Formula Sheet

Core – Data analysis

standardised score	$z = \frac{x - \overline{x}}{s_x}$
lower and upper fence in a boxplot	lower $Q_1 - 1.5 \times IQR$ upper $Q_3 + 1.5 \times IQR$
least squares line of best fit	$y = a + bx$, where $b = r \frac{s_y}{s_x}$ and $a = \overline{y} - b\overline{x}$
residual value	residual value = actual value – predicted value
seasonal index	seasonal index = $\frac{\text{actual figure}}{\text{deseasonalised figure}}$

Core - Recursion and financial modelling

first-order linear recurrence relation	$u_0 = a, \qquad u_{n+1} = bu_n + c$
effective rate of interest for a compound interest loan or investment	$r_{effective} = \left[\left(1 + \frac{r}{100n} \right)^n - 1 \right] \times 100\%$

Module 1 – Matrices

determinant of a 2×2 matrix	$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \qquad \det A = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$
inverse of a 2×2 matrix	$A^{-1} = \frac{1}{\det A} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}, \text{where} \det A \neq 0$
recurrence relation	$S_0 = \text{initial state}, \qquad S_{n+1} = TS_n + B$

Module 4 - Graphs and relations

gradient (slope) of a straight line	$m = \frac{y_2 - y_1}{x_2 - x_1}$
equation of a straight line	y = mx + c

Significant figures vs. Decimal places

- Significant Figures
- → All non- zero values are significant

4.2 (2 sig figs)

→ All zeros in between are significant

40002 (5 sig figs)

- Or, in the case of decimal values: **4**.0002 (5 sig figs)
- \rightarrow **Decimal values**
 - 1. All final zeros after the decimal point are significant

4.200 (4 sig figs)

2. All leading zeros after a decimal point are NOT significant

0.000422 (3 sig figs)

 \rightarrow Terminal zeros don't count UNLESS there is a decimal point at the end

420 (2 sig figs)
420. (3 sig figs)
420. 0 (4 sig figs)

• Decimal places

ightarrow Involves rounding values after the decimal point to however many decimal places

422.347

Round to 2 decimal places : 422 . 35

422.344

Round to 2 decimal places : 422 . 34

ightarrow Money must always be rounded to 2 decimal places or "to the nearest cent"

273.245 = 273.25 (to 2 decimal places)

273.245 = 270 (to 2 significant figures)

