NAME	DESCRIPTION	EXAMPLE	Mathem atica	NAME	DESCRIPTION	EXAMPLE	Mathe matica				
Row matrix	A matrix with only 1 row	[3 2 1-4]	<mark>7A</mark>	Transpose of a matrix	a new matrix that is formed by interchanging the rows and columns.	$\boldsymbol{A} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix} \boldsymbol{A^{\mathrm{T}}} = \begin{bmatrix} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \end{bmatrix}$	7.1 7B				
Column matrix	A matrix with only I column		<mark>7A</mark>	Symmetric matrices	A matrix A is called <u>symmetric</u> if A ^T = A	$\begin{bmatrix} 2 & 3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 2 & 3 & 4 \\ 3 & 1 & 5 \\ 4 & 5 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 & 4 & 6 \\ 2 & 1 & 5 & 7 \\ 4 & 5 & 3 & 8 \end{bmatrix}$	7.1 7A				
Square matrix	the number of rows equals the number of columns	$\begin{bmatrix} 5 & 4 \\ 4 & 2 \end{bmatrix}$	<mark>7A</mark>	Diagonal	if all of the elements off the leading diagonal	[6 7 8 5]	<mark>7A</mark>				
Zero (Null)	A matrix with all zero entries		<mark>7A</mark>	matrices	are zero.	$\begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 6 \end{bmatrix}$		Matrices Operations	CAS & Textbook Notes	Matrices Operations Power of a Matrix	CAS & Te
matrix				Identity matrices	This is denoted by the letter I and has zero entries except for 1's on the diagonal.	$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} I = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$	<mark>7A</mark>	Define a matrix (given a letter name)	7.1 7A	Simultaneous Equations/ Matrices	7.11
Summing matrix	A row or column matrix in which all the elements are 1. To sum the rows of an $m \times n$ matrix, post-multiply the matrix by an $n \times 1$ summing matrix.	6	7.3 7.13 7C	Inverse matrices	A square matrix A has an inverse if there is a matrix A^{-1} such that: $AA^{-1} = I$	If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, then its inverse, A^{-1} , is given by	7.4	Adding, subtracting, scalar multiplication	7.2 7B	Solving unknow Matrix by given matrix equation	Solve 7.12
	To sum the columns of an $m \times n$ matrix, pre-multiply the matrix by a 1 \times m summing matrix.	ы (<u>†</u>		maurces		$\begin{split} A^{-1} &= \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \frac{1}{\det(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \\ & \text{provided} \frac{1}{ad - bc} \neq 0: \text{ that is, provided } \det(A) \neq 0. \end{split}$	7.14	Two matrices multiplication	7.3 7.15 7C	Constructing a Matrix by given í, j rule	7A 7.10

