[bookmark: _Hlk140393256]Networks
[image:] [image:]
[image:]
[image:] [image:]
Undirected Graphs
[image:] [image:]
Types of graphs
Simple graph – No loops or duplicate edges.
Isolated vertex – A graph has an isolated vertex if there is a vertex that is not connected to another vertex by an edge.
Degenerate graph – Degenerate graphs have all vertices isolated. Therefore, there are no edges in the graph at all.
Connected graph – Each vertex is either directly or indirectly connected to every other vertex.
Bridge – A bridge is an edge that when removed makes the graph unconnected.
Subgraph – Are graphs that are part of larger graphs.
Equivalent (isomorphic) graph – Look different but have the same information
Complete graph – Every vertex has a direct connection to every other vertex.
Bipartite Graph – A bipartite graph is a graph whose set of vertices can be split into two subsets X and Y in such a way that each edge of the graph joins a vertex in X and a vertex in Y.
Isomorphic graphs –Two graphs have: ① same numbers of edges and vertices; ② corresponding vertices have the same degree and the edges connect the same vertices.
Planar Graphs & Euler’s Formula
[image:] [image:] [image:]
[image:] [image:]
[image:] [image:]
Adjacency Matrix Representation
[image:] [image:]
Euler & Hamilton
[image:]
Travelling in graphs
Route – A description of your travels, given by the vertices visited in the order they are visited.
Walk – A walk can be any type of journey within a graph, you can walk wherever you wish.
Trail – A special kind of walk, you can’t repeat any of the edges that you have taken, but you can revisit vertices.
Path – A path is a special kind of trail, with a path you can’t repeat any edges or vertices.
Eulerian trails and circuits
[image:]Eulerian trails – Is a trail in which every edge is visited once. Vertices can be repeated.
A Eulerian trail will only exist if:
· The graph is connected
· The graph has exactly two vertices of an odd degree
[image:]Eulerian circuit – Is a Eulerian trail (travels every edge once) that begins and ends from the same vertex.
A Eulerian circuit will only exist if:
· The graph is connected
· All the vertices have an even degree
[image:]Hamiltonian paths and cycles
Hamiltonian path – Is a path that visits all of the vertices in a graph only once.
Hamiltonian cycle – Is a cycle that visits every vertex and begins and ends at the same vertex.

Weighted Graphs
[image:][image:] [image:]
[image:] [image:] [image:]
Directed Graphs
[image:]
Network Flows
[image:]
Capacity
The capacity of an edge is the maximum amount that can flow through it.
The capacity of a cut is the sum of the weights of the edges in the cut.
The capacity of a network is the maximum amount that can flow from the sink to the source.

[image:]
[image:][image:][image:][image:][image:][image:][image:][image:]
Shortest Path Problem
[image:] [image:]

[image:][image:] [image:]

Matching & Allocation Problems
[image:]
[image:]
[image:][image:][image:]Critical Path Problems
[image:][image:][image:]
[image:]
[image:][image:]

[image:]
Different Types of Greedy Algorithm
Prim's Minimal Spanning Tree Algorithm
Kruskal’s Minimal Spanning Tree algorithm
Dijkstra's Shortest Path Algorithm
Ford-Fulkerson Networks Flows Algorithm

Mathematical Terminologies
	Undirected Graphs
	Directed Graphs

	Terminologies
	Algorithm
	Terminologies
	Algorithm

	Eulerian trails
	Exactly 2 vertices of an odd degree
	The Maximum Flow 8.1
	Ford-Fulkerson Algorithm

	Eulerian circuits
	All vertices even degree
	The Shortest Path
	Dijkstra's Algorithm

	Hamiltonian paths
	Visits all of the vertices in a graph only once
	Matching & Allocation Problems
	Hungarian Algorithm 8.2

	Hamiltonian cycles
	Visit All vertices, begin & end @ the same vertex
	Critical Path Problems
	Forward scanning = Biggest Number
Backward scanning = Smallest Number
Float = LST―EST

	Minimal Spanning Tree
	Prim's Algorithm, Kruskal’s Algorithm
	
	

2

Hungarian Algorithm Task Match Working Steps
1. Row deduction (Min. No. of each row to deduct)
	 Tasks

