Formula Sheet

Core – Data analysis

standardised score	$z = \frac{x - \overline{x}}{s_x}$				
lower and upper fence in a boxplot	lower $Q_1 - 1.5 \times IQR$ upper $Q_3 + 1.5 \times IQR$				
least squares line of best fit	$y = a + bx$, where $b = r \frac{s_y}{s_x}$ and $a = \overline{y} - b\overline{x}$				
residual value	residual value = actual value – predicted value				
seasonal index	seasonal index = $\frac{\text{actual figure}}{\text{deseasonalised figure}}$				

Core - Recursion and financial modelling

first-order linear recurrence relation	$u_0 = a, \qquad u_{n+1} = bu_n + c$
effective rate of interest for a compound interest loan or investment	$r_{effective} = \left[\left(1 + \frac{r}{100n} \right)^n - 1 \right] \times 100\%$

Module 1 – Matrices

determinant of a 2×2 matrix	$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \qquad \det A = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$
inverse of a 2×2 matrix	$A^{-1} = \frac{1}{\det A} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$, where $\det A \neq 0$
recurrence relation	$S_0 = \text{initial state}, \qquad S_{n+1} = TS_n + B$

Module 4 - Graphs and relations

gradient (slope) of a straight line	$m = \frac{y_2 - y_1}{x_2 - x_1}$
equation of a straight line	y = mx + c

Significant figures vs. Decimal places

- Significant Figures
- → All non- zero values are significant
 - 4.2 (2 sig figs)
- → All zeros in between are significant

40002 (5 sig figs)

- Or, in the case of decimal values: 4.0002 (5 sig figs)
- \rightarrow **Decimal values**
 - 1. All final zeros after the decimal point are significant

4.200 (4 sig figs)

2. All leading zeros after a decimal point are NOT significant

0.000422 (3 sig figs)

 \rightarrow Terminal zeros don't count UNLESS there is a decimal point at the end

420 (2 sig figs)
420. (3 sig figs)
420. 0 (4 sig figs)

• Decimal places

ightarrow Involves rounding values after the decimal point to however many decimal places

422.347

Round to 2 decimal places : 422 . 35

422.344

Round to 2 decimal places : 422 . 34

ightarrow Money must always be rounded to 2 decimal places or "to the nearest cent"

273.245 = 273.25 (to 2 decimal places)

273.245 = 270 (to 2 significant figures)