NAME	DESCRIPTION	EXAMPLE	Mathe matica	NAME & Example	DESCRIPTION	EXAMPLE & key Points	Mathem atica	
Triangular matrices	 An upper triangular matrix: all elements below the leading diagonal are zeros. A lower triangular matrix: all elements above the leading diagonal 	0 4 5 0 0 6 3 2 6 5 0 9	7A 2 0 0 2 5 4 0 9 8 7 angular matrix	$\begin{array}{c} \textbf{Communication} \\ \textbf{matrices} & \textbf{\textit{Revere}} \\ \textbf{matrices} & \textbf{\textit{k}} & [0 & 1 & 0 & 0 \\ \hline \textbf{\textit{k}} & [0 & 1 & 0 & 0 & 1 \\ \hline \textbf{\textit{symter}} & W & [1 & 0 & 1 & 1 & 1 \\ \hline \textbf{\textit{k}} & [0 & 1 & 0 & 0 & 0 \\ \hline \textbf{\textit{k}} & [0 & 1 & 0 & 0 & 0 \\ \hline \textbf{matrix} & \textbf{\textit{k}} & [0 & 1 & 0 & 0 \\ \hline \textbf{matrix} & \textbf{\textit{k}} & [0 & 1 & 0 & 0 \\ \hline \textbf{matrix} & \textbf{\textit{k}} & [0 & 1 & 0 & 0 \\ \hline \textbf{matrix} & \textbf{\textit{k}} & [0 & 1 & 0 & 0 \\ \hline \textbf{matrix} & \textbf{\textit{k}} & [0 & 1 & 0 & 0 \\ \hline \textbf{matrix} & \textbf{\textit{k}} & [0 & 1 & 0 & 0 \\ \hline \textbf{matrix} & \textbf{\textit{k}} & [0 & 1 & 0 & 0 \\ \hline \textbf{matrix} & \textbf{\textit{k}} & \textbf{\textit{k}} & \textbf{\textit{k}} \\ \hline \textbf{matrix} & \textbf{matrix} & \textbf{\textit{k}} & \textbf{\textit{k}} \\ \hline \textbf{matrix} & \textbf{matrix} & \textbf{matrix} & \textbf{matrix} & \textbf{matrix} \\ \hline \textbf{matrix} & \textbf{matrix} & \textbf{matrix} & \textbf{matrix} & \textbf{matrix} & \textbf{matrix} & \textbf{matrix} \\ \hline \textbf{matrix} & \textbf{matrix} $		All of the non-zero elements in the leading diagonal of a communication matrix, or its powers, represent redundant links in the matrix.	7.2 7.8 7F	THE INVERSE OF A MATRIX 7D 7.11
	are zeros.			Dominance matrices	Is a square binary matrix in which	A B C D One-step		• THE NUMBER A ⁻¹ IS CALLED THE MULTIPLICATIVE INVERSE OF A BECAUSE
Binary matrices	A special kind of matrix that has only 1s and zeros as its elements.		1 0 0 1 0 0		1s represent one-step dominance between members of a group. Usually an arrow towards one member means it is being dominated.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7 F	• $A^{-1} \ A = L$ • The definition of the multiplicative inverse of a matrix is similar.
Permutation matrices	A square binary matrix in which there is only one '1' in each row and column.		1 0 0 1 0 0 1 0 7.13 7 7 7 7	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Usually the row has the winner and the columns, the lower D represents one-step dominance D ² represents two-step dominance Total dominance scores, T = D + D ²	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Definition of the Inverse of a Square Matrix Let A be an $n \times n$ matrix and let I_n be the $n \times n$ identity matrix. If there exists a matrix A^{-1} such that $AA^{-1} = I_n = A^{-1}A$ then A^{-1} is called the Inverse of A. The symbol A^{-1} is read "A inverse."

NAME	DESCRIPTION	EXAMPLE	Mathem atica	NAME	DESCRIPTION	EXAMPLE	Mathem atica	
Transition matrices	Used to describe the way in which transitions are made between two states. Recurrence Relation: $S_0 = \inf_{n=1}^{n+1} a_n a_n ue, S_{n+1} = T^* S_n$ Explicit Rule: $S_n = T^* + S_0$ Steady State: determine values for a long run S= $T^{50} * S_0 = T^{51} * S_0$	Rented in Bendigo Colac [0.2 0.9] Bendigo Returned to Colac	7.5 7.6 7.7 7.9 7G 7H 71	Leslie matrices	Model of population growth that is very popular in population ecology. Recurrence Relation: $S_0 = initial value, S_{n+1} = L * S_n$ Explicit Rule: $S_n = L^n * S_0$		7.5 7.6 7.7 7.9	THE INVERSE OF A MATRIX 7D 7.11
Transition matrices With Extra	Recurrence Relation: $S_0 = \text{initial value, } S_{n+1} = T * S_n + B$ Steady State: determine values for a long run $S = T^{50} * S_0 + B = T^{51} * S_0 + B$		7.5 7.6 7.7 7.9 7G 7H 71		Long term (Limiting) Behaviour: The proportion of the projution is each top groups does not change from one time period to the next. This happens if we can find a real much such that $L + S_{w,1} = k + S_w$ for some sufficiently large n. $L + S_{S1} = K + S_{S0}$	An $u \times u$ Lesis matrix has the form $\begin{bmatrix} h_1 & h_2 & h_3 & \cdots & h_{n-1} & h_n \\ h_1 & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & h_n & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & h_n & 0 \end{bmatrix}$ where: a u_1 is the number of age groups being considered a u_2 , the survival rate, the proportion of the population in age group b u_2 , the survival rate, the proportion of the population in age group a u_2 , the survival rate u_2 the properties of the population in age group u_2 and u_2 the properties u_2 the properimes u_2 the properties u_2 the proper	p i that progress to	THIS SECTION FURTHER DEVELOPS THE ALGEBRA OF MATRICES. TO BEGIN, CONSIDER THE REAL NUMBER EQUATION AX = B. TO SOLVE THIS EQUATION FOR X, MULTIPLY EACH SIDE OF THE EQUATION BY A ⁻¹ (PROVIDED THAT $A \neq 0$). AX = B $(A^{-1}A)X = A^{-1}B$ $(1)X = A^{-1}B$ $X = A^{-1}B$