Univariate DataCategorical variables18Nominal data Ordinal dataBar chart, Pie Chart, Frequency Table10. Segmented bar chartMode/ Modal Value Frequency types, Frequency % = count straible frequency % = count frequency types, Frequency % = count and Deviation S 1G 1A Standard Deviation S 1G 1A Mode/ Modal Value Frequency types, Frequency % = count and Deviation S 1G 1A Mode/ Modal Value Straible S 16 1A Mode/ Modal Value Frequency types, Frequency % = count and Deviation S 1G 1A Mode/ Modal Value Straible S 16 1A Mode/ Modal Value Frequency types, Strate 2 a Strate 2 a Nul patterner straible S 1ASkewed C 1 Mode/ Modal Value Frequency types, Strate 2 a Strate 2	Topics	Data 1	Гуреs <mark>1А</mark>	Display/Ana	lyse Tools		Report/Explain/Interpret/Describe				
Data variables18 Ordinal data Table13. Segmented bar chart Frequency types, Frequency % = $\frac{court}{rotat Court} \times 100\%$ All in one 16 Numerical variables10 Discrete data Stem plot 16 16.4 Continuous data Stem plot 16 16.4 Stopper Line 5 Symmetric Court > 1 Mean X 1d Mean X 1d Segmented Devation 5 16 14 Skewed 200 Line 6445 Bivariate Data Two categorical variables20 Segmented bar chart, two-way frequency types, prequency types, segmented bar chart, two-way frequency types Model Modal Value Frequency types Skewed 200 Line 5+00R Line 5+00R	Univariate	Categorical	Nominal data	Bar chart, Pie Chart,	Frequency	Mode/ Modal	Modal Value				
All in oneNumerical variables \$CDiscrete data variables \$CStem plot 1b 1s dataShape \rightarrow centre \rightarrow Centre \rightarrow Spread \rightarrow Outliers \rightarrow IfSymmetric \square Man X Ind Spread \rightarrow Outliers \square IfSymmetric \square Man X Ind Spread \rightarrow Outliers \square Symmetric \square Man X Ind Spread \rightarrow Outliers \square IfSymmetric \square Man X Ind Spread \rightarrow Outliers \square IfSymmetric \square Man X Ind Spread \rightarrow Spread \rightarrow Spread \rightarrow Spread \rightarrow IfSymmetric \square Spread \rightarrow Symmetric \square Spread \rightarrow Spread	Data	variables <mark>1B</mark>	Ordinal data	Table <mark>1a</mark> , Segmented bar chart		Frequency type	ency types, Frequency % = $\frac{Count}{Total Count} \times 100\%$				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	<mark>All in one</mark>	Numerical variables <mark>1C</mark>	Discrete data		Stem plot <mark>1b</mark> 1.6, dot plot <mark>1b 1.6</mark>	Shape → Centre →	Symmetric Mean \overline{x} 1.4	Skewed A 1.5 Median M <i>or</i> Q ₂			
$ \begin{array}{ c c c c c } \hline data & Grouped Frequency histogram 1b \\ \hline Tables & Dubles & Dubl$	<mark>1.6</mark>		Continuous	Boxplots 1c 1.5,	Stem plot 1b 1.6,	Spread →	Standard Deviation S 1G 1.4	IQR, Range			
Image: second			data	Grouped Frequency	histogram <mark>1b</mark>	Outliers \rightarrow		$\int 1.6 \text{ Lower Fence} = Q_1 - 1.5 * IQR$			
Bivariate DataTwo categorical variables2ASegmented bar chart, two-way frequency table2a, parallel bar chart frequency table2a, parallel bar chart plots, parallel bar chartMode/ Modal Value Frequency typesIs 5-figure summary: Min, Q_1, Q_2, Q_3, Max Q_1, Q_2, Q_3, Max Q_2, Q_3, Max Q_1, Q_2, Q_3, Max Q_2, Q_3, Max Q_1, Q_2, Q_3, Max 				Tables	1.1 , log 1.2 log-	1F		$\{1.6 \text{ Upper Fence} = Q_3 + 1.5 * IQR \}$			
Bivariate DataTwo categorical variables 2ASegmented bar chart, two-way frequency table 2a, parallel bar chart, two-way frequency table 2a, parallel bar chart, two-way 					histogram <mark>1.3</mark>		68-95-99.7% rule 1H 1.6	1.5 5-figure summary: Min,			
Bivariate DataTwo categorical variables2ASegmented bar chart, two-way frequency table2a, parallel bar chartMode/ Modal Value Frequency typesAll in one a.fTwo categorical, one numerical variables2ASegmented bar chart, two-way frequency table2a, parallel bar chartMode/ Modal Value Frequency typesAll in one a.fOne categorical, one numerical variables2CBack-to-back stem plots, parallel dot plots, parallel box plots 2bShape > Centre > Spread >SwmetrickSkewedTwo numerical variables 2CScatterplot 2c 2.1 plots, parallel box plots 2bStrength > Direction P Treidual = actual data value y - predicted 52 value y residual = y - ŷ NII patterned residual 3.6 plot 2f = Linear relation Curved/ patterned residual plot # linearStrength > Direction P 3A 3B 3C 2e Linear / Non-linearStrength > Direction P 3A 3B 3C 2e Linear / Non-linearMode/ Modal Value Frequency typesTime Series 4A 4E: LSRL Structure the ange Structure the ange Structure the angeMoving Median 42 Moving Median 42 42 Moving Median 42 42Strength > Structure a = y - bxSteesonal index 5.1.40 ks fr Structure Moving Median 42 42 Structure Structure the angeDeseasonalising 4D 47 Structure Structure Structure the angeTime Series 4A 4E: LSRL Structure thange OutliersMoving Median 42 42 Moving Median 42							11 1.7 Z-score=Z= $\frac{x-x}{s}$	$Q_1, Q_{2,}, Q_3, Max$			
Bivariate Data Two categorical variables2A Segmented bar chart, two-way frequency table2a, parallel bar chart Mode/ Modal Value Frequency types All in one addition on purchase state s							11 1.7 $x = \bar{x} + Z * \tilde{S}$	$IQR=Q_3 - Q_1$, Range=Max–Min			
variables2Afrequency table2a, parallel bar chartFrequency typesAll in one a.6One categorical, one numerical variable 2BBack-to-back stem plots, parallel dot plots, parallel box plots 2DShape \rightarrow Centre \rightarrow Spread \rightarrow Symmetric La Mean \bar{x} Stondard Deviation SSkewed La Mean \bar{x} Skewed La Mean \bar{x} Stondard Deviation SSkewed La Mean \bar{x} Stondard Deviation SSkewed La Mean \bar{x} Stondard Deviation SSkewed La Mean \bar{x} Skewed La Mean \bar{x} Stondard Deviation SSkewed La Mean \bar{x} Stondard Deviation SSkewed La Mean \bar{x} Skewed La Mean \bar{x} Skewed <b< th=""><th>Bivariate Data</th><th>Two categori</th><th>ical</th><th colspan="2">Segmented bar chart, two-way Mode/ M</th><th>Mode/ Modal</th><th colspan="4">odal Value</th></b<>	Bivariate Data	Two categori	ical	Segmented bar chart, two-way Mode/ M		Mode/ Modal	odal Value				
All in one 3.6One categorical, one numerical variable 28Back-to-back stem plots, parallel dot plots, parallel box plots 26Shape \rightarrow Centre \rightarrow Spread \rightarrow Symmetric Life Median M or Q_2 UQR, RangeAll in one 3.6Two numerical variables 26Scatterplot 2c 2.3Strength \rightarrow Direction \rightarrow residual = actual data value $y - predicted 3.7 value y$ residual = $y - \hat{p}$ Nil pattern residual 3.6 plot 2f = Linear relation Extrapolation Extrapolation is linear 3. there are no clear outliers.Scatterplot 2c 2.3Strength \rightarrow Direction \rightarrow Form \rightarrow 3A 38 3C 2e Linear / Non-linearStrength \rightarrow Direction \rightarrow Form \rightarrow 3A 38 3C 2e Linear / Non-linearReporting 2d on Coefficient of Determination r^2 3.1 Almost [r^2 in %] of [RV y] can be explained / predicted by [EV x].Time Series 4A 4E: LSRL A 4E: LSRL A 14 3 4 4 45Moving Mean 48 4.2 Moving Mean 48 4.2Moving Median 4C 4.2 A 4E: LSRL A 4E: LSRL <th></th> <th>variables<mark>2A</mark></th> <th></th> <th>frequency table<mark>2a</mark>, p</th> <th>arallel bar chart</th> <th>Frequency type</th> <th>es</th> <th></th>		variables <mark>2A</mark>		frequency table <mark>2a</mark> , p	arallel bar chart	Frequency type	es				
All in one 3.6numerical variable 2Bplots, parallel box plots 2bCentre \rightarrow Spread \rightarrow 14 Mean \bar{x} Standard Deviation S1.5 Median M or Q_2 		One categori	ical, one	Back-to-back stem plots, parallel dot		Shape →	Symmetric	Skewed			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	<mark>All in one</mark>	All in one numerical variable <mark>2B</mark>		plots, parallel box plots <mark>2b</mark>		Centre →	1.4 Mean \bar{x}	1.5 Median M or Q_2			
Two numerical variables 2CScatterplot 2c 2.1Strength \rightarrow Strong/Moderate/Weak (Check r value) 2D 2.2 2.3Image: colspan="2">Direction \rightarrow Strong/Moderate/Weak (Check r value) 2D 2.2 2.3Image: colspan="2">Direction \rightarrow Image: colspan="2">Strong/Moderate/Weak (Check r value) 2D 2.2 2.3Image: colspan="2">Direction \rightarrow Image: colspan="2">Strong/Moderate/Weak (Check r value) 2D 2.2 2.3Image: colspan="2">Direction \rightarrow Image: colspan="2">Strong/Moderate/Weak (Check r value) 2D 2.2 2.3Image: colspan="2">Direction \rightarrow Image: colspan="2">Strong/Moderate/Weak (Check r value) 2D 2.2 2.3Image: colspan="2">Direction \rightarrow Image: colspan="2">Strong/Moderate/Weak (Check r value) 2D 2.2 2.3Image: colspan="2">Direction \rightarrow Image: colspan="2">Strong/Moderate/Weak (Check r value) 2D 2.2 2.3Image: colspan="2">Strong/Moderate/Weak (Check r value) 2D 2.2 2.3Image: colspan="2">Direction \rightarrow Image: colspan="2">Strong/Moderate/Weak (Check r value) 2D 2.2 2.3Image: colspan="2">Direction \rightarrow Image: colspan="2">Strong/Moderate/Weak (Check r value) 2D 2.2 2.3Image: colspan="2">Strong/Moderate/Weak (Check r value) 2D 2.2 2.3<	<mark>3.6</mark>					Spread \rightarrow	Standard Deviation S	IQR, Range			