Topics	Data	a Types	Display/Analyse Tools		Report/Explain/Interpret/Describe			
Univariate	Categorical	Nominal data	Bar chart <mark>A3</mark> , Pie Cha	rt, Frequency	Mode A1/ Mod	lal Value		
Data	variables	Ordinal data	Table A1 P7, Segmen	e A1 P7, Segmented bar chart A4 A2 Frequency t		ypes, Frequency % = $\frac{count}{Total Count} \times 100\%$		
	Numerical	Discrete data		Stem plot	Shape →	Symmetric	Skewed	
	variables		Boyplots A6 P8	A14/A13, dot	Centre \rightarrow	A5 Mean \bar{x}	A6 Median M or Q_2	
		Continuous	Frequency Tables	Stem plot	Outliers \rightarrow	Standard Deviation S P19-21	(A7 Lower Fence = $Q_1 - 1.5 * IQR$	
		data		A14/A13,	P7		A8 Upper Fence = $Q_3 + 1.5 * IQR$	
				histogram A9/		x_{16}^{x-x}	Ab 5-figure summary: Min, ρ_{1} ρ_{2} ρ_{3} Max	
				loghistogram A12		A10 2-score - 2 - $\frac{S}{S}$	$IQR=Q_3 - Q_1$, Range=Max–Min	
						$\frac{A10}{2}x = x + 2 + 3$		
Bivariate Data	Two categor	ical variables	Segmented bar chart	A4, two-way	Mode/ Modal V	Value		
	One categor	ical one	frequency table, para	allel bar chart A3	Frequency type			
	numerical va	ariable	dot plots, parallel bo	x plots A15P8	Centre \rightarrow	Symmetric	Skewed \sim	
					Spread →P11	Standard Deviation S	IQR, Range	
	Two numerio	cal variables	Scatterplot B1		Strength →	Strong/Moderate/Weak (Check r value) B1		
	§ Interpolation	/	Explanatory explains/prec	Response	Direction \rightarrow	Positive / Negative		
			variable	variable	Form ->P12P14	Linear / Non-linear		
		,	residual = actual data value	y - predicted <mark>B3</mark> value y	regression line			
	Minimum Maximum Input value input value	Interpolation	Nil pattern residual plo	t <mark>P13 P14</mark> = Linear	y=a+bx	Reporting P12 P14 on Coefficient	ent of Determination r^{*} B1	
	The assumptions	for fitting a least	relation		<mark>B4</mark> P13 slope	Annost $\begin{bmatrix} r & \text{in } / 0 \end{bmatrix}$ of $\begin{bmatrix} \mathbf{N} & \mathbf{y} \end{bmatrix}$ can		
	squares line 1. the data is nun	nerical	Curved/ patterned resi	dual plot ≠ linear	$b = \frac{rs_y}{s_y}$			
	2. the association	n is linear ear outliers	relation		B5 P14 intercept			
Timo Sorios	Eestures		Moving cmg	othing <mark>D17</mark>	$a = \overline{y} - b\overline{x}$	Seasonal Index S.L. DE	Decosconalising D6	
D1(Plot)	Peacures P16					Seasonal muex S.I. Do		
D7(Fitted	Trend 🗠 🛌	Мо	ving Mean Moving Med		ian <mark>D4/D5</mark>	S.I.= $\frac{Value \ for \ Season}{Vaarly \ Amerga a}$	Deseasonalised Figure =	
Line)	Cycles	3/5 moving	2/4 Moving mean	Jan Feb Mar Apr May Jun 10 12.5 6 5 24 19 10 6 6 19 19	Jui Aug Sep Oct Nov Dec 13 7.5 8.5 10 7 15 13 8.5 8.5 8.5 10	Tearly Average	$\frac{Actual Figure}{S.I.} = Actual Figure * \frac{1}{S.I.}$	
D8(Prediction)	Structure	18.1	18.1	25	- raw data	Yearly		
P10	change	24.8 $\frac{18.1+24.8+26.4}{3} = 23.1$	24.8 26.4 24.8 +26.4 26.4 2 =25.6 21.45+25.6 2 =23.525	15-	,	Average= $\frac{Sum of Season Values}{No of Season per year}$	Actual figure= Deseasonalised	
	Outliers			10	Len!	No.07 Season per year	Figure * S.I.	
	1. Y			5				

Stretching transformation: Squared & recipricol transformation Compressing transformation: Logarithmic transformation

C1(need laptop speed) /C2(old)

Log (Base 10) Scale

Logarithms

A logarithm, or log, is a power or exponent or index of a number. That is the log of a^b is b. For example the logs of 2^3 , 5^4 , and 10^6 are 2, 3, and 6 respectively.

Log (Base 10) Scale

The log (base 10) scale is based of exponentials of base 10, i.e. $10, 10^2, 10^3, 10^4$. Using the log (base 10) scale allows data ranging over several order of magnitude to be displayed.

Converting Between Forms using the Log (Base 10) Scale

 $\log value = \log_{10}(data value)$

data value $= 10^{\log value}$

Data Value	0.001	0.01	0.1	10^n	1	10	100	1000
Log Form	$\log_{10} 0.001$	$\log_{10} 0.01$	$\log_{10} 0.1$	$\log_{10}10^n$	$\log_{10} 1$	$\log_{10} 10$	$\log_{10}100$	$\log_{10}1000$
Log Value	-3	-2	-1	n	0	1	2	3
Exponent Form	10 ⁻³	10 ⁻²	10 ⁻¹	10^n	10 ⁰	10 ¹	10 ²	10 ³

One Word Description:

Stretching transformation

x-values

v-values

Compressing

Transformation

Stretching and

Transformation

Compressing

x² stretches high

y² stretches high

Graph of

Transformation:

The Normal Distribution

<u>Core: Data Analysis</u>

X], [category Y] had [value Y]....etc.

- → The distribution has a [range/IQR/standard dev.] of [value]
- \rightarrow The distribution has a **[mean/median/mode]** of **[value]**
- \rightarrow The distribution **[has/has no]** outliers.