7A: introduction to matrices

A matrix is an array of numerical values

Values are arranged into ROWS and COLUMNS

Matrix

0 2

An element

of the matrix

6 10

5 3

Column 1 Column 2

Dimension of this matrix is 3 x 2

- ROWS: are horizontal
- Number rows from top to bottom **COLUMNS:** are vertical
- Number columns from left to right

ORDER OF A MATRIX:

 Way to describe the dimensions (size) of a matrix

ORDER = ROWS × COLUMNS

• × is 'by'

Types of Matrices:

Column: only	Row: only one	Zero: every	
one column,	row, any	element is '0'.	
any number of	number of	Can be any size	
rows	columns		
42 56 74	[8 17 42 52]	$\begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$	

Square matrices: have the same number of rows and columns.

Diagonal matrix: all values apart from the leading diagonal are zero	$\begin{bmatrix} 25 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 16 \end{bmatrix}$
Identity matrix: diagonal matrix, where the leading diagonals elements are all '1'	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
Symmetric matrix: unchanged by transposition, the elements above the leading diagonal are a mirror image of the elements below	$\begin{bmatrix} 3 & 6 & 5 \\ 6 & 0 & 1 \\ 5 & 1 & 2 \end{bmatrix}$
Upper triangular matrix: all elements below the leading diagonal are zero	$\begin{bmatrix} 4 & 5 & 7 \\ 0 & 1 & 6 \\ 0 & 0 & 8 \end{bmatrix}$
Lower triangular matrix: all elements above the leading diagonal are zero	$\begin{bmatrix} 3 & 0 & 0 \\ 2 & 3 & 0 \\ 5 & 4 & 2 \end{bmatrix}$

Elements and notation:

- Matrices are labelled with a capital letter
- The values within a matrix are called **elements**
- Elements are labelled with lowercase letters
- For matrix A, element a_{mn} refers to the entry in the mth row and nth column

$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{22} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$	$A = \begin{bmatrix} 5 & 2 \\ 3 & 1 \\ 1 & 9 \end{bmatrix}$ Eg. Element $a_{21} = 3$
--	---

 \mathbf{x}^{ij} – matrices can be constructed using element rules. Eg. Matrix C is a 2×2 matrix with the element rule c_{ij} = i+j. Create the matrix.

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \quad A = \begin{bmatrix} 1+1 & 1+2 \\ 2+1 & 2+2 \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ 3 & 4 \end{bmatrix}$$

7B Operations with matrices

ADDITION AND SUBTRACTION:

- Matrices must have the same order
- Add/subtract elements in the same position

Matrix addition

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} e & g \\ f & h \end{bmatrix} = \begin{bmatrix} a + e & b + g \\ c + f & d + h \end{bmatrix}$$

Matrix subtraction

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} - \begin{bmatrix} e & g \\ f & h \end{bmatrix} = \begin{bmatrix} a - e & b - g \\ c - f & d - h \end{bmatrix}$$

SCALAR MULTIPLICATION:

- Multiply each element in the matrix by a scalar
 - $k \times \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} k \times a & k \times b \\ k \times c & k \times d \end{bmatrix}$

Transpose: swapping a matrices rows and columns. The transpose of matrix A is A^T . First row becomes first columns, etc.

$$\begin{bmatrix} a & b & c & d \\ e & f & g & h \end{bmatrix}^{T} = \begin{bmatrix} a & e \\ b & f \\ c & g \\ d & h \end{bmatrix}$$

7C: Advanced operations with matrices MATRIX MULTIPLICATION: Involves both multiplication and addition

- **Post multiplication:** AB, matrix A is 'post multiplied' by matrix B
- **Pre multiplication:** AB, matrix B is 'pre multiplied' by matrix A