$\frac{1}{1} \underbrace{1}_{1} \underbrace{1}_{2} \underbrace{1}_{3} \underbrace{1}_{4} \underbrace{1}_{3} \underbrace{1}_{3} \underbrace{1}_{4} \underbrace{1}_{4} $		Two numerio	cal variables <mark>2C</mark>	Scatterplot 2c 2.1		Strength →	Strong/Moderate/Weak (Check r value) 2D 2.2 2.3				
$\frac{1}{1} + \frac{1}{2} + \frac{1}$				Explanatory explains/prec	licts	Direction → Positive / Negative					
$\frac{1}{12} + \frac{1}{24} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{24} + 1$		in the second se		variable		Form 🗲	Linear / Non-linear				
$\frac{1}{24} + \frac{1}{24} + \frac{1}{4} + $			-	residual = actual data value y -	- predicted 3.7 value y	<mark>3A 3B 3C 2e</mark>					
Interpolation Extrapolation The assumptions for fitting a least squares line 1. the data is numerical 2. the association is linear 3. there are no clear outliers.Nil pattern residual 3.6 plot 2f = Linear relation Curved/ patterned residual plot \neq linear relation3.1 3.7 3.1 $\frac{3.7}{5x}$ $\frac{5x}{5x}$ Almost $[r^2 in \%]$ of $[RV y]$ can be explained / predicted by $[EV x]$.Time Series 4A 4E: LSRL 4.1 4.3 4.4 4.5Features4AMoving Mean 4B 4.2 $\frac{14.3}{28.4}$ Moving Mean 4B 4.2 $\frac{12.5}{28.4}$ Seasonal Index S.I. 4D 4.6 4.7 $\frac{12.5}{28.4}$ Deseasonalising 4D 4.7 $\frac{12.5}{28.4}$ Time Series 4A AE: LSRL 4.1 4.3 4.4 4.5Features4AMoving Mean 4B 4.2 $\frac{12.6}{28.4}$ Moving Mean 4B 4.2 $\frac{12.5}{28.4}$ Deseasonal Index S.I. 4D 4.6 4.7 $\frac{12.5}{28.4}$ Deseasonalising 4D 4.7 $\frac{12.2}{28.5}$ Time Series Cycles Structure change OutliersFeatures4AMoving Mean 4B 4.2 $\frac{12.6}{28.4}$ Moving Mean 4B 4.2 $\frac{12.2}{28.5}$ Seasonal Index S.I. 4D 4.6 4.7 $\frac{12.2}{28.5}$ Deseasonal Index		Minimum Maximum	→	residual = $y - \hat{y}$		LSRL y=a+bx	Reporting 2d on Coefficient of Determination r^2 3.1				
The assumptions for fitting a least squares line 1. the data is numerical 2. the association is linear 3. there are no clear outliers. Time Series 4. 4 4.5 Seasonality Structure change Outliers Time Series 4. 1 4.3 4.4 4.5 Seasonality Structure change Outliers The assumptions for fitting a least squares line 1. the data is numerical 2. the association is linear 3. there are no clear outliers. Time Series 4. 1 4.3 4.4 4.5 Trend Correct Supervised and the season of the season and the season of the season and the season		input value input value	Interpolation Extrapolation	Nil pattern residual <mark>3.6</mark> plot <mark>2f</mark> = Linear		<mark>3.1</mark> 3.7	Almost [r^2 in %] of [RV v] can be explained / predicted by				
squares line 1. the data is numerical 2. the association is linear 3. there are no clear outliers.Curved/ patterned residual plot \neq linear relation $\overline{b=\frac{rS_y}{s_x}}$ $\overline{s_x}$ 		The assumptions	for fitting a least	relation		<mark>3.2</mark> 3.7 <mark>2e</mark> slope					
Seasonality Structure change OutliersMoving Mean 4B 4.2 2.4 Moving mean meanMoving Mean 4B 4.2 2.4 Moving mean meanMoving Median 4C 4.2 10 10 5 6 5 24 10 10 13 5 55 50 7 15 10 10 5 6 5 24 10 10 13 5 55 50 7 15 10 10 5 6 5 24 10 10 13 5 55 50 7 15 10 10 5 6 5 24 10 10 13 5 55 50 7 155 10 10 5 6 5 24 10 10 13 5 55 50 7 155 10 10 5 6 5 24 10 10 13 5 55 50 7 155 10 10 5 6 5 24 10 10 13 5 55 50 7 155 10 10 5 6 5 24 10 10 13 5 55 50 7 155 10 10 5 6 5 24 10 10 13 5 55 50 7 155 10 10 5 6 5 24 10 10 13 5 5 5 50 7 155 10 10 5 6 5 24 10 10 13 5 5 5 50 7 155 10 10 5 6 5 24 10 10 13 5 5 5 50 7 155 10 10 5 6 5 24 10 10 13 5 5 5 50 7 155 10 10 5 6 5 24 10 10 13 5 5 5 50 7 155 10 10 5 6 5 24 10 10 13 5 5 5 50 7 155 10 10 5 6 5 24 10 10 13 5 5 5 50 7 155 10 10 5 6 5 24 10 10 13 5 5 5 50 7 155 10 10 5 6 5 24 10 10 13 5 5 5 50 7 155 10 10 5 6 5 24 10 10 13 5 5 5 50 7 155 10 10 5 6 5 24 10 10 13 5 5 5 50 7 155 10 10 5 6 5 24 10 10 13 5 5 5 50 7 155 10 10 5 6 5 24 10 10 13 5 5 5 50 7 155 10 10 5 6 5 24 10 10 13 5 5 5 5 50 7 155 10 10 5 6 5 24 10 10 13 5 5 5 5 50 7 155 10 10 5 6 5 24 10 10 13 5 5 5 5 50 7 155 10 10 5 6 5 24 10 10 13 5 5 5 5 50 7 155 10 10 5 6 5 24 10 10 13 5 5 5 5 50 7 155 10 10 5 6 5 24 10 10 13 5 5 5 5 50 7 155 10 10 5 6 5 24 10 10 13 5 5 5 5 50 7 155 10 10 5 6 5 24 10 10 13 5 5 5 5 50 7 155 10 10 5 6 5 24 10 10 13 5 5 5 5 50 7 155 10 10 5 6 5 24 10 10 13 5 5 5 5 50 7 155 10 10 10 10 10 10 10 10 10 10 10 10 10 1		squares line	orical	Curved/ patterned resi	dual plot ≠ linear	$b = \frac{rs_y}{rs_y}$					
Image: SeasonalitySeasonalitySeasonalitySeasonalitySeasonalityStructure change OutliersOutliersSeasonalitySeasonalitySeasonalityStructure change Outliers		2. the association	is linear	inear relation		S_{χ}					
Time Series 4A 4E: LSRL 4.1 4.3 4.4 4.5Features 4AMoving Mean 4B 4.2Moving Median 4C 4.2Seasonal Index S.I. 4D 4.6 4.7Deseasonalising 4D 4.7A 4E: LSRL 4.1 4.3 4.4 4.5Moving Mean 4B 4.2Moving Median 4C 4.2S.I. = $\frac{Value for Season}{Values}$ Deseasonalised Figure = $\frac{Actual Figure}{S.I.}$ Seasonality Structure change Outliers3/5 moving $\frac{2/4}$ Moving mean $\frac{12}{244}$ $\frac{181-\frac{144+244}{244}-21.45-1445+21.45-\frac{145+21.45-\frac{1445+21$		3. there are no clo	ear outliers.			$a = \overline{v} - h\overline{x}$					
4A 4E: LSRL 4.1 4.3 4.4 4.5Trend \swarrow Moving Mean 4B 4.2Moving Median 4C 4.2S.I. = $\frac{Value \ for \ Season}{Vearly \ Average}$ Deseasonalised Figure = $\frac{Actual \ Figure}{S.I.}$ 4.1 4.3 4.4 4.5Trend \checkmark Moving Mean 4B 4.2Moving Median 4C 4.2S.I. = $\frac{Value \ for \ Season}{Vearly \ Average}$ Deseasonalised Figure = $\frac{Actual \ Figure}{S.I.}$ 4.1 4.3 4.4 4.5SeasonalitySince $\frac{1}{248}$ Since $\frac{1}{248}$ Since $\frac{1}{248}$ Since $\frac{1}{248}$ Since $\frac{1}{248}$ Structure change OutliersSince $\frac{1}{248}$ Since $\frac{1}{248}$ Since $\frac{1}{248}$ Since $\frac{1}{248}$ Since $\frac{1}{248}$ Since $\frac{1}{248}$ OutliersSince $\frac{1}{248}$ Since $$	Time Series	Features <mark>4A</mark>		Moving smo	othing <mark>4.2</mark>	u y uu	Seasonal Index S.I. 4D 4.6 4.7	Deseasonalising 4D 4.7			
4.1 4.3 4.4 4.5 Cycles Seasonality Structure change Outliers $3/5 \mod 2/4 \mod 2 = 23.1$ $3/5 \mod 2 = 3.1$ $3/5$	<mark>4A</mark> 4E: LSRL	Trend 🗠 🖙	Moving	g Mean <mark>4B</mark> 4.2	Moving Med	dian <mark>4C</mark> <mark>4.2</mark>	$S_{L} = \frac{Value \ for \ Season}{Value \ for \ Season}$	Deseasonalised Figure = Actual Figure			
Seasonality mean Structure change Outliers $\begin{bmatrix} 181 \\ 288 \\ 264 \end{bmatrix}$ $\begin{bmatrix} 181 + 288 + 244 + 224 \\ 264 \end{bmatrix}$ $\begin{bmatrix} 181 + 288 + 244 + 224 \\ 264 \end{bmatrix}$ $\begin{bmatrix} 181 + 288 + 244 + 224 \\ 264 \end{bmatrix}$ $\begin{bmatrix} 181 + 288 + 244 + 224 \\ 264 \end{bmatrix}$ $\begin{bmatrix} 181 + 288 + 244 + 224 \\ 264 \end{bmatrix}$ $\begin{bmatrix} 181 + 288 + 244 + 224 \\ 264 \end{bmatrix}$ $\begin{bmatrix} 181 + 288 + 244 + 224 \\ 264 \end{bmatrix}$ $\begin{bmatrix} 181 + 288 + 244 + 224 \\ 264 \end{bmatrix}$ $\begin{bmatrix} 181 + 288 + 244 + 224 \\ 264 \end{bmatrix}$ $\begin{bmatrix} 181 + 288 + 244 + 224 \\ 264 \end{bmatrix}$ $\begin{bmatrix} 181 + 288 + 244 + 224 \\ 264 \end{bmatrix}$ $\begin{bmatrix} 181 + 288 + 244 + 224 \\ 264 \end{bmatrix}$ $\begin{bmatrix} 181 + 288 + 244 + 224 \\ 264 \end{bmatrix}$ $\begin{bmatrix} 181 + 288 + 224 + 224 \\ 264 + 244 + 224 + 224 \\ 264 + 244 + 224 + 224 \\ 264 + 244 + 224 + 224 \\ 264 + 244 + 224 + 224 + 224 + 224 \\ 264 + 24$	4.1 <mark>4.3 4.4</mark> 4.5	Cycles	3/5 moving	2/4 Moving mean	Jan Feb Mar Apr May Jun 10 12.5 6 5 24 19	Jul Aug Sep Oct Nov Dec 13 7.5 8.5 10 7 15	Yearly Average	Science in S.I.			
Structure change Outliers $\begin{bmatrix} 18.1 \\ 24.8 \\ 26.4 \end{bmatrix}$ $\begin{bmatrix} 24.8 \\ 26.4 \\ 26.4 \end{bmatrix}$ $\begin{bmatrix} 24.8 \\ 26.4 \\ 26.8 \\ 26.4 \end{bmatrix}$ $\begin{bmatrix} 24.8 \\ 26.4 \\ 26.8 \\ 26.4 \\ 26.$		Seasonality	mean		10 6 6 19 19	13 8.5 8.5 8.5 10	Sum of Season Values	= Actual Figure $*\frac{1}{SI}$			
Change Outliers 248 $\frac{248}{264}$ $\frac{248}$		Structure	18.1	18.1 <u>18.1+248</u> 21.45 <u>21.45+25.6</u> 23.525	20-	raw data	Yearly Average = $\frac{Sum of Scalor + and S}{No.of season per year}$	Actual figure - Decessorablish Figure * S. I			
Outliers $10 - 10 - 10$ Correct S.I. = $(\frac{1}{2} - 1) \times 100$		change	24.8 10.4 20.4 24.8 2	26.4 <u>248+264</u> =25.6 2 25.515	15-			Actual ligure – Deseasonaliseu rigure * 5.1.			
		Outliers			10	Len?	Correct S.I. = $(\frac{1}{SI} - 1) \times 100$				
+ means \uparrow , – means \downarrow					5		+ means \uparrow , – means \downarrow				

