Financial Maths

4a Amortisation FV↓ 4b Amortisation FV↑ 2 Effective Interest Rate

	Recurrence Relation	Application	Explicit Rules	Graphs	Mathematica command#
Arithmetic Sequences	$v_0 = principal, v_{n+1} = v_n + D$ $D = \frac{r}{100} \times v_0$	Simple Interest	$v_n = v_0 + n * D$	A 75	7a Interest in \$ 7b Table graph 7c Future Value
D Common	$v_{0} = Initial Value, v_{n+1} = v_{n} - D$ $D = \frac{r}{100} \times v_{0}$	Flat Rate Depreciation	$v_n = v_0 - n * D$	A 100	9a depreciate \$ 9b Table graph 9c Future Value
difference	$v_0 = Initial Value, v_{n+1} = v_n - D$ D = Unit cost in dollars	Unit Cost Depreciation	$v_n = v_0 - n * D$		10a Table graph 10b Future Value
Geometric Sequences R	$v_0 = \frac{principal}{Principal}, v_{n+1} = R * v_n$ $R = 1 + \frac{r}{100}$	Compound Interest	$v_n = \mathbf{R}^n * \mathbf{v_0}$		<mark>8a</mark> Common Ratio <mark>8b</mark> Table graph <mark>8c</mark> Future Value
Common Ratio Growth Factor Decay factor	$v_0 = $ Initial Value, $v_{n+1} = \mathbf{R} * v_n$ $\mathbf{R} = 1 - \frac{r}{100}$	Reduced Balance Depreciation	$v_n = \mathbf{R}^n * \mathbf{v_0}$		<mark>5/11a</mark> Common Ratio 11b Table graph <mark>11c</mark> Future Value
Combined Arithmetic & Geometric Sequences	$v_0 = Initial Value, v_{n+1} = \mathbf{R} * v_n - \mathbf{D}$ $\mathbf{R} = 1 + \frac{r}{100*p} \mathbf{D} = \frac{r}{100*p} \times v_0$	FV → Interest Only Loan /Perpetuities		Value	<mark>6</mark> Common Ratio 3d Table Graph 3a Common Difference / Interest in \$ / Payment
R Growth Factor D	$v_0 = Initial Value, v_{n+1} = \mathbf{R} * v_n - \mathbf{D}$ $\mathbf{R} = 1 + \frac{r}{100 * p}$	FV↓ Reduced Balance Loans /Annuities ◀	Compound Interest loan extra payment		6 Common Ratio 3d Table Graph 3b Future Value 12a Final Pymnt 12b Total payment 12c Total Interest 13 Partial Interest
Repayment	$v_0 = \underline{Initial Value}, \overline{v_{n+1} = \mathbb{R} * v_n + \mathbb{D}}$ $\mathbb{R} = 1 + \frac{r}{100 * p}$	FV↑ Compound Interest Investment Annuity Investment			<mark>6</mark> Common Ratio 1 Table graph <mark>3c</mark> Future Value

Note: Yellow parts need real number, blue parts are formula to calculate, Letter P indicates Compounding monthly etc. Needing rate per month, Monthly Ratio etc.

Core: Recursion and financial mathematics

- Simple interest (linear growth)
- \rightarrow Recurrence model: V_0= principal, V_{n+1} = V_n + D , where D = r/100 x V_0
- \rightarrow <u>Recurrence rule:</u> V_n = V₀ + nD , D= r/100 x V₀
- Flat-rate depreciation (linear decay)
- $\rightarrow \underline{\text{Recurrence model:}} \quad V_0 \text{= initial value of asset,} \quad V_{n+1} \text{=} V_n D \ , \\ \text{where } D \text{=} r/100 \text{ x } V_0$
- \rightarrow Recurrence rule: V_n = V_0 nD , where $\,$ D= r/100 x V_0
- Unit-cost depreciation (linear decay)
- → Recurrence model: V_0 = initial value of asset, $V_{n+1} = V_n D$, where D= cost per unit of use
- → Recurrence rule: $V_n = V_0 nD$, where n = no. of times used, where D = cost per unit of use
- Compound interest investments and loans (geometric growth)
- \rightarrow <u>Recurrence model</u>: V₀= principal, V_{n+1} = RV_n, where R = 1 + r/100
- \rightarrow <u>Recurrence rule:</u> V_n = (1+ r/100)ⁿ x V₀
- Reducing balance depreciation (geometric decay)
- \rightarrow Another type of depreciation
- \rightarrow <u>Recurrence model</u>: V₀= initial value, V_{n+1} = RV_n, where R = 1 r/100
- \rightarrow <u>Recurrence rule:</u> V_n = (1- r/100)ⁿ x V₀

Nominal interest rate

 \rightarrow The rate per annum / number of compounding periods

→ Example: 3.6 % p.a converted into a monthly rate: = 3.6/ 12 = 0.3% per month <u>Note:</u> Increasing the number of compounding periods per year will increase the total interest earned / paid.