You must check that matrices can be multiplied first:

- Multiplication criteria: the number of columns in the first matrix MUST EQUAL the number of rows in the second matrix.
 - 'defined' = can be multiplied
 - 'undefined' = cant be multiplied

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \quad B = \begin{bmatrix} e \\ f \end{bmatrix}$$

 $AB = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \times \begin{bmatrix} e \\ f \end{bmatrix} \qquad BA = \begin{bmatrix} e \\ f \end{bmatrix} \times \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ Order: 2 × 2 2 × 1 Order: 2 × 1 2 × 1 equal not equal

AB is defined, BA is not defined.

Matrix product: the resulting matrix when two or more matrices are multiplied. The size of this matrix is determined by the outside numbers when writing the matrices orders. AB will produce a 2×1

$$AB = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \times \begin{bmatrix} e \\ f \end{bmatrix}$$

Order: 2 × 2 2 × 1
2 × 1

Multiplication by hand: multiply the rows of the first matrix by the columns of the second matrix.

 $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \times \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} a \times e + b \times g & a \times f + b \times h \\ c \times e + d \times g & c \times f + d \times h \end{bmatrix}$ Summing matrices: a row or column matrix where all elements are 1.

 To sum the rows of an m×n matrix, post multiply by an n×1 summing matrix

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \times \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \times 1 + 2 \times 1 + 3 \times 1 \\ 4 \times 1 + 5 \times 1 + 6 \times 1 \end{bmatrix}$$
$$= \begin{bmatrix} 6 \\ 15 \end{bmatrix}$$

• To sum the columns of an m×n matrix, pre multiply by a 1×m summing matrix

$$\begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 2 \\ 4 & 5 \\ 3 & 3 \\ 7 & 6 \end{bmatrix} = \begin{bmatrix} 15 \end{bmatrix}$$

Raising matrices to a power: only SQUARE matrices can be raised to a power. The power indicates how many times the matrix is multiplied by itself.

16]

7D: Inverse Matrices

The determinant:

- Used to identify if an inverse exists
- Must be a positive or negative number

 If the determinant equals ZERO, there is <u>no</u> <u>inverse</u> and the matrix is said to be 'singular'
 Calculating the determinant (2x2 by hand):

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$\det(A) = ad - bc$$

The inverse:

- Only square matrices have an inverse
- Inverse means opposite
- Something multiplied by its inverse is equal to 1, in this case, the IDENTITY MATRIX
- A⁻¹ = the inverse of matrix A
- A × A⁻¹ = I (identity matrix)

Calculating the inverse:

$$A^{-1} = \frac{1}{\det(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

- b and c multiply by -1
- a and d swap positions
- Multiply by the scalar so that the answer is just the matrix

if you are given the inverse of a matrix and need to find the original

- Put the inverse to the power of -1
- (A⁻¹)⁻¹ = A

7E: Binary and Permutation Matrices

Binary matrix	Permutation matrix				
$\begin{bmatrix} 1 & 0 & 0 & 1 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$				
0 1 1 0	0 0 1 0				
$\begin{bmatrix} 1 & 1 & 1 & 0 \end{bmatrix}$	0 1 0 0				

Binary: only has 1's and 0's as its elements (any size) **Permutation matrix:** a type of binary matrix that has **only one 1 in each row and column.** It is always square and is used to rearrange elements.

- Column permutation: rearranges columns.
 Post multiply (Q × P)
- Row permutation: rearranges rows.
 - Pre multiply (P× Q)

7F: Communication and Dominance Matrices

Communication: square binary matrix

- 1's represent a direct line of communication
- Communication goes both ways
- C = one step (direct communication)
- C2 = two step (communication via someone else)
- C + C2 = TC (total communication, showing all one and two step links)

Dominance:

- Used to display hierarchy
- One-way connections
- 1's are used for 'winners', 0's for 'losers'
- D = one step
- D2 = two step
- D + D2 = TD (total dominance)
- Directed, arrows point to loser

Determining dominance when given the sum of one step and two step dominance:

- One step dominance tells you how many times they won
- Two step dominance tells you the total sum of the one step dominances