Note: Textbook Summary Notes Section #, Report Instruction Notes #. CAS Instruction Notes #

3D: Data Transformation & 3E 3.3 3.4 3.5 3.6

1D Log Scales & Graphs 1.2

Log (Base 10) Scale

Logarithms

A logarithm, or log, is a power or exponent or index of a number. That is the log of a^b is b. For example the logs of 2^3 , 5^4 , and 10^6 are 2, 3, and 6 respectively.

Log (Base 10) Scale

The log (base 10) scale is based of exponentials of base 10, i.e. $10, 10^2, 10^3, 10^4$. Using the log (base 10) scale allows data ranging over several order of magnitude to be displayed.

Converting Between Forms using the Log (Base 10) Scale

 $\log value = \log_{10}(data value)$

data value $= 10^{\log value}$

Data Value	0.001	0.01	0.1	10^n	1	10	100	1000
Log Form	$\log_{10} 0.001$	$\log_{10} 0.01$	$\log_{10} 0.1$	$\log_{10} 10^n$	$\log_{10} 1$	$\log_{10} 10$	$\log_{10}100$	$\log_{10}1000$
Log Value	-3	-2	-1	n	0	1	2	3
Exponent Form	10 ⁻³	10 ⁻²	10 ⁻¹	10^n	10 ⁰	10 ¹	10 ²	10 ³

- Best transformation: strongest r/r^2 value Types of transformations:
- Log: compresses the data
- Square: stretches the data
- Reciprocal: compresses values greater than 1, stretches values less than 1.

The Effect of Each Transformation:

u + bx $+ bx^2$	Type of Transformation:	Description of Effect:	One Word Description:	Graph of Transformation:	
	Squared Transformations $(x^2 and y^2)$	Spreads out the high x-values relative to the lower x-values and vice versa.	Stretching transformation > x ² stretches high x-values > y ² stretches high y-values		
a + bx a + bx	Log Transformation (Log _x and Log _y)	Compresses the higher x- values relative to the lower x-values and vice versa	Compressing Transformation		
+ <i>bx</i> ²	Reciprocal Transformations	Compresses larger y- values relative to smaller y-values and vice versa	Stretching and Compressing Transformation		

1E: The Box Plot 1.6

Data Summary Notes

1A: Types of data

Categorical: characteristics/qualities

- Nominal: grouped according to characteristics
- Ordinal: can be grouped and ordered

Numerical: numbers/quantities

- Discrete: whole numbers, can be counted
- Continuous: is measured

1B: displaying categorical data

Count frequency: number of times the category appears in the data

Percentage frequency: $\frac{count \ frequency}{total \ count} \times 100$ Mode: most frequently occurring value or category Frequency Table:

teacher's	frequency				
height	number	%			
short	6	25.0			
average	10	41.7			
tall	8	33.3			
total	24	100.0			

Bar chart:

• Must have gaps between bars

Segmented bar chart:

- Can be count or percentage frequency
- Must have a key

<u>1C: Displaying Numerical data</u> Dot plot

- Discrete data
- Small data sets

Stem and leaf plot

- Needs a key
- Can have class intervals (splitting the stem in two if it is really large)

No intervals						With	cla	ass	int	er۱	/als	s of 5	
Key	1	2 =	= 1.	2			Key	:1	2 =	= 12	2		
1	3	3	4	6	8		0	1	1	2	3	4	
2	0	4	9				0	5	6	6	8	8	9
3	1	1	1	4	5	8	1	2	3	3			
4	2						1	6	7	7	8	9	9

Grouped frequency tables

hoight (cm)	frequency				
neight (cm)	number	%			
30-<40	1	5			
40-<50	5	25			
50-<60	7	35			
60-<70	3	15			
70-<80	2	10			
80-<90	2	10			
total	20	100			

Histogram:

- Continuous data
- Intervals no gaps between bars
- No gaps between bars
- X-axis markers are always a whole number

1D: Log scales and graphs

- Log scales are used to compress data that has a large range, making it more even and able to be displayed on the same set of axes.
- The base is always 10
- When undoing the log scale do ten to the power of the scale (eg. $10^{2.2} = 158.5$)

From...

1E: the five-number summary and boxplots

5 number summary:

- Minimum: smallest value in data set
- Q1: median of the lower half
- Median: middle value in an ordered data set
- Q3: median of the upper half
- Maximum: largest value in data set

Odd number of values

Spread: refers to how variable the data set it Range = maximum – minimum

Interquartile range: measure of spread of the middle 50% of a data set. Accurate measure of spread when outliers are present.

$IQR = Q_3 - Q_1$

Outliers: values which fall outside of what is 'normal'. Outliers are still the minimum and maximum value! **Fence:** defines the boundary of what is an outlier. If a value is less than the lower fence or greater than the upper fence it is considered to be an outlier.

$$lower fence = Q_1 - (1.5 \times IQR)$$

$$upperfence = Q_3 + (1.5 \times IQR)$$

1F: describing numerical data

- Shape: is the data symmetrical, skewed or have any outliers?
- Centre: What is the median value?
- Spread: What is the range and IQR?

1G: Standard deviation

Population: the entire group is used to collect data. Sample: smaller subset of the population (this is usually what is used).

Mean: measure of centre – the AVERAGE. $\overline{\chi}$

 Calculated by adding all the data values together and then dividing by the number of values.

 $\bar{x} = \frac{\Sigma x}{n}$, where Σx is the 'sum of all values', and *n* is the number of values in the data set.

Standard deviation: measure of spread based on the average deviation of each data point compared to the mean. It can be calculated by hand but please use CAS.

$$s_x = \sqrt{\frac{\Sigma(x - \bar{x})^2}{n - 1}}$$

Boxplots:

1H: The Normal Distribution

Normal Distribution: is a symmetrical (or

approximately) numerical data set centred around the mean.