Positively skewed

Negatively skewed

- Measures of centre
- \rightarrow The median: **no. of values +1** ÷ 2
- \rightarrow <u>The mean</u>: sum of all values ÷ no. of values
- \rightarrow <u>The mode</u>: **most repeated value / class interval**
- Measures of spread
- $\rightarrow \underline{IQR}$: $\mathbf{Q}_3 \mathbf{Q}_1$
- \rightarrow The range: **max value min value**

<u>Note:</u>

 \rightarrow Standard deviation and mean:

Do not use if data has outliers or is skewed

- \rightarrow Median:
- Use in any case
- \rightarrow <u>The standard deviation</u>: gives the average variation around the mean

• The five number summary and boxplots

- → How to make sure if a value is an outlier or not: calculate lower and upper fence and see if it lies outside either fence.
 - Lower fence: Q₁ IQR x 1.5

- Upper fence: Q₃ + IQR x 1.5

whisker box whisker minimum Q_1 M Q_3 maximum median

Report:

 \rightarrow One boxplot:

The distribution is positively skewed with **[outliers/no outliers]**. The distributon is centered at **[value]**, the median value. The spread of the distribution, as measured by the IQR, is **[value]** and, as measured by the range **[value]**. If outliers present: There are **[value]** many outliers: **[list of outliers]**

 \rightarrow Comparing two boxplots:

The distributions at **[variable name]** are **[positively/negatively/symmetrically]** skewed for both **[boxplot variables]**. There **[are/are no]** outliers. The median **[variable name]** is higher for **[boxplot 1]**, **(M= value)**, than **[boxplot 2]**, **(M= value)**. The IQR is also greater for **[boxplot 1]**, **(IQR= value)**, than **[boxplot 2]**, **(IQR= value)**. The range of **[variable name]** is also greater for **[boxplot 1]**, **(R= value)**, than **[boxplot 2]**, **(R= value)**.

• Mean vs. Median to describe measures of centre

 \rightarrow <u>Choose either mean or median if</u>: data is symmetric and has no outliers.

 \rightarrow <u>Choose only median if</u>: data is skewed and there are outliers.

The 68-95-99.7 %rule

- 68% of the data lie within one standard deviation of the mean
- **95%** of the data lie within two standard deviations of the mean
- I <u>99.7 % of the data lie within three standard deviations of the mean.</u>

Standard scores

- Image: standard scores:z = actual value mean value ÷ s.d
- Actual score: x = mean value + standard score x s.d
- I <u>Standard scores can be both positive and negative:</u>
- Positive: actual score lies above the mean
- <u>Negative</u>: actual score lies below the mean
- <u>Zero:</u> actual score is equal to the mean

I Worked example:

Subject	Mark	Mean	Standard Deviation
Psychology	75	65	10
Statistics	70	60	5

If we assume that the *marks* are *normally distributed*, then *standardisation* and the 68–95–99.7% *rule* give us a way of resolving this issue.

Let us standardise the marks.

Psychology: standardised mark
$$z = \frac{75-65}{10} = 1$$

Statistics: standardised mark $z = \frac{70-60}{5} = 2$

What do we see? The student obtained a higher score for Psychology than for Statistics. However, relative to her classmates she did better in Statistics.

- Her mark of 70 in Statistics is equivalent to a z-score of 2. This means that her mark was two standard deviations above the mean, placing her in the top 2.5% of students.
- Her mark of 75 for Psychology is equivalent to a z-score of 1. This means that her mark was only one standard deviation above the mean, placing her in the top 16% of students. This is a good performance, but not as good as for statistics.

Box and Whisker Plots

- Response and explanatory variable
- \rightarrow Explanatory variable: independent variable (x)
- \rightarrow <u>Response variable</u>: dependent variable (y)
- · Association between two categrorical variables
- → <u>Displayed through:</u> segmented bar chart, two-way table, parallel bar charts

Report:

→ <u>Worked example: Is there an association between</u> interest in sports and age group?

Yes, the percentage of males with a high level of interest in sport steadily decreases with age group from 56.5 % for the 'under 18 years' age group, to 35.0% for the '36-50 years' age group.

- Association between numerical and categorical variables
- → <u>Displayed through</u>: back- to-back stem plots; for more than 2 EV categories: parallel dot-plots, parallel boxplots

Report:

 \rightarrow Similar distributions

The shape of distribution A is **[symmetric/positively/negatively skewed/bi-modal]**. Distribution A has a **[range/IQR/standard deviation]** of **[value]**, similarly Distribution B has a **[range/IQR/ standard dev.]** of **[value]**. Distribution A has a **[mean/median/mode]** of **[value]**, similarly Distribution B has a **[mean/median/mode]** of **[value]**. Distribution A and B **[have/have no]** outliers. Distributions have no association (because they are similar in almost everything, hence they can't be an association as there is no variation in results)

 \rightarrow Different disributions

The shape of distribution A is **[symmetric/positively/negatively skewed/ bi-modal]** whereas the shape of distribution B is **[symmetric/positively/negatively skewed/ bi-modal]**. Distribution A has a **[range/ IQR/standard dev.]** of **[value]** whereas Distribution B has a **[range/ IQR/standard dev.]** of **[value]**. Distribution A has a **[mean/median/mode]** of **[value]**. Distribution A **[has/has no]** outliers while Distribution B **[has/has no]** outliers. They both have an associaton.