Person
	Task 1
	Task 2
	Task 3
	Task 4
	Task 5

	Person 1

	

	
	
	
	

	Person 2

	

	
	
	
	

	Person 3

	

	
	
	
	

	Person 4

	

	
	
	
	

	Person 5

	

	
	
	
	

2. Column deduction (Min. No. of each non 0 column)
	 Tasks

Person
	Task 1
	Task 2
	Task 3
	Task 4
	Task 5

	Person 1

	

	
	
	
	

	Person 2

	

	
	
	
	

	Person 3

	

	
	
	
	

	Person 4

	

	
	
	
	

	Person 5

	

	
	
	
	

3. Line fitting to cover Max. 0 possible ≥ No. of tasks
 ≥ More than or equal
	 Tasks

Person
	Task 1
	Task 2
	Task 3
	Task 4
	Task 5

	Person 1

	

	
	
	
	

	Person 2

	

	
	
	
	

	Person 3

	

	
	
	
	

	Person 4

	

	
	
	
	

	Person 5

	

	
	
	
	

↓Enough lines to step 6 ↓ Not enough lines to step 4
4. Intersection addition uncovered deduction (use uncovered Min. No)
	 Tasks

Person
	Task 1
	Task 2
	Task 3
	Task 4
	Task 5

	Person 1

	

	
	
	
	

	Person 2

	

	
	
	
	

	Person 3

	

	
	
	
	

	Person 4

	

	
	
	
	

	Person 5

	

	
	
	
	

[
5. Line fitting to cover Max. 0 possible ≥ No. of tasks
 ≥ More than or equal
	 Tasks

Person
	Task 1
	Task 2
	Task 3
	Task 4
	Task 5

	Person 1

	

	
	
	
	

	Person 2

	

	
	
	
	

	Person 3

	

	
	
	
	

	Person 4

	

	
	
	
	

	Person 5

	

	
	
	
	

6. Bipartite task graph matching (0=line match)
	Person 1

	

	Task 1

	Person 2

	

	Task 2

	Person 3

	

	Task 3

	Person 4

	

	Task 4

	Person 5

	

	Task 5

7. Task Allocation (possible 2 solutions)
	Person 1

	

	Person 1
	

	Person 2

	

	Person 2
	

	Person 3

	

	Person 3
	

	Person 4

	

	Person 4
	

	Person 5

	

	Person 5
	

Hungarian Algorithm Task Match Working Steps
1. Row deduction (Min. No. of each row to deduct)
	Person

Task
	A

	B
	C
	D
	E

	1

	

	
	
	
	

	2

	

	
	
	
	

	3

	

	
	
	
	

	4

	

	
	
	
	

	5

	

	
	
	
	

2. Column deduction (Min. No. of each non 0 column)
	Person

Task
	A

	B
	C
	D
	E

	1

	

	
	
	
	

	2

	

	
	
	
	

	3

	

	
	
	
	

	4

	

	
	
	
	

	5

	

	
	
	
	

3. Line fitting to cover Max. 0 possible ≥ No. of tasks
 ≥ More than or equal
	Person

Task
	A

	B
	C
	D
	E

	1

	

	
	
	
	

	2

	

	
	
	
	

	3

	

	
	
	
	

	4

	

	
	
	
	

	5

	

	
	
	
	

↓Enough lines to step 6 ↓ Not enough lines to step 4
4. Intersection addition uncovered deduction (use uncovered Min. No)
	Person

Task
	A

	B
	C
	D
	E

	1

	

	
	
	
	

	2

	

	
	
	
	

	3

	

	
	
	
	

	4

	

	
	
	
	

	5

	

	
	
	
	

5. Line fitting to cover Max. 0 possible ≥ No. of tasks
 ≥ More than or equal
	Person

Task
	A

	B
	C
	D
	E

	1

	

	
	
	
	

	2

	

	
	
	
	

	3

	

	
	
	
	

	4

	

	
	
	
	

	5

	

	
	
	
	

6. Bipartite task graph matching (0=line match)
	1

	

	A

	2

	

	B

	3

	

	C

	4

	

	D

	5

	