- Bell shaped
- Mean and median are equal

68-95-99.7% rule:

- 68% of the data lies within one standard deviation of the mean
- 95% of the data lies within two standard deviations of the mean
- 99.7% of the data lies within three standard deviations of the mean

The bell curve can be broken into each section:

11: z-scores

Standardised score:

- Z-score
- Measure of the number of standard deviations between the mean and a data value
- Each data value is an 'actual score'
- Positive = above mean, negative = below mean, zero = equal to mean

 $z = \frac{x - \overline{x}}{s_x}$

- *z* is the standardised score
- *x* is the actual score
- \overline{x} is the mean
- s_x is the standard deviation

Actual score:

 $x = \overline{x} + (z \times s_{r})$

2A: association between 2 variables

Two-way frequency table:

- Columns = EV, Rows = RV
- Percentage frequency is used for greater accuracy when making comparisons if sample sizes are different

Grouped and segmented bar charts:

Describing the association between two variables:

- Whether or not an association between the two variables exists
- Appropriate percentages to support findings

2B: association between numerical and categorical variables

Back to back stem plot

Parallel boxplot

• Making comparisons: refer to 1F and compare shape, centre and spread of the two categories

2C: association between two numerical variables

Response variable: RV, may be explained or predicted by changes in the explanatory variable.

Explanatory variable: EV, used to explain or predict the changes observed in the response variable.

• 'EV explains the RV'

Scatterplots:

EV = x axis, RV = y axis

Describing relationship/analysing scatterplots:

- Strength: how close the data points are together
- Direction: positive or negative

• Form: linear (straight) or non-linear (curved)

2D: Correlation and causation

Pearson's correlation coefficient (r): numerical value that determines strength and direction between two numerical variables, assuming:

- Data is linear
- Data is numeric
- No outliers present

$0.75 \leq r \leq 1$	Strong, positive, linear association
$0.5 \leq r < 0.75$	Moderate, positive, linear association
$0.25 \leq r < 0.5$	Weak, positive, linear association
-0.25 < r < 0.25	No association
$-0.5 < r \leq -0.25$	Weak, negative, linear association
$-0.75 < r \leq -0.5$	Moderate, negative, linear association
$-1 \leq r \leq -0.75$	Strong, negative, linear association

Correlation and Causation: just because two variables have a high correlation, it doesn't mean that one causes the change in the other. Some explanations:

 Common response: a third variable that is the likely cause of correlation, acting on both variables. Eg. Number of people wearing sunscreen and feinting → the sunscreen isn't causing people to feint... the third variable would be temperature. This is common cause as temperature affects **both** variables.

- **Confounding variable:** external variable that can also produce a change to the RV. Eg. Plant height and water intake. Water intake does effect plant height (RV) but so does sun, soil quality, buys, season, temperature...
- **Coincidence:** two variables correlate but have no relation to each other. Pure chance. No logical explanation.

3A: fitting a least squares regression line

Least squares regression line (LSRL): is the line which creates the minimum sum of the squares of residuals. There are assumptions:

- Data is numerical
- The relationship between variables is linear
- There are no clear outliers present

The line is used to show the general trend in the data and is given by the equation:

$$y = a + bx$$

Intercept Slope

Determining LSRL from a graph: Find the intercept (a) and the slope (b).

- Intercept: read directly from the graph when the EV is 0
- Slope: choose two points on the line that you can clearly ready the coordinates. Use the rule:

$$b = \frac{rise}{run} = \frac{y_2 - y_1}{x_2 - x_1}$$

Calculating the LSRL from summary statistics:

$$b = r \times \frac{s_y}{s_x}$$
$$a = \overline{y} - b\overline{x}$$

• *a* is the *y*-intercept

- *b* is the gradient
- *r* is Pearson's correlation coefficient
- \bar{x} is the mean of the explanatory variable (*x*)
- \bar{y} is the mean of the response variable (y)
- s_x is the standard deviation of the explanatory variable (x)
- s_v is the standard deviation of the response variable (y)

Drawing the LSRL on a graph: Sub in the first value on the x-axis and the last value on the x-axis into the equation. Plot the two points, join the line using a ruler.

3B: Interpreting LSRL: use the following statements, fill in EV and RV and values of a and b. y-intercept: when the EV is 0, the RV is a. Slope: for every one-unit increase in the EV, the RV increases/decreases by b. (If b is positive, increases, if b is negative, decreases) **Making predictions:** the LSRL can be used to predict the value of the RV from the EV.

Interpolation: predicting within the range of data. **Extrapolation:** predicting outside the range of data. Less reliable.

How to predict: sub the EV value that you are predicting for into the LSRL equation to predict the RV.

3C: Performing a regression analysis:

Coefficient of determination (r²): calculated by squaring the r value. It is turned into a percentage (×100) then interpreted. Use the statement by inputting the variable names and percentages:

• **r²** % of the variation in the **RV** can be explained by the variation in the **EV**. The remaining % can be explained by other factors.

Residuals: residuals are the vertical distances between the data point and the LSRL.

residual = actual data value - predicted data value

- Actual value: found in the question/table of data
- Predicted value: must use the LSRL to predict the RV from the EV
- Positive residual = data point above LSRL, negative residual = data point below LSRL, zero residual = data point on the LSRL.

Residual plots:

Random scattering of	Clear curved pattern in		
points in the residual	the residual plot, does		
plot, supports the	not support the		
assumption of linearity	assumption of linearity		
	Leedaal		

3D: Data Transformations: You shouldn't perform a linear regression analysis for data that is nonlinear. Therefore, nonlinear data is transformed.

- Transformation linearise data so that regression analysis can be performed accurately.
- Match the nonlinear scatterplot with one in the diagram to help you determine the best transformation.
- Best transformation: strongest r/r² value Types of transformations:
 - Log: compresses the data
 - Square: stretches the data
 - Reciprocal: compresses values greater than 1, stretches values less than 1.

<u> 3E: Data transformations – applications</u>

LSRL: once you have transformed your data you must create a new LSRL equation and include the transformation in the rules.

Eg. From y = -16.14 + 9.39x

То

 $y = -0.73 + 1.05x^2$

Making predictions: the limits of extrapolation are still present. When calculating, use solve as this will undo the transformation for you.

<u>4A: Time series data and their graphs</u>

Trends: general upwards (increasing) or downwards (decreasing) movement over time. Trend lines can be fitted directly to trends. There can be multiple trend lines.

Cycles/cyclical variation: periodic movements over a period greater than 1 year. Peaks of cycles occur at approximately the same intervals, cycles can have a period which changes slightly between peaks.

Seasonality: cyclical variation within a calendarrelated period (week, month, quarter). A seasonal time series plot has regular peaks and troughs that occur at the same time each period and the length of the period must be a year or less.

Structural Change: When an established pattern is suddenly altered. The graph then continues on the same level post structural change.

Irregular fluctuations: random variations that cannot be explained by trend, seasonality, cycles or structural change.

Outliers: stands out from the general body of data. It then returns to follow the original pattern/trend

<u>4B: Smoothing – moving means</u>

Smoothing: evens out fluctuations to help identify any underlying trends

- Only smooth the RV
- The larger the mean smooth, the more effective (5 more effective than 3)

3 mean: use 3 values and find the mean

5 mean: use 5 values and find the mean

• Always centred around the value you are trying to smooth

day	temp. (°C)	calculation	three-mean smoothed <i>temperature</i> (°C)
Mon	24	-	-
Tue	27	$\frac{24+27+21}{3}$	24
Wed	21	$\frac{27+21+18}{3}$	22
Thu	18	$\frac{21+18+15}{3}$	18
Fri	15	$\frac{18+15+15}{3}$	16
Sat	15	$\frac{15+15+12}{3}$	14
Sun	12	-	-

Smoothing with centring: an additional step when smoothing with an even number of points. Finding the mean of two non-centred means.

day	temp. (°C)	before centring	after centring
Mon	24		-
		$\frac{24+27}{2} = 25.5$	
Tue	27		$\frac{25.5 + 24}{2} = 24.75$
		$\frac{27+21}{2} = 24$	
Wed	21		$\frac{24+19.5}{2} = 21.75$
		$\frac{21+18}{2} = 19.5$	
Thu	18		-

<u> 4C Smoothing – moving medians</u>

- Smoothed directly on the graph
- Median smoothing only uses and odd number of points
- Smooth the RV

4D: Seasonal adjustments:

- Seasonal fluctuations exist.
- Seasonal indices (SI) are used to deseasonalise the data to minimise the effects of seasonality. This allows trends to be more easily observed.