2. Calculating effective interest rates 🗵

r := nominal rate (% p.a.)

n := number of time periods

Clear[r, n]

effectiverate =
$$\left(\left(1 + \frac{c}{n} + \frac{c}{100}\right)^n - 1\right) * 100$$

Effective rate of interest Effective interest rate

The effective interest rate of a loan or investment is the interest earned after one year expressed as a percentage of the amount borrowed or invested.

Let:

- r be the nominal interest rate per annum
- r_{effective} be the effective annual interest rate
- n be the number of times the interest compounds each year.

The effective annual interest rate is given by: $r_{\text{effective}} = \left(\left(1 + \frac{r_{h}}{100} \right)^n - 1 \right) \times 100\%$

– due to regular payment to make FV \downarrow • Reducing balance loans

Effective Interest Rate in Mathematica

- \rightarrow <u>Recurrence model</u>: V₀= principal, V_{n+1} = RV_n⁻ D, where R = 1 + r /100, where D= payment made, where r = interest rate per compounding period
- \rightarrow Amortisation: reducing the balance of the loan until it reaches a value of **zero**
- \rightarrow Worked example: Interest on a \$1000 loan was charged at the rate of 1.25% per month and the loan was to be repaid with four monthly payments of \$257.85.

Payment	Payment		Principal	Balance	Properties of a reducing balance loan:
number	amount	Interest paid	reduction	of loan	
0	0	0	0	1000.00	At each step of the loan:
1	257.85	12.50	245.35	754.65	→ Interest paid = interest rate per payment period × unpaid balance.
2	257.85	9.43	248.42	506.23	For example, when payment 1 is made, interest paid = 1.25% of 1000 = \$12.50
3	257.85	6.33	251.52	254.71	→ principal reduction = payment made - interest paid
4	257.89*	3.18	254.71	0.00	For example, when payment 1 is made, principal reduction = 257.85 - 12.50 =
	Total	31.44	1000.00		\$245.55
Future valu	ie.l.				I → balance of loan = balance owing - reduction in balance For example, when payment 1 is made, reduction in balance = 1000 - 245.35 =
otore valu	Je W				\$754.65

- Rate = r = Interest Previous balance × 100
- Regular Payment = Interest + Principal Reduction
- Previous Balance Principal Reduction = New Balance of Loan

```
Total Interest = Total Payment – Principal Reduction
```

```
Reducing Balance Loan in Mathematica
```


• Interest only loans: borrower repays only the interest charged, the value of the loan

remains the same for the duration of the loan

- $\rightarrow \underline{\text{Recurrence relation:}} \quad V_0 = \text{initial amount}, \quad V_{n+1} = RV_n D \\ \text{where} \quad R = 1 + r/100, \quad D = r/100 \times V_0$
- $\rightarrow \frac{\text{Payment (D) = interest charged:}}{\text{D = r/100 x V_0}}$
- $\rightarrow \underline{\text{Example:}} \quad D = RV_n$ $V_1: 50 = 1.05 \times 1000$

(if the payments on the loan are \$50, then the amount owed on the loan will remain the same as \$1000)

Value

Interest Only Loan in Mathematica

- Annuities
- → Recurrence relation: V_0 = principal, V_{n+1} = RV_n D, where R= 1 + r/100, where D= payment received
- → <u>Amortisation Worked example:</u> \$12 000 was invested in annuity that earns interest at the rate of 6% p.a, providing a monthly income of \$2035 per month for 6 months.
- → <u>Note:</u> after the 6th payment, the balance actually ends up being 0.88 (88 cents). But since we need our balance to be zero, we just add the 88 cents to the payment amount. 2035.00+0.88= \$ 2035.88 payment for payment 6.