	E

7. Task Allocation (possible 2 solutions)
	1

	

	1
	

	2

	

	2
	

	3

	

	3
	

	4

	

	4
	

	5

	

	5
	

8.1 Using “NetworkFlow” Template[image: A screenshot of a computer

Description automatically generated] [image: A white background with black text

Description automatically generated]
Step 1 Sample graph: shift letter for new vertex[image: A screenshot of a computer

Description automatically generated]
Step 2 Press Enter to add Max Flow=3+4+1=8 in Green
[image: A screenshot of a computer

Description automatically generated][image: A screenshot of a computer

Description automatically generated][image: A screenshot of a computer

Description automatically generated]
Step 3 Min Cut is showing as following in Orange
[image: A screenshot of a computer

Description automatically generated]
8.2 Using “Hungarian Algorithms” Template
Step 1: Define Matrix in file 1.3[image: A screenshot of a table

Description automatically generated][image: A screenshot of a computer

Description automatically generated]
Step 2: Go back to file 1.2 and press MENU Matrix User-defined
[image: A screenshot of a computer

Description automatically generated]

Step 3: Enter the defined matrix name here
[image: A screenshot of a computer

Description automatically generated]
Step 4: Once you see all matrix number, press ENTER
[image: A screenshot of a computer

Description automatically generated]
Step 5: Compare the result with manual calculation
[image: A screenshot of a table

Description automatically generated][image: A black text with black letters

Description automatically generated]
image3.png
Direction on Graphs

Undirected Graph Directed Graph / Digraph

A graph where the edge between two A graph where specific direction is indicated for every edge.
vertices acts in both directions. Some vertices may not be reachable from other vertices.

image4.png
~

image5.png

image6.png
Types of Networks

®© ®
[OO)

Degenerategraph Complete graph

Connectedgraph Disconnected graph Simple graph

Non-simple graphs Subgraph Bipartite graph

image7.png
Graph

Number of Edges with o
Type vertices

Complete (ICEE)
Connected n—1

image8.png
Planar Graphs

Planar Graph: A graph that can be drawn in such a way that no two edges meet (or have common points), except at the vertices where they are both incident, is
called a planar graph.

4 Some graphs can be redrawn to be planar, others not.
4 Euler's formula is used to confirm whether graphs are planar or not. N

4 Allsimple graphs with four or fewer vertices are planar.

Euler’s Formula

Consider the connected planar graph opposite. It has 4 faces, 6
Euler’s Formula: vertices and 8 edges.

v-e+f=2
'U—€+f=2 6-8 44 =2

V= 3 Fo + Euler'sformula confirms that this graph is a planar graph

Vertices | Edges | Faces

image9.png
Vertices Edges Faces Prove
v=e-f+2 e=v+f-2 f=e-v+2 v+f-e=2

image10.png
Euler’s Formula/Degree of a Face
e+6<3v

image11.png
Degree of a Face Example

Degree of a face is the number of Degrees
« edges along its boundary . . . Deg(4) =3
 vertices along its boundary] Deg(B) =4

« faces with which it shares an edge 4 e Deg(C)
0 Deg(D) = 4
Every edge is shared by exactly two faces. Therefore, . = = Deg(E) =6

Sum of face degrees = 2 x number of edges

Since planar graphs are simple, they must have a degree of at least 3, otherwise they would be
defined by only two vertices. Therefore

3 x number of faces < sum of face degrees 3 x number of faces < 2 x number of edges.

image12.png
Example VCAA 2016 Exam 1 Sample Question 6 / VCAA 2014 Exam 1 Question 7
Consider the following four graphs. How many of the four graphs above are planar?

S Ox F

Graph1:v=5,e=8 Graph2:v=5e=5 Graph3:v=5 e=7 Graphd:v=5e=9

8+6<3x5 5+6<3x5 7+6<3x5 9+6<3x5
14<15¢ 11<15¢ 13<15¢/ 15<15¢

Therefore, all 4 graphs are planar.

image13.png
Combining Euler's Formula and the Result from the Degree of a Face
Earlier we determined that 3 X number of faces < 2 x number of edges (3f < 2e).