Rules

1. Seasonal index $(SI) = \frac{value \ for \ season}{seasonal \ average}$

2. Seasonal average $(SA) = \frac{sum of all seasons}{number of season}$

3. Deseasonalised figure (DS) = $\frac{value \ for \ season}{seasonal \ index}$

4. Reseasonalising data:

value for season = deseasonalised figure \times seasonal index

How to interpret a seasonal index: (seasonal index -1) × 100 = ____%

```
    A negative %: (season) is below the seasonal average by ____%
    A positive %: (season) is above the seasonal average by ____%
    Correcting for seasonality:
```

 $(\frac{1}{seasonal\ index} - 1) \times 100 = ___{\%}$

- A negative %: To correct (season) for seasonality, (unit) need to be decreased by %
- A positive %: To correct (season) for seasonality, (unit) need to be increased by _____%

Notes:

- The sum of the seasonal indices is equal to the number of seasons (if you are working with months of the year there are 12 seasons and therefore the seasonal indices will sum to 12)
- If there were no fluctuations, the seasonal average is 1

4E: Time series data and LSRL modelling:

Trend lines: can be fitted to time series plots if there appears to be an increasing or decreasing trend.

- The LSRL is used
- If seasonality is present, data needs to be deseasonalised first before fitting the LSRL to the deseasonalised values

Forecasting: making a prediction for the future

 You need to re-seasonalise the value if the prediction was made from a deseasonalised LSRL

1.1 Constructing a histogram from raw data

CAS 1: How to construct a histogram using the TI-Nspire CAS

 Display the following set of 27 marks in the form of a histogram.

 16
 11
 4
 25
 15
 7
 14
 13
 14
 12
 15
 13
 16
 14

 15
 12
 18
 22
 17
 18
 23
 15
 13
 17
 18
 22
 23

 Steps

- 1 Start a new document by pressing em + N (or @m>New. If prompted to save an existing document, move the cursor to No and press [enter]
- 2 Select Add Lists & Spreadsheet. Enter the data into a list named marks.
 - a Move the cursor to the name cell of column A and type in *marks* as the list variable. Press [mter].
 - b Move the cursor down to row 1, type in the first data value and press enter. Continue until all the data have been entered. Press enter after each entry.
- 3 Statistical graphing is done through the Data & Statistics application. Press en + 1 (or alternatively press en doc-) and select Add Data & Statistics.
 - a Press the enter (or click on the Click to add variable box on the x-axis) to show the list of variables. Select marks. Press enter to paste marks to that axis.
 - A dot plot is displayed as the default. To change the plot to a histogram, press mem>Plot Type> Histogram. The histogram shown opposite has a column (or bin) width of 2, and a starting point (alignment) of 3. See Step 5 below for instructions on how to change the appearance of a histogram.
- 4 Data analysis
 - a Move the cursor over any column; a ⊕₁ will appear and the column data will be displayed as shown opposite.
 - **b** To view other column data values, move the cursor to another column.

Note: If you click on a column, it will be selected.

- Hint: If you accidentally move a column or data point, etc. + esc. enter will undo the move.
 Change the histogram column (bin) width to 4 and the starting point to 2.
 - A Press [eff] + [mem] to access the context menu as shown (below left).
 Hint: Pressing [eff] + [mem] [effer] with the cursor on the histogram gives you a context menu that
 - relates only to histograms. You can access the commands through menu>Plot Properties b Select Bin Settings>Equal Bin Width.
 - c In the settings menu (below right) change the Width to 4 and the Starting Point (Alignment) to 2 as shown. Press [mter].

d A new histogram is displayed with column width of 4 and a starting point of 2 but it no longer fits the window (below left). To solve this problem, press err. + memu>Zoom>Zoom>Data and enter to obtain the histogram as shown below right.

6 To change the frequency axis to a percentage axis, press entry + memp>Scale>Percent and then press entry.

Example 12 Using a CAS calculator to find logs

- **a** Find the log of 45, correct to two significant figures.
- **b** Find the number with log equal to 2.7125, correct to the nearest whole number.

Explanation

- a Open a calculator screen, type log (45) and press [enter]. Write down the answer correct to two significant figures.
- b If the log of a number is 2.7125, then the number is 10^{2.7125}.
 Enter the expression 10^{2.7125} and press [enter].

Write down the answer correct to the nearest whole number.

€ 1.1 ▶	*TI-Nspire	DEG
log (45)		1.65321
10 ^{2.7125}		515.822
I.		
a log 4	5 = 1.65	
a log 4	5 = 1.65 = 1.7 (to 2	sig. figs
a log 4 b 10 ^{2.71}	$5 = 1.65 \dots$ = 1.7 (to 2 $2^{25} = 515.82$.	sig. figs
a log 4 b 10 ^{2.71}	$5 = 1.65 \dots$ = 1.7 (to 2 $2^{25} = 515.82$. = 516 (to t	sig. figs he neare

1.3 Constructing a histogram with a log scale

CAS 2: Using a TI-Nspire CAS to construct a histogram with a log scale

The we	eights of	27 ani	mal sp	ecies (i	in kg) are	recorded	below.	
1.4	470	36	28	1.0	12000	2600	190	520
10	3.3	530	210	62	6700	9400	6.8	35
0.12	0.023	2.5	56	100	52	87 000	0.12	190
Constra	ict a hist	ogram	to dis	olay th	e distribu	tion:		

a of the body weights of these 27 animals and describe its shape

b of the log of the body weights of these animals and describe its shape.

Steps

Statistics

plot is displayed.

Type>Histogram.

1 a Start a new document by pressing dri + N.
 b Select Add Lists & Spreadsheet.

Click on the Click to add variable on the

x-axis and select the variable weight. A dot

2 a Press [tr] +] and select Add Data &

b Plot a histogram using menu>Plot

c Describe the shape of the distribution.

3 a Return to the Lists & Spreadsheet screen.

4 a Plot a histogram using a log scale. That is,

Width and set the column width (bin) to 1 and alignment (start point) to -2 and use menu>Window/Zoom>Zoom-Data to rescale

Note: Use menu>Plot Properties>Histogram Properties>Bin Settings>Equal Bin

plot the variable logweight.

c Move the cursor to the formula cell below the

logweight heading. Type in = log(weight).

Press enter to calculate the values of logweight.

b Name another list logweight.

A weight E C D = 1 1.4 2 470 3 36 4 28 5 1. 4 1.4 4 28 5 1. 4 1.4 4 28 5 1. 5 1. 5

Shape: positively skewed with outliers

Shape: approximately symmetric

b Describe the shape of the distribution.

1.4 Calculating the standard deviation

CAS 3: How to calculate the mean and standard deviation using the TI-Nspire CAS

The following are the heights (in cm) of a group of women.

176 160 163 157 168 172 173 169

Determine the mean and standard deviation of the women's heights. Give your answers correct to two decimal places.

e has c_{2} , d_{3} , d_{4}

(13.000, 15.000) 6 p

14 16 18

16

4

15

Steps

- 1 Start a new document by pressing etrl + N.
- 2 Select Add Lists & Spreadsheet.
- Enter the data into a list named *height*, as shown.
 3 Statistical calculations can be done in either the Lists & Spreadsheet application or the Calculator application (used here).

Press er + 1 and select Add Calculator.

- a Press menu>Statistics>Stat Calculations>One-Variable Statistics. Press enter to accept the
- Num of Lists as 1.
 i To complete this screen, use the b arrow and enter to paste in the list name *height*.
 - ii Pressing enter exits this screen and generates the results screen shown opposite.