7G: Introduction to transition matrices

State matrix S_n

- Column matrix
- Population at a given time

Initial state matrix

- Starting population
- S₀

Transition matrix

- Square matrix
- Studies change over time
- Elements are decimal numbers (0-1) that represent percentages
- Each column must sum to 1
- Other language: 'now/next', 'today/tomorrow', 'from/to'

	This	time
	Р	Ι
<i>T</i> =		$\left[\begin{array}{c} P\\ Next \ time\\ I\end{array}\right]$

Calculating state matrices:

- Used to find the next state
- Use recursion (step by step)

$$S_0 = initial state matrix, S_{n+1} = T \times S_n$$

$$S_n$$
 is the current state matrix

$$S_{n+1}$$
 is the next state matrix

• Use the rule (find future values, n, faster) $S_n = T^n \times S_0$

*****Note: Finding a previous state:** say you are given T and S_4 , how could you find a previous state? For example, if you need to find S_3 take the inverse of T and multiply is by S_4 .

<u>7H: The Equilibrium matrix</u>

- 'Steady state'
- 'In the long term'
- Over time the populations settle to where there is no visible change
- This is when two consecutive matrices are equal (2dp for accuracy)
- Consecutive means finding S_{17} and S_{18} to be the same

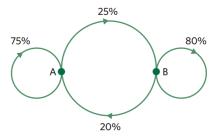
71: Applications of transition matrices

Transition diagram: a visual representation of how a transition matrix functions.

today
A B

$$T = \begin{bmatrix} 0.75 & 0.2\\ 0.25 & 0.8 \end{bmatrix} B^{A} \text{ tomorrow}$$

can be represented by the following transition diagram.



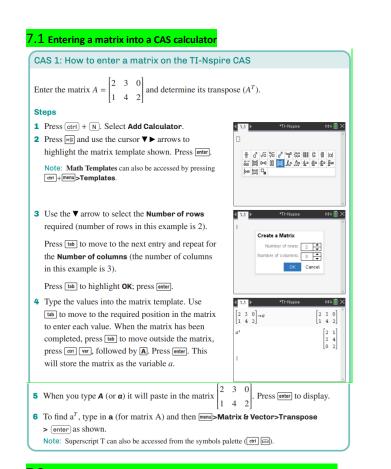
Culling and Restocking:

- Populations are subject to change over time
- Considers external forces affecting the population

$$S_{n+1} = TS_n + B$$

Culling: reduction/removed, negative number in matrix B

Restocking: addition, positive number in matrix B **Keeping a population constant:** all future state matrices are equal to the initial. This can be determined by calculating $S_0 - S_1$



7.2 To perform matrix addition, subtraction, and scalar multiplication

CAS 2: How to add, subtract and scalar TI-Nspire CAS	multiply matrices using the
If $A = \begin{bmatrix} 2 & 3 & 0 \\ 1 & 4 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 & 3 \\ 2 & -2 & 1 \end{bmatrix}$, find:	
a <i>A</i> + <i>B</i> b <i>A</i> - <i>B</i>	c $3A - 2B$
Steps	
1 Press (ctrl) + N. Select Add Calculator.	▲ 1.1 ▶ *TI-Nspire DEG ■ ×
2 Enter and store the matrices <i>A</i> and <i>B</i> into your calculator.	$\begin{bmatrix} 2 & 3 & 0 \\ 1 & 4 & 2 \end{bmatrix} \rightarrow a \qquad \begin{bmatrix} 2 & 3 & 0 \\ 1 & 4 & 2 \end{bmatrix}$
a To determine $A + B$, type $a + b$.	$\begin{bmatrix} 1 & 0 & 3 \\ 2 & -2 & 1 \end{bmatrix} \rightarrow b \qquad \qquad \begin{bmatrix} 1 & 0 & 3 \\ 2 & -2 & 1 \end{bmatrix}$
Press enter to evaluate.	1
b To determine $A - B$, type $\mathbf{a} - \mathbf{b}$.	
Press enter to evaluate.	-
c To determine $3A - 2B$, type $3a - 2b$.	4 1.1 ▶ *TI-Nspire DEG X
Press enter to evaluate.	a+b
	$a-b$ $\begin{bmatrix} 1 & 3 & -3 \\ -1 & 6 & 1 \end{bmatrix}$
	3·a-2·b
	I

7.3 To multiply two matrices

CAS 3: How to multiply two matrices using the TI-Nspire CAS
If $C = \begin{bmatrix} 11 & 5\\ 10 & 9 \end{bmatrix}$ and $D = \begin{bmatrix} 6\\ 1 \end{bmatrix}$, find the matrix <i>CD</i> .