Multiplying Euler's formula for faces by 3 Then using 3f < 2e
f=e-v+2 =23f=3e-3v+6<2e
=3f=3e-3v+6 =2e+6<3v

image14.png
Kuratowski's Theorem
A graph is planar if and only if it does NOT

contain a subgraph homeomorphic to K, or K,

O (3

(2)
R

image15.png
Matrix Representation

Networks can be represented using adjacency

matrices. The numbers on the leading diagonal

represent loops, and all undirected graphs are
symmetrical about the leading diagonal.

i

cocmc»

R

cmomeny

—omwod

Loops

Aloop in an undirected network adds two to
the degree of a vertex, and adds one to the
leading diagonal of a matrix. For example:

Node Ahas degree 3.

~oron
=1~

image16.png
The adjacency matrix 4 of a graph is an 1 * n matrix in which,
for example, the entry in row C and column F is the mumber of
edges joining vertices C and .

A loop is a single edge connecting a vertex to itself.

Loops are counted as one edge.

image17.png
i Hamiltonian | If Neither Edge If No Edge Repeats Eulerian

,,,,,,,,,,,,,, i Nor Vertices Repeat (Vertices may Repeat)
Walk in Graph Theory

Important Chart to Remember

coceeapesc 4eg(D)=4

image18.png

image19.png

image20.png

image21.png
= A minimum spanning tree = the spanning tree of minimum length (may be
minimum distance, minimum time, minimum cost, etc.). There may be more than
one minimum spanning tree in a weighted graph.

image22.png
Trees
Atree is a connected, simple graph with no circuits.
A spanning tree is a sub graph of a connected graph which contains all the vertices of the original graph.
The weight of spanning tree s the combined weight of all ts edges, and there are two ways in which the minimum- weight spanning tree can be found:
4 prim's algorithm: which involves choosing random vertex s a starting graph and constantly building to it by adding the shortest edges which wil

connect it to another node.

image23.png
‘Apply Prim’ algorithm to obtin a minimum spanning
tree for the graph shown. Write down its weight, and

Prim’s Algorithm compar it o the weight f th arginal gaph.

I Chooseavertexandconnectittoasecondvertexchosensothattheweightoftheedge is as
small as possible.

Il In each step thereafter, take the edge with the lowest weight, producing a tree with
the edges already selected. (If two edges have the same weight the choice can be
arbitrary.)

Il Repeat until all the vertices are connected and then stop.

The total weight is 17 The fotal weight of the original graph is 50.

image24.png
Kruskal’s Algorithm

= Choose the edge with the least weight as the starting edge. If there is more than
one least-weight edge, any will do.

= Next, from the remaining edges, choose an edge of least weight which does not
form a cycle. If there is more than one least-weight edge, any will do.

= Repeat the process until all vertices are connected. The result is a minimum
spanning tree.

= Determine the length of the spanning tree by summing the weights of the chosen
vertices.

image25.png

image26.png

image27.png
In a directed graph, each edge has a direction. Also, each vertex in a network can be reachable or unreachable.

This is often abbreviated to digraph.

B ¥

In this network, nonode is reachable
from F,and A s not reachable from B.

image28.png
Weighted graphs can be used to model the flow of people, water or traffic. The flow is always from the source vertex to the sink vertex. The weight of an edge
represents its capacity.
+ Cuts are used as a way of preventing all flow from source to sink. A valid cut must completely isolate the source from the sink. By adding the weights of the
cut edges, the value of a cut can be obtained. The minimum value cut that can be made represents the maximum flow possible through the network.

image29.png
*THE MINIMUM CUT CAPACITY = THE MAXIMUM FLOW

image30.png
* DETERMINE THE MAXIMUM FLOW FROM S TO T FOR THE DIGRAPH SHOWN ON THE RIGHT.

The capacity of C;
The capacity of C;
The capacity of C;
The capacity of Cy
The capacity of C5 =3+3+1=7
The capacity of Cg =3+5+1=9

image31.png
Ford-Fulkerson Algorithm

Ford-Fulkerson Algorithm
An algorithm for finding the maximunm flow through a network.

