NAME	DESCRIPTION	EXAMPLE	Mathem atica
Row matrix	A matrix with only 1 row	[3 2 1-4]	Nil
Column matrix	A matrix with only I column	$\begin{bmatrix} 2 \\ 3 \end{bmatrix}$	Nil
Square matrix	the number of rows equals the number of columns	[5 4] [4 2] 2 × 2	Nil
Zero (Null) matrix	A matrix with all zero entries		Nil
Transpose of a matrix	a new matrix that is formed by interchanging the rows and columns.	$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix} \mathbf{A^T} = \begin{bmatrix} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \end{bmatrix}$	2d
Summing matrix	A row or column matrix in which all the elements are 1. To sum the rows of an m × n matrix, postmultiply the matrix by an n × 1 Column	$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$	3a Or 8
	summing matrix. To sum the columns of an m × n matrix, pre-multiply the matrix by a 1 × m row summing matrix.		Step by step

1	NAME	DESCRIPTION	EXAMPLE	Mathe matica
	Symmetric matrices	A matrix A is called <u>symmetric</u> if A ^T = A	$\begin{bmatrix} 2 & 3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 2 & 3 & 4 \\ 3 & 1 & 5 \\ 4 & 5 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 & 4 & 6 \\ 2 & 1 & 5 & 7 \\ 4 & 5 & 3 & 8 \\ 6 & 7 & 8 & 5 \end{bmatrix}$	<mark>2d</mark>
	Diagonal matrices	if all of the elements off the leading diagonal are zero.	$\begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 6 \end{bmatrix}$	Nil
	Identity matrices	This is denoted by the letter I and has zero entries except for 1's on the diagonal.	$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} I = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$	<mark>4a</mark>
,	Inverse matrices	A square matrix A has an inverse if there is a matrix A^{-1} such that: $AA^{-1} = I$	If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, then its inverse, A^{-1} , is given by $A^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ c & a \end{bmatrix} = \frac{1}{\det(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$ provided $\frac{1}{ad-bc} \neq 0$. that is, provided $\det(A) \neq 0$.	4b inverse 4c Complicated Inverse 4d Determinant
	Binary matrices	A special kind of matrix that has only 1s and zeros as its elements.	$\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \qquad \begin{bmatrix} 0 \\ 1 \end{bmatrix} \qquad \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$	Nil

Chapter 4 Matrices Summary

THE INVERSE OF A MATRIX

THIS SECTION FURTHER DEVELOPS THE ALGEBRA OF MATRICES. TO EGIN, CONSIDER THE REAL NUMBER EQUATION

TO SOLVE THIS EQUATION FOR X, MULTIPLY EACH SIDE OF THE QUATION BY A^{-1} (PROVIDED THAT $A \neq 0$). AX = B

 $(A^{-1}A)X = A^{-1}B$

 $(I)X = A^{-1}B$

 $X = A^{-1}B$

NAME & Example	DESCRIPTION	EXAMPLE & key Points	Mathem atica
Communication matrices Recover	A square binary matrix in which the 1s represent the links in a communication system.	All of the non-zero elements in the leading diagonal of a communication matrix, or its powers, represent redundant links in the matrix.	4b two way= power 2
Transition matrices	Used to describe the way in which transitions are made between two states. Recurrence Relation: $s_0 = \text{initial value}, \ s_{n+1} = T^* s_n$ Explicit Rule: $s_n = T^n * s_0$ Steady State: determine values for a long run $S = T^{50} * s_0 = T^{51} * S_0$	Rened in Bendigo Colae [0.8	7

ı	Matrices Operations	Mathematica Commands	Matrices Operations	Mathematica Commands	
1	Insert matrix	1	Power of a Matrix	3b	
	Adding, subtracting, scalar multiplication	2	Simultaneous Equations/ Matrices	 5a or 5b 5c Matrices → Equations 5d Equations → Matrices 	
	Two matrices multiplication	3a or 8	Solving unknow Matrix by given matrix equation	<mark>6</mark>	

Matrix Multiplication Multiplying Matrices together → Matrices can only be multiplied if the m×n · n×p

number of columns in the first is the same as the number of rows in the

Multiplying a Matrix by Another Matrix

THE INVERSE OF A MATRIX

Create a matrix equation. THE NUMBER A-1 IS CALLED THE MULTIPLICATIVE INVERSE OF A BECAUSE

The "Dot Product" is where we multiply matching members, then sum up: $(1, 2, 3) \cdot (7, 9, 11) = 1 \times 7 + 2 \times 9 + 3 \times 11$

$$(1, 2, 3) \cdot (8, 10, 12) = 1 \times 8 + 2 \times 10 + 3 \times 12$$

$$(4, 5, 6) \bullet (7, 9, 11) = 4 \times 7 + 5 \times 9 + 6 \times 11$$
 $(4, 5, 6) \bullet (8, 10, 12) = 4 \times 8 + 5 \times 10 + 6 \times 12$ = 154

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \times \begin{bmatrix} 7 & 8 \\ 9 & 10 \\ 11 & 12 \end{bmatrix} = \begin{bmatrix} 58 & 64 \\ 139 & 154 \end{bmatrix} \checkmark$$

$$3a - 5b + 2c = 9$$

$$4a + 7b + c = 3$$

$$A^{-1} A = I$$
.

THE DEFINITION OF THE MULTIPLICATIVE INVERSE OF A MATRIX IS SIMILAR.

Definition of the Inverse of a Square Matrix

Let A be an $n \times n$ matrix and let I_n be the $n \times n$ identity matrix. If there exists a matrix A^{-1} such that

 $AA^{-1} = I_n = A^{-1}A$

then A^{-1} is called the **inverse** of A. The symbol A^{-1} is read "A inverse."