Steps

- 1 Press ctrl) + N. Select Add Calculator.
- 2 Enter and store the matrices *C* and *D* into your calculator.
- 3 To calculate matrix *CD*, type **c** × **d**. Press enter to evaluate. Note: You must put a multiplication sign between the c and d.

Þ	*TI-Nspire	DEG 🚺 🗙
5 9]→c		$\begin{bmatrix} 11 & 5 \\ 10 & 9 \end{bmatrix}$
d		[6 1
		71 69

11 10

 $\begin{bmatrix} 6\\1 \end{bmatrix}$.

c•d

7.4 To determine the determinant and inverse of an $n \times n$ matrix

CAS 4: How to find the determinant and inverse of a matrix using the **TI-Nspire CAS**

1 2 3 find det(A) and A^{-1} . If $A = \begin{bmatrix} 4 & 1 & 0 \end{bmatrix}$ 2 0 2

Steps

- 2 Press (ctrl) + (N). Select Add Calculator.
- **3** Enter the matrix *A* into your calculator.
- **4** To calculate det(A), type $det(\alpha)$ and press enter to evaluate.
- Note: det() can also be accessed using menu>Matrix & Vector>Determinant.

4 To calculate the inverse matrix A^{-1} type **a** \wedge **-1** and press enter to evaluate. If you want to see the answer in fractional form, enter as $\textbf{exact}\left(\textbf{a}\boldsymbol{\wedge}\right.$

- -1) and press enter to evaluate. Note
- 1 Long strings of decimals can be
- exact 2 If the

-0.1 0.2 0.15 0.4 0.2 -0.6 0.1 -0.2 0.35

4 1 2 0

det(a)

-1

1. 2. 3. 4. 1. 0. 2. 0. 2.

0.2 0.15

-20.

i	strings of decimals can be avoided by asking for an
	inverse. Type in $exact(a^{-1})$.
	matrix has no inverse, the calculator will respond

with the error message Singular matrix

0.2 0.15 0.2 -0.6 -0.2 0.35 $\begin{array}{c|cccc} \frac{1}{5} & \frac{3}{20} \\ \frac{1}{5} & \frac{-3}{5} \\ \frac{-1}{5} & 7 \end{array}$ exact(a-1) -1 10 2 5 1 5 -1 5

7.5 Transition matrices – using recursion

and so on.	31 39 8 and so on. 39 8	Calculator hint: In practice, generating matrices recursively is performed on your CAS calculator as shown opposite for the calculations performed in Example 11.		$\begin{bmatrix} 80.\\ 20. \end{bmatrix}$ $\begin{bmatrix} 0.85 & 0.05\\ 0.15 & 0.95 \end{bmatrix}$ $\begin{bmatrix} 69.\\ 31. \end{bmatrix}$ $\begin{bmatrix} 60 & 2\\ 39 & 8 \end{bmatrix}$
------------	---	--	--	---

7.6 Transition – the n^{th} state of a system using the rule $s_n = T^n s_0$

- **1** Write down the transition matrix, T, and initial state matrix, S_0 . Enter the matrices into your calculator. Use T and S.
- 2 To find out how many machines are in operation and how many are broken after 10 days, write down the rule $S_n = T^n S_0$ and substitute n = 10 to give $S_{10} = T^{10}S_0$.
- **3** Enter the expression $T^{10}S$ into your calculator and evaluate.

$\begin{bmatrix} 0.85 & 0.05\\ 0.15 & 0.95 \end{bmatrix} \rightarrow t$	$\begin{bmatrix} 0.85 & 0.05. \\ 0.15 & 0.95. \end{bmatrix}$
0.15 0.95	0.15 0.95.
$\begin{bmatrix} 80\\ 20 \end{bmatrix} \to s$	80.
$\left[20\right] \xrightarrow{\rightarrow} s$	80. 20.
$t^{10} \cdot s$	30.9056 69.0944
<i>t</i> · <i>s</i>	69.0944
$S_{10} = \begin{bmatrix} 30.9\\ 69.1 \end{bmatrix}$	

Г.,

 S_0

20

0.85 0.05

0.15 0.95

 $S_n = T^n S_0$

 $\therefore S_{10} = T^{10}S_0$

4 Write down your answer in matrix form and

7.7 Transition matrices – the steady state solution

1 Write down the transition matrix T and initial state matrix S_0 . Enter the matrices into your calculator. Use Tand S.

then in words.

