terms.
e.g. 3ab + 6a
       = 3a (b + 2)
       −2x 2 − 6x 
       = −2x (x + 3)

HCF is 3a.

HCF is −2x.

 7y 7y

Simplifying expressions

Add/subtract like terms only. Like
terms have the same pronumeral
factors.
e.g. 3x and 7x, 2xy and 4yx ,
not 2x and x 2 or 3y and 4xy.
For example,
3x + 2y − x + 7y = 3x − x + 2y  7y + 
                           = 2x + 9y

Expanding

a (b + c ) = ab + ac

e.g. 2(4x + 3) = 8x + 6
     −3x (2x − y ) = −6x 2 + 3xy

a (b − c ) = ab − ac

Used for very large and small numbers
in the form a × 10m, where 1 ≤ a < 10
or −10 < a ≤ −1.
3 870 000 = 3.87 × 106

0.000 21 = 2.1 × 10−4

Index laws

Zero power: a 0 = 1 when a ≠ 0.

For a repeated percentage 
increase or decrease, the rule  
can be

A0 is the initial amount
r is % rate
n is the amount of time.
Use ‘+’ for growth
and ‘−’ for decay.

Multiply/Divide

3a  × 2b = 3 × 2 × a  × b
= 6ab

7xy
14y

1 1

1
2 = x

2

Algebraic expressions

4 terms
3 is the constant term.

x.
− y.

Multiplying/dividing 
algebraic fractions

Multiply: Cancel common factors
in factorised form and then multiply.

e.g.

Divide: Multiply by the reciprocal of
the fraction following the ÷ sign.

Reciprocal of     is    . a
b

b
a

= 12x

3(x + 4)
2

8x  
x  + 4

×
1

1 1

4

, where

3xy

Exponential growth and decay

+ 7x − 4y + 3

r
100

A = A0  (          )1 ±
n

am  × an  =  am + n

am  ÷ an  =  am − n

(am) n = am × n

(ab)m  =  a m × b m 

(   )m  =a
b

a m

b m

Law 1:
Law 2:
Law 3:
Law 4:
Law 5:
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Solving linear equations

the value that makes an
equation true.
e.g. 2x + 5 = 9

2x = 4 (subtract 5)
x = 2 (divide by 2)

Equations

e.g. 4 −2x > 10 (−4)
          −2x > 6 (÷ −2)
              x < −3 (reverse sign)

Solving word problems

1
2  Set up equation(s).
3  Solve equation(s).
4  Check each answer and write in words.

Formulas
Some common formulas 
e.g. A = πr 2, C = 2πr
An unknown value can be found by substituting
values for the other variables.
A formula can be rearranged to make a
different variable the subject; i.e. the variable is
out the front on its own.
e.g. E = mc 2 m when , find E = 320 and c = 4.

320 = m × 4 2 (substitute values)
320 = 16 m
20 = m (divide both sides by 16)
m = 20 (Write the answer with m on the left.)

Inequalities
These are represented using >, <, ≥, ≤
rather than = .
e.g. x > 2

Solving inequalities uses the same steps as
solving equations, except when multiplying
or dividing by a negative number. In this
case, the inequality sign must be reversed.

2 not included

3 4
x

20 1−1
e.g. x ≥ 2 2 is included

3 4
x

20 1−1

Solving linear equations that
have brackets

    of the equation.

    to one side (usually the LHS).

e.g. 
12(x + 1) − 2(3x − 3) = 4(x  + 10)
   12x + 12 − 6x + 6 = 4x  + 40
                    6x + 18 = 4x + 40
                    2x + 18 = 40
                            2x = 22
                              x = 11

Graphical solutions of
simultaneous equations
Graph each line and read 
off point of intersection.

Parallel lines have no
intersection
point.

e.g. 2x + y = 12        [1]
       y = x + 3         [2]

In [1] replace y with [2]:
 2x + (x + 3) = 12
         3x + 3 = 12
                3x = 9
                  x = 3
Sub. 3 to find y.x =
In [2] y = 3 + 3 = 6
Solution is (3, 6).

Elimination

have a matching pair.
Add two equations if
matching pair has
different sign; subtract
if same sign.

e.g.         x + 2y = 2    [1]
             2x + 3y = 5    [2]
[1] × 2:   2x + 4y = 4   [3]
[3] − [2]:          y = −1
In [1]:  x + 2(−1) = 2
                x − 2 = 2

                        x = 4
Solution is (4, −1).

Substitution

e.g.

− 2 = 73x
4

= + 2 to both sides)9 (first

21 (first

3x
4

3x = 36 (× 4 both sides)
x = 12 (÷ 3 both sides)

x = 13 (÷ 2 to both sides)

e.g.

= 7

2x − 5 =  ×3 to both sides)
2x = 26 (+5 to both sides)

2x − 5
3

Simultaneous equations

Equations with fractions
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