- talk about how the increase in IQR, median (increases/decreases) and shape/skew (becomes more positively skewed as age increases, for example) all support the association between both variables.

	Age group $(\%)$						
Interest in	Under 18	19–25	26–35	36–50			
sport	years	years	years	years			
High	56.5	50.2	40.7	35.0			
Medium	30.1	34.4	36.8	45.8			
Low	13.4	13.4	22.5	20.3			
Total	100.0	100.0	100.0	100.0			

- · Association between two numerical variables
- → Displayed through: scatterplots

Report:

There is a [strong/moderate/weak], [positive/negative],[linear/non-linear] relationship between [response variable y] and [explanatory variable x]. There [are/are no] clear outliers.

- → <u>Pearson's correlation coefficient (r)</u>: helps determine association
- It can only be used assuming that :
 - 1. There are **no outliers** in the data
 - 2. The variables are numeric
 - 3. The association is linear
 - ...Otherwise it could give misleading information!!
- \rightarrow The coefficient of determination (r^2):

Report:

[**r**² **x 100**] % of the variation in [**response variable**] is explained by the variation in [**explanatory variable**] and [**remaining** %] is explained by other factors.

<u>Remember</u>: When square-rooting r^2 to gain r value, identify whether the relationship is negative or positive and accordingly, r will take on a (–) or a (+)

Strong positive association:r between 0.75 and 0.99Moderate positive association:r between 0.5 and 0.74Weak positive association:r between 0.25 and 0.49No association:r between -0.24 and +0.24Weak negative association:r between -0.25 and -0.49Moderate negative association:r between -0.5 and -0.74Strong negative association:r between -0.75 and -0.99

<u>Note:</u> Even if variables swap, r value will always remain the same

- Least squares regression line
- \rightarrow Minimises the sum of the squares of the residuals
- $\rightarrow\,$ The assumptions for the least squares line is the same as for the correlation coefficient
- → Equation of line: a+bx

 $= a = \overline{y} - b\overline{x}.$

- \rightarrow <u>r</u> : correlation coefficient
- \rightarrow s_x and s_y : standard deviations of x and y
- $\rightarrow \overline{x} \text{ and } \overline{y}$: the mean values of x and y
- \rightarrow <u>Interpolation</u>: predicting **within** the range of data
- → Extrapolation: predicting **outside** the range of data

Report:

 \rightarrow Slope (b):

On average, **[response variable] [increases/decreases]** by **[b units]** for every one unit increase in **[explanantory variable]**

 \rightarrow y- intecept (a):

When [explanatory variable] is 0, [response variable] is predicted to be [a units]

- Residuals: distance between the individual data points and the regression line
- \rightarrow <u>Residual value</u>: **actual value predicted value**
- → Residuals can be positive, negative or zero:
- Data points above regression line: positive residual
- Data points below residual line: negative residual
- Data points on the line: zero residual
- \rightarrow <u>Residual plots</u>: plot of the residual value for each data value
- → Random scatters indicate a linear relationship

Report:

The residual plot shows a **[random scatter/ curved patter]** indicating there is a **[linear/non-linear]** relationship between **[response variable]** and **[explanatory variable]**

• A complete regression analysis

Report:

 \rightarrow Strength:

There is a [strong/moderate/weak], [positive/negative],[linear/non-linear] relationship between [response variable y] and [explanatory variable x]. There [are/are no] clear outliers.