2 Use the rule $S_n = T^n S_0$ to write down the expression for the *n*th state for n = 10.

$$T = \begin{bmatrix} 0.8 & 0.1 \\ 0.2 & 0.9 \end{bmatrix}, S_0 = \begin{bmatrix} 50 \\ 40 \end{bmatrix}$$
$$S_n = T^n S_0$$
$$S_{10} = T^{10} S_0 = \begin{bmatrix} 30.6 \\ 59.4 \end{bmatrix}$$

. . 1

- **3** Enter the expression $T^{10}S$ into your calculator and evaluate.
- **4** Repeat the process for n = 15, 17 and 18.

	$t^{10} \cdot s$	30.565 59.435	
	1 5		
	$t^{15} \cdot s$	30.095 59.905	
	$t^{17} \cdot s$	30.047 59.953	
	$t^{18} \cdot s$	30.033 59.967	
S	$_{15} = \begin{bmatrix} 30.1 \\ \end{bmatrix}$	$S_{17} = \begin{bmatrix} 30.0\\ 60.0 \end{bmatrix}, S_{18} = \begin{bmatrix} 3\\ 6 \end{bmatrix}$	0.0
	59.9	[60.0]	0.0

5 Write down your answer in matrix form and then in words. This result agrees with the graphical result arrived at earlier.

The estimated steady-state solution is 30 cars based in Bendigo and 60 cars based in Colac.

Note: To establish a steady state to a given degree of accuracy, in this case one decimal place, at least two successive state matrices must agree to this degree of accuracy.

7.8 Using "Dominance Communication" Template

1.1 1.2 → DOMINANCE RAD 10 >	🕻 🖣 1.1 1.2 1.3 🕨 *Dominance 🗢	RAD 🚮 🔀
Dominance Matrices $C+C^2$ or $D+D^2$ 1. In page 1.2 define your matrix a. 2. Press [VAR] key to select dominance program and ENTER. Select the defined matrix a and ENTER.	dominance() Matrix name afi • • • Dominance vector $\begin{bmatrix} 3\\1\\0\\2 \end{bmatrix}$	
 Run a² next to have 2-step communication / dominance matrix. 		Done
1.1 1.2 1.3 > Dominance <> PAD (1) aff.= 0 1 1 0 1 1 1 aff.= 0 0 0 0 0 1 0 1		

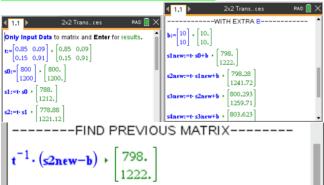
7.9 Using "Transition Leslie Matrices" Template

0 1 1 0

0 0 0 0 0 0 0

0 1 1 0

afl²

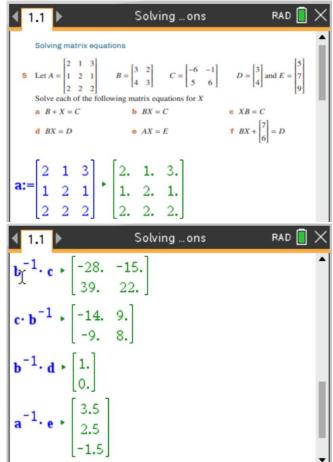


7.10 Using "Matrices by i j rule" Template

∢ 1	.1 1.	2	Ma	ntrices l	bule		RAD 📘	\times
$\mathbf{rule}(i,j) := 2 \cdot i + j \cdot Done$ Method 1: Only Input Rule above and Enter for results in page 1.2.								
1	1 1.2	ا ۲	¶Matrice:	s ule		RAD 📘 🕽	<	
	A	в	С	D	E	F	•	
=								
1	3.	4.	5.	6.	7.			
2	5.	6.	7.	8.	9.			
З	7.	8.	9.	10.	11.			
4	9.	10.	11.	12.	13.			
5	11.	12.	13.	14.	15.		•	
Method 2: constructMat $(2 \cdot i + j, i, j, 3, 4) + \begin{bmatrix} 3. & 4. & 5. & 6. \\ 5. & 6. & 7. & 8. \\ 7. & 8. & 9. & 10. \end{bmatrix}$								