Payment number	Payment received	Interest earned	Principal reduction	Balance of annuity
0	0	0.00	0.00	12000.00
1	2035.00	60.00	1975.00	10025.00
2	2035.00	50.13	1984.88	8040.13
3	2035.00	40.20	1994.80	6045.33
4	2035.00	30.23	2004.77	4040.55
5	2035.00	20.20	2014.80	2025.76
6	2035.88	10.13	2024.87	0.00

D = 50

 $V_{n+1} = 1.05V_n - 50$

 $V_0 = 1000,$

 $V_0 = 1000$ $V_1 = 1000$

 $V_2 = 1000$

 $V_3 = 1000$

 $V_4 = 1000$

constant.

The amount owed stays

Annuity in Mathematica

- · Perpetuities: an annuity where the regular payments are the same as the interest earned
- \rightarrow <u>Recurrence relation:</u> V₀ = principal, V_{n+1} = RV_n D, where R= 1 + r/100, where D= payment received
- → Payment (D) = interest charged: D = r/100 x V₀

Perpetuity in Mathematica

Repayment for Interest Only Loan or Perpetuity

repayment [prin_, r_, n_] := $\frac{\binom{r}{n}}{100}$ prin NSolve [repayment [prin_, r_, n] == payt, Reals]

• Compound interest investment

+ due to regular payment to make FV \uparrow

Value

- → <u>Recurrence relation</u>: V_0 = the principal, V_{n+1} = $RV_n + D$, where R = 1 + r /100, D= payment made
- \rightarrow Amortisation Worked example: $V_0 = 1200$, $V_{n+1} = 1.0025V_n + 50$

	Payment	Payment	Interest	Principal	Balance of	
	number	made	earned	increase	investment	Properties of an investment
	0	0.00	0.00	0.00	1200.00	
	1	50.00	3.00	53.00	1253.00	At each stop of the investment:
	2	50.00	3.13	53.13	1306.13	At each step of the investment.
	3	50.00	3.27	53.27	1359.40	
	4	50.00	3.40	53.40	1412.80	→ interest earned = interest rate per compounding period × previous balance
	5	50.00	3.53	53.53	1466.33	For example, when payment 1 is made, interest paid = 0.25% of $1200 = 3.00
	6	50.00	3.67	53.67	1519.99	For example, when payment his made, interest paid = 0.25% of 1200 = \$0.00
	7	50.00	3.80	53.80	1573.79	\rightarrow principal increase = payment made + interest earned
	8	50.00	3.93	53.93	1627.73	
	9	50.00	4.07	54.07	1681.80	For example, when payment 1 is made principal increase = 3.00 + 50.00 = \$53.00
	10	50.00	4.20	54.20	1736.00	
	12	50.00	4.34	54.34	1790.34	→ Balance of investment = previous balance + principal increase
	12	50.00	4.40	34.48	1844.82	For example, when payment 1 is made, the new balance is $1200.00 \pm 3.00 \pm 50.00$
• F	uture value	1				For example, when payment institude, the new balance is 1200.00 + 50.00 + 50.00
	otore value	• •				= \$1253.00.
• 6	ate = r =	Interest	- × 100			
Previous balance						\rightarrow total interest earned = balance of loan – (principal + additional payments)
• F	Regular Payment + Interest = Principal Increase				e	After 12 months, the total interest earned = 1844.82 - (1200 + 12 × 50) = \$44.82
• P	Previous Balance+ Principal Increase = New Balance			ase = New B	alance	Note: This amount can also be obtained by summing the interest column.
C T	Total Interest = Final Balance - Principal - additional payme				ditional payme	

Notes: If calculating interest during midway the loan (i.e. loan has not reached a value of 0 yet), then the calculation is as follows: Total number of repayments – reduction in principle (initial loan amount – current loan balance)

Compound Interest Investment or Annuity Investment in Mathematica

To find Payment for Compound interest investments with regular additions to the principal (annuity investment)

$$futurevalue[prin_, r_, n_, t_, payt_] := prin\left(1 + \frac{\binom{r}{n}}{100}\right)^{(n+t)} + payt \star \left(\frac{\left(\left(1 + \frac{\binom{r}{n}}{100}\right)^{(n+t)} - 1\right)}{\left(\frac{\binom{r}{n}}{100}\right)}\right)$$

$$NSolve[futurevalue[prin_, r_, n_, t_, payt] == Future Value, Reals] + due to regular payment to make FV f$$