A	height	В	С	D	
=					
1	176				
2	160				
3	163				
4	157				
5	168				
AI 1	76				4 3
1.1 Or	1.2 De-Varia	•Ti ible Sta	-Nspire	1	neo 🗐 🕽
1.1 Or	1.2 De-Varia	•TI ible Sta	-Nspire tistics height	c	no 🗐 🕽
1.1 Or	1.2 ne-Varia) Frequent	•TI ible Sta (1 List: cy List:	-Nspire tistics height		*** 🗐) • •
1.1 Or	1.2 me-Varia Strequent Catego	•Ti ible Sta (1 List: cy List: iy List:	-Nspire tistics height 1		10 ())))
1.1 Or	1.2 e-Varia) Frequent Catego lude Cate	•Ti able Sta (1 List: cy List: ry List: egories:	-Nspire tistics height 1	c	*** (ii) > • • •
I.1 Or	1.2 ne-Varia) Frequent Catego lude Cate	able Sta k1 List: cy List: iy List: igories:	-Nspire tistics height 1	c K Car	ito ())))) hcel
1.1 Or Inc	1.2 me-Varia 3 Frequeni Catego Iude Cate	en able Sta (1 List: cy List: iy List: igories:	-Nspire tistics height 1	c K Car	ito ())))) hcel
1.1 Or Inc	1.2 Ante-Varia	•TI Ible Sta (1 List: cy List: igories:	-Napire tistics height 1	c Car	eo (iii) >

4 Write down the answers to the required degree of accuracy (i.e. two decimal places).

is $\bar{x} = 167.25$ cm and the standard deviation is s = 6.67 cm.

28

21

0 5 10 15 20 25 30 35 40 45 50

1.1 1.

Notes: **a** The sample standard deviation is \mathbf{sx} .

b Use the ▲ ▼ arrows to scroll through the results screen to obtain values for additional statistical values.

1.5 Constructing a boxplot with outliers

CAS 4: How to construct a boxplot with outliers using the TI-Nspire CAS $% \left({{\mathbf{TI}}_{\mathbf{T}}} \right)$

43 31 30 34 48 36 35 23 24

Steps

- **1** Start a new document by pressing **ctrl**+**N**.
- 2 Select Add Lists & Spreadsheet. Enter the data into a list called *marks* as shown.
- Statistical graphing is done through the
 Data & Statistics application.
 Press end + 1 and select Add Data & Statistics.

Note: A random display of dots will appear – this indicates that list data are available for plotting. Such a dot is not a statistical plot.

- a Click on the Click to add variable on the x-axis and select the variable marks. A dot plot is displayed by default as shown opposite.
- b To change the plot to a boxplot press mmm>Plot Type>boxplot. Your screen should now look like that shown opposite.
- 4 Data analysis
- Key values can be read from the boxplot by moving the cursor over the plot or using [mem]>Analyze>Graph Trace.

Starting at the far left of the plot, we see that the:

- minimum value is 3 (an outlier)
- first quartile is 23 ($Q_1 = 23$)
- median is 30 (**Median** = **30**)
- third quartile is $35 (Q_3 = 35)$
- maximum value is 48.

1.6 Using "UNI Lower Upper Fences Normal Distribution" template

1.1 1.2 1.3 ▶ UNI Loweion R4	ND 📋	×	1.1	1.2	1.3	UNI Loweion	RAD 📘
Fences Either ENTER RawData into colu	ımn	î	Norm	al Di	strib	ution Either ENTER	
a of 1.1		Ш	RawD	ata ir	nto c	olumn a of 1.1	
Or		Ш	Or				
Enter Q1 into C9		Ц	Enter	⊼ into	C2		
Enter Q3 into C11			Enter	s _x int	o C5		
ENTER			ENTE	R			

1.7 Using "Z Score" template

Enter all known data into green boxes as indicated on the column a of data title, results will come out in the coloured area

2.1 Constructing a scatterplot Grouped Bar Graph: Menu 2 9; Parallel Box plot Menu 2 5; Regression line: Menu 4 6 2; Line Equation: Menu 4 6 2 (graph), Menu 4 1 4 (Spreadsheets), Menu 6 1 4 (Calculator)

12 15 15

17

14 16

CAS 1: How to construct a scatterplot using the TI-Nspire CAS

6 6 12 13

Construct a scatterplot for the set of test scores given below. Treat *test 1* as the explanatory (i.e. *x*) variable.

6 8 5

9

Test 1 Test 2 Steps

10 18 13

12

20 11

1 Start a new 1,1 1,2 document by pressing etri + N 12 2 Select Add Lists & 13 11 Spreadsheet Enter the data into lists named test1 and test2. 3 Press [tr] +] and select Add Data & Statistics. 4 a Click on Click to add variable on the x-axis and select the explanatory variable test1. b Click on Click to add variable on the y-axis and select the response variable test2. A scatterplot is displayed. The plot is scaled automatically.

2	2.2 c	alcu	latin	g the	cori	relati	ion coe	fficie	nt r usiı	ng t	the form	nula
(How	to ca	alcul	ate t	he c	orrel	ation o	oeffic	cient us	ing	the fo	rmula
	Use t	he for	mula t	to calc	culate	the co	orrelation	1 coeffi	cient, r, f	or t	he follow	ring data.
	x	1	3	5	4	7			$\bar{x} = 4$,	s_x :	= 2.236	
	y 2 5 7 2 9 $\bar{y} = 5, s_y = 3.082$											
	Give the values rounded to two decimal places.											
	Step	S										
	1 W	rite do	own th	e valu	ies of	the m	eans,		$\bar{x} = 4$	4 s,	= 2.236	
	sta	ndard	devia	tions	and <i>n</i>				$\bar{y} = 5$	$5 s_y$	= 3.082	<i>n</i> = 5
i	2 Se	t up a	table	like tł	nat she	own		x	$(x - \bar{x})$	v	$(y - \overline{y})$	$(x-\bar{x}) \times (y-\bar{y})$
	op	posite	to cal	lculate	e			1	-3	2	-3	9
	\sum	$x - \bar{x}$)(y – j	<i>ī</i>).				3	-1	5	0	0
								5	1	7	2	2
								4	0	2	-3	0
								7	3	9	4	12
								Sum	0		0	23
								∴∑(.	$(x-\bar{x})(y-\bar{x})$	- <u>ÿ</u>)	= 23	
	3 W	rite do	own th	e forr	nula f	or <i>r</i> .			<i>r</i> =	Σ	$(x-\bar{x})(y)$	$(y - \overline{y})$
	Su	bstitu	te the	appro	priate	value	es and ev	aluate,			$(n-1)s_{3}$	s_y
	rounding the answer to two decimal places. $r = \frac{2.5}{(5-1) \times 2.236 \times 3.082}$											
									=	= 0.8	334 = 0).83 (2 d.p.)

2.3 Using "r value by formula" template to calculate the correlation oefficient r using the formula

Enter all data in green area and answer will come in pink box

٩	1.1	•	l3	r value b	y _ula		RAD 📘	×
Γ		Ax	ву	r value b	y formula	E	F	f
=	-							ľ
1		_	_	title				1
1	2		-	n	_	r		L
10	3		_	x	_			
4				У	_			
5	5		_	Sx	_			
								_

3.1 Determining the equation of the least squares regression Line

CAS 1: How to determine and graph the equation of a least squares regression line using the TI-Nspire CAS

The following data give the height (in cm) and weight (in kg) of 11 people.

Height (x)	177	182	167	178	173	184	162	169	164	170	180
Weight (y)	74	75	62	63	64	74	57	55	56	68	72

Determine and graph the equation of the least squares regression line that will enable weight to be predicted from height. Write the intercept and slope rounded to three significant figures.

74

75 182

63 178

184

0

172 176 180 184

-84.823 +0.86729-:

167 62

173 64

68

62

164 168

Steps

- 1 Start a new document by pressing etri + N.
- 2 Select Add Lists & Spreadsheet. Enter the data into lists named height and weight, as shown.
- 3 Identify the explanatory variable (EV) and the response variable (RV).

EV: height RV: weight

Note: In saying that we want to predict weight from height, we are implying that height is the EV.

4 Press [tr] +] and select Add Data & Statistics Construct a scatterplot with height (EV) on the horizontal (or x-) axis and weight (RV) on the vertical (or y-) axis.

Press menu>Settings and click the Diagnostics box. Select OK to activate this feature for all future documents. This will show the coefficient of determination (r^2) whenever a regression is performed.