7.11 Using "Simulta	neous Equations" Template	
4 1.1 ▶	Simultaneons	rad 📘 🗙
$\begin{bmatrix} 8 & -4 \\ 4 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \\ y \end{bmatrix}$ 1. solve funct	$\begin{bmatrix} 12 \\ 18 \end{bmatrix} \bullet \begin{bmatrix} 8. \cdot x - 4. \cdot y = 12. \\ 4. \cdot x + 2. \cdot y = 18. \end{bmatrix}$	
	$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 12 \\ 18 \end{bmatrix}, x, y \end{pmatrix} * x = 3. a$	and $y=3$.
∢ 1.1 ▶	Simultaneons	rad 📘 🗙
2. using the ir	B. ON FOR X, MULTIPLY EACH SIDE OF THE	Î
$\begin{bmatrix} 8 & -4 \\ 4 & 2 \end{bmatrix}^{-1} \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix}$	$\begin{bmatrix} 2\\8 \end{bmatrix} \bullet \begin{bmatrix} 3\\3 \end{bmatrix}$	
$\begin{bmatrix} 8 & -4 \\ 4 & 2 \end{bmatrix}^{-1} \cdot \begin{bmatrix} \\ \\ \end{bmatrix}$	0.0625 0.125 -0.125 0.25	ļ

7.12 Using "Solving Matrices Equations" Template



7.13 Using "Summing Permutation Matrices" Template

Enter into Blue area

◀ 1.1 ▶		Summing .	ces	RAD 📘	×
To sum the r × 1 summing	ows of an m × matri×. Enter i	n matri×, pos	rix (all the elem t-multiply the m rea.		Î
1 2 3 4 5 6 7 8 9 To sum the o	.) [)	n × n matri×,	pre-multiply the	e matri× by a	ļ
	ing matrix. Ente 1 2 3 4 5 6 7 8 9		e area.		
◀ 1.1 ▶		Summing .	ces	RAD 📘	\times
Permutation	7 8 9 Matrix: A squar w and column. 1 2 3 4 4 2. 0 5 6 5. 5.		ix in which there	is only one	•
			4. 2. 3. 5.]	

7.14 Using "Inverse" Template

I.1 Inverse
A = $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ det(A) = ad - bc
A⁻¹ = $\frac{1}{\det(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$ Change numbers in blue area and ENTER
a:= $\begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}$, $\begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}$ det(a) · -2. $\frac{1}{\det(a)}$. $\begin{bmatrix} 5 & -3 \\ -4 & 2 \end{bmatrix}$, $\begin{bmatrix} -2.5 & 1.5 \\ 2. & -1. \end{bmatrix}$

7.15 Using "Multiplication Two Matrices" Template RAD < 1.1 1.2 ▶ Multiplicat...ces × 7 3 7. 3. ma:= 2 5 , 2. 5. 6 8 9 0 9. 0. 9. 0. mb:= 7 4 9 8 1 5 · [7. 4. 9. 8. 1. 5.] 73. 31. 78. 54. 13. 43. mc:=ma+mb + 106. 32. 94. 63. 36. 81. Multiplicat...ces RAD × ◀ 1.1 1.2 ▶ . 73. 31. 78. 54. 13. 43. mc:=ma+mb + ĩ 106. 32. 94. 63. 36. 81. ma row number: < > i =1. mb column number: i > j = 1. dot_prod(ma,mb,i,j) + 73. RAD × Multiplicat...ces 1.1 ◀ . Matrix 19 22 1 2 A Matrix 43 50 3 4 7 3 В 2 5 7 4 9 6 8 9 0 22 8 1 5 7 = 19 -2 columns Rows 43 4 rows 3 Columns Dimension of Product Matrix 7 = 3 × 6 + 4 × 8 = 50 4 × 3 These must match. m×n · n×p The answer is size m x p.