1) Choose any path from the source to the terminal

2) Choose the smallest capacity on that path and write it above each capacity on that path

3) Choose a path from the source to the terminal that is non-full forwards, and non-empty backwards

4) Choose the smallest remaining capacity on that path and write it above each capacity on that path,
add it to any that have already got values

5) Repeat steps 3 and 4 until there are no paths that are non-full forwards, and non-empty backwards

For singular source - singular terminal
6) The maximum flow from the source is the capacity of the values leading directly out of the source
7). The maximum flow into the terminal s the capacity of the values leading directly into the terminal.
8) Flow out of the source = flow into the terminal

image32.png
For multiple sources - singular terminal
6) Maximum flow from each source is the capacity of the values leading directly out of each source.
7). The maximunm flow into the terminal s the capacity of the values leading directly into the terminal.
8) Total flow out of the sources = flow into the terminal

For multiple sources - multiple terminals
6) Maximum flow from each source is the capacity of the values leading directly out of each source.
7) Maximum flow into each terminal is the capacity of the values leading directly into each terminal.
8) Total flow out of the sources = total flow into the terminals

For singular sources - multiple terminals
6) The maximum flow from the source is the capacity of the values leading directly out of the source
7) Maximum flow into each terminal is the capacity of the values leading directly into each terminal.
8) Flow out of the source = total flow into the terminals

image33.png
This is the original network.

image34.png
Send 2 units of flow in the path.
Update residual capacities.

image35.png

image36.png
sDT

Total

Send 2 units of flow in the path.
Update residual capacities.

image37.png
=0 Here is the Maximum Flow.

Total

image38.png
15

[T

_an

B

(]

(0]

DENE!
ORNE!

A CDE

3+ 5 + 3 = 11Hours

image39.png
Finding the shortest path by Dijkstra’s Algorithm

. +d the shortest path from vertex'4 to vertex E in this network. The
numbers represent time in hours.

1. From Starting vertex.
2. The shortest edge
first.

3. Write distance from
the starting vertex.
4. Label the last vertex
passing by. O
5. Cover all edges from
this vertex.
6. Find the next shortest
distance vertex to
start over again.

7. Until all vertices and
edges covered.

3+5+3=11 Hours

Weights from starting vertexthe last passing by vertex

image40.png
B GAD

3 + 1+ 3 = 7 minutes

image41.png
Bl

7

image42.png
Finding the shortest path by Dijkstra’s Algorithm

. :td the shortest path from vertex B to vertex F in this networl<. The

wnN

oo

Weights from starting vertex

. From Starting vertex.

mbers represent time in minutes.

The shortest edge first.

Write distance from the starting

vertex.

Label the last vertex passing by.
Cover all edges from this vertex.

Find the next shortest distance G
vertex to start over again. 4
Until all vertices and edges covered.

3+1+3=7 minutes

the last passing by vertex

image43.png
Hungarian Algorithm

Example:

Four supermarkets (A, B, C and D) are supplied from four distribution outlets (W, X, Y and). The cost in dollars of supplying one vanload of goods is given in the
table. This table is called a cost matrix.

The aim is to supply each of the supermarkets at the lowest cost. This can be done by trial and error but that would be time consuming. The Hungarian algorithm
gives a method for determining this minimum cost.

image44.png
A line of Connection

image45.png
Wendy

Xenefon

Yolanda

Zelda

D

image46.png
4 people = Minimum 4 lines

image47.png
Employee

Wendy
Xenefon
Yolanda
Zelda

image48.png
Intercept Plus & Uncovered Minus

image49.png
Column Minus

image50.png
Row Minus

image51.png
—10

image52.png
+10

image53.png
Wendy
Xenefon -4

Yolanda 30

Zelda o

image54.png

image55.png

image56.png
Employee A B C D

Wendy
Xenefon
Yolanda
Zelda

30
70
60
20

40
30
50
80

50
40
60
50

60
70
30
70

image57.png
Step One

Simplify the cost matrix by subtracting the minimum entry in each row from each of the elements in that row.
<+ This process is repeated for columns if there is no zero entry.

i.e. 30 is subtracted from all entries in Row 1
30 s subtracted from all entries in Row 2
30 s subtracted from all entries in Row 3
20 is subtracted from all entries in Row 4

Because Row 2 did not contain a zero entry, the process was repeated for column 3.
10 is subtracted from Column 3 to obtain a 0 in Row 2.

image58.png
Step Two
Cover the zero elements with the minimum number of lines.
< If this minimum number equals the number of rows, then it is possible to obtain a maximum matching using all vertices immediately. Otherwise, continue
tostep 3.

image59.png
Step Three
Add the minimum uncovered element to the rows and columns that are covered.
The minimum uncovered element (10) is now subtracted from all entries and step 2 is repeated.