 \rightarrow Least squares line:

The equation of the regression line is : **[response variable]= [a] + [b]** x **[explanatory variable]**

 \rightarrow Slope (b):

On average, **[response variable] [increases/decreases]** by **[b units]** for every one unit increase in **[explanantory variable]**

 \rightarrow y- intecept (a):

When [explanatory variable] is 0, [response variable] is predicted to be [a units]

 \rightarrow The coefficient of determination:

The coefficient of determination indicates that $[r^2 \times 100]$ of the variation in [response variable] is explained by [explanatory variable]

 \rightarrow Residual plot:

The residual plot shows a **[random scatter/ curved patter]** indicating there is a **[linear/non-linear]** relationship between **[response variable]** and **[explanatory variable]**

- The square transformation: $y = a + b (x^2)$
- $\rightarrow \ \underline{x^2 \ transformation:}$ spreads out the high x-values relative to lower x values
- \rightarrow <u>y² transformation</u>: stretches out y-values
- $\rightarrow \underline{x-axis}: x^2 \text{ values/ } x \text{ values}$ $\underline{y-axis}: y \text{ values/ } y^2 \text{ values}$
- The log transformation: y = a + b (log x)
- \rightarrow Log x transformation: compresses the higher x values

relative to lower x values

- → Log y transformation: compresses the higher y values relative to lower y values
- \rightarrow <u>x- axis:</u> log x values/ x values
- \rightarrow <u>y-axis:</u> y values/ log y values
- The reciprocal transformation: y= a+ b (1/x)
- → <u>1/x transformation</u>: compresses larger x values relative to lower x values
- → <u>1/y transformation</u>: compresses larger y values relative to lower y values
- \rightarrow <u>x- axis:</u> 1/x values/ x values
- \rightarrow <u>y-axis:</u> y values/ 1/y values
- The circle of transformations

<u>Note</u>: If the transformed data has a high r^2 , and if its residual plot is scattered, then it is a very appropriate transformation to use

0

- Features of a time series plot:
- I Trend: increase/decrease in values

- Doesn't follow a set seasonal pattern, the cycles _ change from time to time
- I Seasonality: present when there is a periodic movement in a time series that has a calendarrelated period (years, months, weeks)
- Follows a set seasonal pattern
- I Structural change: present when there is a sudden change in the pattern of the graph and it occurs for a time frame (is not sudden like an outlier).
- It takes a while for the data to return to its original _ structure.
- Outliers: out-standing values that occur suddenly (unlike structural change) and after which the plot is able to return to its normal structure.

trend line

rend lin

I Irregular (random) fluctuations: includes all variations in a time series

- Moving near smoothing • Three moving mean: smoothed $y_2 = \frac{y_1 + y_2 + y_3}{3}$ (in this case, for y_2) • Five moving mean: smoothed $y_3 = \frac{y_1 + y_2 + y_3 + y_4 + y_5}{5}$ (in this case, for y_3)
- Removes irregular fluctuations better than 3-mean smoothing
- \rightarrow <u>Two-mean smoothing with centring</u>: (in this case, centred at Tuesday)

- This process is similar for the four-moving mean smoothing

24.8 26.4 13.9 12.7 14.2

- Moving medians: can be better than moving means if there are outliers in the data
- \rightarrow <u>Three-moving median:</u> the y-value that is in between the other two y values becomes the median point.
- → <u>Five-moving median:</u> similar to three-moving median but with 5 values

- Seasonal indices
- \rightarrow Seasonal indices always add up to one whole, so that the sum equals the number of seasons (for ex: seasons are months so seasonal indices add up to 12)
- \rightarrow The average seasonal index is always 1:
- If the seasonal index =1.2 = 120% = 20% above average
- If the seasonal index = 0.8 = 80% = 20% lower than average

 \rightarrow <u>Deseasonalising data</u>:

actual figure / seasonal index

<u>Note:</u> After smoothing or Deseasonalising, you **get rid of seasonality**, **cyclic nature etc**, hence smoothed data cannot be described as seasonal etc.

The only thing quality it contains is **trend**; increasing, decreasing or no trend at all.

- Removes seasonality from time series plot
- Revealed a clear underlying trend in the data
- Actual figure :
 deseasonalised figure x seasonal index
- Seasonal index :
 value for the one season / seasonal average (find the mean value of the season)

<u>Note:</u> To obtain actual value, deseasonalised data needs to be reseasonalised

- I Seasonal indices for several years' data: simply find the average of all the seasonal indices from all the years for each season.
- <u>Correcting for seasonality</u>: 100 / seasonal index
- Ex: 100/0.8= 125, the sales should be increased by 25%

Fitting a trend line and forecasting

- I Fitting a trend line:
- Fit a least square regression line into the data/ graph (if given)
- Find the slope and interpret it