The minimum number of lines is equal to the number of rows, so it is possible to obtain a maximum matching.

image60.png
Step Four

Possible allocations are represented using a barpitite graph.
“ The edges are chosen through the zero entries in the table.

w A
X B
Y c
z D

The possibilities with four edges (one task per person) are as follows:
w A w A

X B X B
Y c ¥ c
z D z D

image61.png
Cost (5) Cost (5)
WioB=40 | WtoC=50
XtoC =40 XwB=30
Y©oD=130 YwD=30
ZwA=20 Zwd=20

Total = 130 Total = 130

image62.png
Activities | Immediate predecessors

o

T|o|m|mo|o|®|>
olo|e|>

@

image63.png
Precedence Table
A table that details the events that must occur immediately before an event may begin and its duration.

image64.png
EST | LST

EST ST

image65.png
1. Draw a box for each going forward edge/activities.

2. EST = Going forward with Biggest Number.

3. LST=Going backward with Smallest Number.

4. Float time for each activity = LST — EST @ start of the edge
5. Label / Highlight Critical Path

6. Write minimum completion time.

image66.png
Conventions of Critical Path Problems
Developing and manufacturing a product frequently involves many interrelated activities. It is often the case that some of these activities cannot be started until
other activities are completed.

Two important facts about critical paths are:
1. The weight of the critical path is the minimal length of time required to complete the project.
Il Increasing the time required for any critical activity will also increase the time necessary to complete the project.

Digraphs can be used to represent such situations with the following conditions applying:
4 The edges (or arcs) represent the activities.
4 The vertices (or nodes) represent events.
The start/finish of one or more activities is called an event.
4 An edge should lead from a start vertex to represent each activity that has no predecessors.
4 Avertex (called the finish node) representing the completion of the project should be included in the network.
4 An activity should not be represented by more than one edge in the network.
4 Two nodes can be connected directly by, at most, one edge.
In order to satisfy the final two conventions, it is sometimes necessary to introduce a dummy activity that takes zero time. Following these conventions the weighted
digraph can be redrawn.

image67.png
Earliest and Latest Starting Time and Float Time

Earliest Starting Time.

Latest Starting Time

Float/Slack Time

The earliest starting time refers to the earliest time the
activity can commence.

The EST for activities without predecessors is zero.

The EST for activities should be the longest elapsed time

The latest start time is the latest time an activity can
be left if the whole project is to be completed on time.
Latest event times are established by working
backwards through the network.

For critical activities the float time is zero

For non-critical activities the float is

‘worked out using:
Float Time = LST — EST

A D, 8 G
A N o
start \,_,H' e 2o e finish (]
cs 0D

s

DsE® o

N G e
g fins

iz e

FLOAT TIMES
A:0-0=0 F:13-13=0
-0=5 G:17-17=0
-3=5

-6=3

-6=0

image68.png
Critical Activity/Path

Critical Activity: A critical activity is any task, that if delayed will hold up the earliest project. If LST = EST the activity is said to be critical.
Critical Path: The critical path in a project is the path that has the longest completion time. In the table, the critical path is: A— E - F~ G

image69.png
C5l5 E13|15

G15[17

start finish 26]26
122122

D,9 F,

Boj1
D34 F13)13

H19]19

image70.png
Project Crashing

If a project looks like running overtime, it may be crashed. Crashing involves spending extra money to reduce the time taken by certain activities in order to avoid

costs of completing the project late. The following steps ilustrate the crashing process:

Write down all of the paths from the start node to the finish node, and determine the length of each.

Calculate the cost per day of crashing each activity (note that some questions may already have the cost per day, and watch for reductions that must be
made in full)

Reduce the cheapest (cost per day) activity on the critical path by one day.

Calculate the new lengths of all of the paths.

Repeat steps three and four, each time using the new longest path after reductions. Stop when the budget is reached or the longest path cannot be
reduced. The new critical path is the longest path.

image71.png
Example Modified VCAA 2001 Question 3

LiteAero Company designs and
‘makes light aircraft for the civil

aviation industry. They identify 10

activities required for production of

their new model, the Marchfly. A (O——()
network for this project is shown. el = D.6 s 8
‘The critical path(s) for this networkare A~ B~ C ~F — H—Jand A~B —C —F = G =1 ~]

‘The length (in weeks) of a critical path for this project is 25 weeks.

By using more workers itis possible tospeed Up Activity | Cost ($/week) Max reduction (weeks)

c 6000 3
associated increased costs and maximum reduction D 2000 2
are shown in Table 3 below. The shortesttimein £ 3000 1
F 4000 2
F:=2 Cost
- 20 3x6000 + 2 x 4000 = 26000
- 20 3x6000 + 2 x 4000 = 26000
- - 2% 2000 = 4000
20 - 13000 = 3000
20 - 13000 = 3000

By reducing C, E, F by their maximum amounts, this would reduce the time of this path down to 20 weeks.
A-B-E I—Jand A~ B —E — H —] are now also critical paths. If you don't reduce E then it would
take 21 weeks and the critical paths would change. In total this would cost 26 000 + 3000 = $29 000.
Reducing D does not affect the time for the critical path or potential crtical paths.

image1.png
Vertex (plural Vertices) Edge / Path ertex / Node

An object, represented with a dot. Vd

Y paraliel / Muttple:
| connections

Edge
A connection between two vertices represented with

aline or an arrow.

[Simple / Single Connection

Loop

An edge that connect from an vertex o itself. O
(1000)

Graph \
-

A collection of vertices that are connected (or not) to
each other using edges in some specific way.

The Degree of a Vertex
‘The number of edges connected to a vertex.

Degrees
Deg(4) = 2
Aloop counts as two edges for the degree. Deg(8) = 4
Deg(C) =0
Vertices are classified as even or odd if their degree Deg(D) = 5

is an even number or odd number. Deg(E) = 3

image72.png
NetworkFlow

The user can move the vertex marked by a
circle with the arrow keys. The tab key
switches the mark from vertex to vertex. The
user can enter a new vertex by pressing an
alphbetic key (uppercase or lowercase),
which can then be moved. A new edge is
created between the marked vertex and
another existing vertex by entering the name
of that vertex. Enter that name again to delete
the edge. Hitting the "-" key deletes the

a

image73.png
marked vertex and all the edges starting from
it.

Enter shift + to change the number of
weights.

image74.png
m 1.2 g NetworkFlow

Enter vertices, edges and capacities

image75.png
NetworkFlow

Press Enter for the next step

image76.png
NetworkFlow

Press Enter for the next step

image77.png
NetworkFlow

Press Enter for the next step

image78.png
NetworkFlow

Maximal flow and minimal cut

image79.png
Employee A B C D

Wendy
Xenefon
Yolanda
Zelda

30
70
60
20

40
30
50
80

50
40
60
50

60
70
30
70

image80.png

image81.png
-
(]
~J

W O o = o
— O

o

>

S
o
>

Sum: 0

1 New (ESC)
19 2 6x6
18 4 10x10
15 5 Random matrix
14 6 User—defined

19 24 31 3

image2.png
Handshaking Lemma
Every edge is counted by the degree of two vertices.
Sum of vertex degrees = 2 X number of edges.

A loop counts as one edge in the number of edges.

image82.png
m 1.2 m *Hungari..thm RAD D X

Please enter the name of a matrix

d

Press Enter to accept or Esc to cancel

image83.png
m 1.2 *Hungari..thm

80 50 70

Minimal sum: 130

image84.png
Employee A B C D

Wendy
Xenefon

Yolanda
Zelda

30

70
60
20

40

30
50
80

50

40
60
50

60
70
30
70

image85.png
= The minimum time taken to finish the
work=20+30+50+30=130 minutes.