Report:

Over the period [period], the [response variable] [increased/decreased] at an average rate of [b] units per [one unit] in [explanatory variable]

- Forecasting: substitute value into regression line to find an approximate, possible, forecasted value.
- I Forecasting with seasonality: (worked example)

What sales do we predict for Mikki's shop in have to be ordered well in advance, retailers	n the winter of year 4? (Because many items often need to make such decisions.)
Solution	
 Substitute the appropriate value for the time period in the equation for the trend line. Since summer year 1 was 	Sales = 838.0 + 32.1 × quarter = 838.0 + 32.1 × 15 = 1310.5
designated as quarter '1', then winter year 4 is quarter '15'.	= 1519.5 Deseasonalised sales prediction for winter of year 4 = 1319.5
2 The value just calculated is the deseasonalised sales figure for the matter in question.	Seasonalised sales prediction for winter of year 4 $=$ 1319.5 \times 1.30
To obtain the <i>actual</i> predicted sales	≈ 1715
figure we need to reseasonalise this predicted value. To do this, we multiply this value by the seasonal index for	
winter, which is 1.30.	

Sample standard deviation

Here's the formula again for sample standard deviation:

$$s_x = \sqrt{rac{\sum{(x \cdot - ar{x})^2}}{n-1}}$$

Here's how to calculate sample standard deviation:

Step 1: Calculate the mean of the data—this is in the formula.

Step 2: Subtract the mean from each data point. These differences are called deviations. Data points below the mean will have negative deviations, and data points above the mean will have positive deviations.

Step 3: Square each deviation to make it positive.

Step 4: Add the squared deviations together.

Step 5: Divide the sum by one less than the number of data points in the sample. The result is called the variance.

Step 6: Take the square root of the variance to get the standard deviation.

Example: Sample standard deviation

A sample of students was taken to see how many pencils they were carrying.

Calculate the sample standard deviation of their responses:

2, 2, 5, 7

Step 1: Find the mean.

$$ar{x} = rac{2+2+5+7}{4} = rac{16}{4} = 4$$

The sample mean is 4 pencils.

Step 2: Subtract the mean from each score.

Pencils: x	Deviation: X –	\bar{x}
2	2-4=-2	
2	2-4=-2	
5	5-41	
7	7—4=3	

Step 3: Square each deviation.

Pencils: x	Deviation: $x - \bar{x}$	Squared Deviation: (x $- \bar{x}$) ²
2	2-4=-2	$(-2)^2 = 4$
2	2-4=-2	$(-2)^2 = 4$
5	5-4=1	$(1)^2 = 1$
7	7-4=3	$(3)^2 = 9$

Step 4: Add the squared deviations.

4+4+1+9=18

Step 5: Divide the sum by one less than the number of data points.

$$\frac{18}{4-1} = \frac{18}{3} = 6$$

Step 6: Take the square root of the result from Step 5.

$$\sqrt{6} pprox 2.45$$

The sample standard deviation is approximately 2.45.

Want to learn more about sample standard deviation? Check out this video.

Want to practice some problems like this? Check out this exercise on <u>sample and</u> <u>population standard deviation</u>.

Find the mean and the standard deviation for the values 9, 4, 5, 6

The mean is 6, and the standard deviation is about 1.87.

-How to calculate the correlation coefficient using the formula

Use the formula to calculate the correlation coefficient, *r*, for the following data.

x	1	3	5	4	7
y	2	5	7	2	9

Give the answer correct to two decimal places.

$\bar{x} = 4$	$s_x = 2.2$	36		
$\bar{y} = 5$	$s_y = 3.0$	82	<i>n</i> = 5	
x	$(x-\bar{x})$	у	$(y-\bar{y})$	$(x-\bar{x}) \times (y-\bar{y})$
1	-3	2	-3	9
3	-1	5	0	0
5	1	7	2	2
4	0	2	-3	0
7	3	9	4	12
Sum	0		0	23

$\bar{x} = 4$,	$s_x = 2.236$
$\bar{y} = 5$,	$s_v = 3.082$

$$\therefore \sum (x - \bar{x})(y - \bar{y}) = 23$$

$$r = \frac{\sum (x - \bar{x})(y - \bar{y})}{(n - 1)s_x s_y}$$

$$\therefore r = \frac{23}{(5 - 1) \times 2.236 \times 3.082}$$

$$= 0.834... = 0.83 (2 \text{ d.p.})$$