5 Press menu>Analyze>Regression>Show Linear (a + **bx)** to plot the regression line on the scatterplot. Note that, simultaneously, the equation of the regression line is shown on the screen. The equation of the regression line is:

 $weight = -84.8 + 0.867 \times height$

The coefficient of determination is $r^2 = 0.723$, rounded to three significant figures.

3.2 Conducting a regression analysis using data

CAS 2: How to conduct a regression analysis using the TI-Nspire CAS

This analysis is concerned with investigating the association between life expectancy (in

Life expectancy (years)66544342494564616Steps	i 34	26	32	31 3		42	34	3	8		38	30		Birth rate
teps Write down the explanatory variable (EV) and response variable (RV). Use the variable names <i>birth</i> and <i>life</i> . Start a new document by pressing (am + N). Select Add Lists & Spreadsheet. Enter the data into the lists named <i>birth</i> and <i>life</i> , as shown. Construct a scatterplot to investigate the nature of the relationship between life expectancy and birth rate.	66	61	51	64 6	Τ	45	49	2	3	Γ	54	66	ancy (years)	Life expectant
 Write down the explanatory variable (EV) and response variable (RV). Use the variable names birth and life. Start a new document by pressing end + N. Select Add Lists & Spreadsheet. Enter the data into the lists named birth and life, as shown. Construct a scatterplot to investigate the nature of the relationship between life expectancy and birth rate. 	_													eps
 (EV) and response variable (RV). Use the variable names <i>birth</i> and <i>life</i>. 2 Start a new document by pressing and <i>ife</i> + N. Select Add Lists & Spreadsheet. Enter the data into the lists named <i>birth</i> and <i>life</i>, as shown. Construct a scatterplot to investigate the nature of the relationship between life expectancy and birth rate. 					h	birth	EV:		e	ał	vari	atory	vn the explan	Write down
 the variable names <i>birth</i> and <i>life</i>. Start a new document by pressing (eff) + N. Select Add Lists & Spreadsheet. Enter the data into the lists named <i>birth</i> and <i>life</i>, as shown. Construct a scatterplot to investigate the nature of the relationship between life expectancy and birth rate. 						1:60	D17-		Jse).	(RV)	able	response var	(EV) and res
 2 Start a new document by pressing (att + N). Select Add Lists & Spreadsheet. Enter the data into the lists named birth and life, as shown. Construct a scatterplot to investigate the nature of the relationship between life expectancy and birth rate. 						ijе	χν.				1 life	h and	le names biri	the variable
err + N. Select Add Lists & Spreadsheet. Enter the data into the lists named birth and life, as shown. P Construct a scatterplot to investigate the nature of the relationship between life expectancy and birth rate.	DEG		lspire	*TI-Ns		Þ	1.1			g	essin	oy pr	w document l	Start a new of
Select Add Lists & Spreadsheet. Enter the data into the lists named <i>birth</i> and <i>life</i> , as shown.	D		c	life	1	birth	A					• 1		ctrl + N.
Select Add Lists & Spreadsheet. Enter the data into the lists named <i>birth</i> and <i>life</i> , as shown. Construct a scatterplot to investigate the nature of the relationship between life expectancy and birth rate. 1					_		=				_			
Enter the data into the lists named <i>birth</i> and <i>life</i> , as shown. Construct a scatterplot to investigate the nature of the relationship between life expectancy and birth rate. 2 38 43 4 42 5 34 49 4 30 4			6	66	30	3	1				heet.	ads	d Lists & Spr	Select Add L
and <i>life</i> , as shown.			4	54	38	3	2		birt	ed	name	ists 1	data into the	Enter the da
Construct a scatterplot to investigate the nature of the relationship between life expectancy and birth rate.			3	43	58	3	3						s shown	and life as s
Construct a scatterplot to investigate the nature of the relationship between life expectancy and birth rate.			9	49	34	3	5						S SHOWIL	und nye, us s
Construct a scatterplot to investigate the nature of the relationship between life expectancy and birth rate.						0	A1 3							
the nature of the relationship between life expectancy and birth rate.	DEG	2	spire	•TI-Ns		1.2	1.1	ĵ	e	ga	vesti	to in	a scatterplot	Construct a
life expectancy and birth rate.			0	0		1	66.		en	w	n het	nshi	of the relation	the nature of
				•		0	60.		cii		a	h rot	tancy and hir	life expector
48							2 54				с.	III I at	tancy and on	ine expecta
48-		0	-				5							
12			-			-	48.							
42-1		•	-		-	4	42.							

- 4 Describe the association shown by the scatterplot. Mention direction, form, strength and outliers.
- 5 Find and plot the equation of the least squares regression line and r^2 value. Note: Check if Diagnostics is activated using menu>Settings.
- 6 Generate a residual plot to test the linearity assumption.
 - Use [etr] + ◀ (or click on the page tab) to return to the scatterplot.

To hide the residual plot press menu>Analyze>Residuals>Hide **Residual Plot**.

7 Use the values of the intercept and slope to write the equation of the least squares regression line. Also write the values of r and the coefficient of determination

Regression equation:

 $life = 105.4 - 1.445 \times birth$

Correlation coefficient: r = -0.8069Coefficient of determination: $r^2 = 0.651$

3.3 Perform a squared transformation

C	CAS 1: 0	Using	the TI	-Nspi	re CA	S to pe	erforn	n a sq	uared	trans	form	ation
Т	The table shows the height (in m) of a base jumper for the first 10 seconds of her jump.											
	Time	0	1	2	3	4	5	6	7	8	9	10
	Height	1560	1555	1540	1516	1482	1438	1383	1320	1246	1163	1070
_	Constr	not o oc	ottornl	ot displ	ovina k	aight (1	ha DV)	ogoine	t time ((ho EV)		

- splaying height (the RV) again
- **b** Apply an *x*-squared transformation and fit a least squares line to the transformed data.
- **c** Use the regression line to predict the height of the base jumper after 3.4 seconds.
- Steps
- 1 Start a new document by pressing err + N. 2 Select Add Lists & Spreadsheet.

Enter the data into lists named time and height, as shown.

- 3 Name column C as *timesq* (short for 'time squared'). 4 Move the cursor to the formula cell below *timesq*.
- Enter the expression = $time^2$ by pressing (=), then typing timeA2. Pressing enter calculates and displays the values of timesq.
- 5 Press etri + 1 and select Add Data & Statistics. Construct a scatterplot of height against time. Let time be the explanatory variable and height the response variable. The plot is clearly non-linear.

- 6 Press etri + 1 and select Add Data & Statistics. Construct a scatterplot of height against time2. The plot is now linear.
- 7 Press menu>Analyze>Regression>Show Linear (a + bx) to plot the line on the scatterplot with its equation. Note: The x in the equation on the screen corresponds to the transformed variable time2
- 8 Write down the regression equation in terms of the variables height and time².
- 9 Substitute 3.4 for time in the equation to find the height after 3.4 seconds.

3.4 Applying the log transformation

CAS 2: Using the TI-Nspire CAS to perform a log transformation

125

4 1.1

140

1250

110

 $height = 1560 - 4.90 \times 3.4^2 = 1503 \text{ m}$

 $height = 1560 - 4.90 \times time$

The table shows the <i>lifespan</i> (in years) and <i>GDP</i> (in dollars)	Lifespan
Using the log x transformation:	80.4
- line role to deter and for a second line to the	79.8

- linearise the data, and fit a regression line to the transformed data (GDP is the EV)
- write its equation in terms of the variables *lifespan* and GDP rounded to three significant figures.
- use the equation of the regression line to predict the lifespan in a country with a GDP of \$20 000, rounded to one decimal place.

Steps

- 1 Start a new document by pressing etr + N.
- 2 Select Add Lists & Spreadsheet. Enter the data into lists named lifespan and gdp.
- **3** Name column C as *lgdp* (short for log (*GDP*)). Now calculate the values of log (GDP) and store them in the list named lgdp.
- 4 Move the cursor to the formula cell below the *lgdp* heading. We need to enter the expression = log(gdp). To do this, press (=) then type in log(gdp). Pressing enter calculates and displays the values of lgdp.
- 5 Press ett + 1 and select Add Data & Statistics. Construct a scatterplot of lifespan against GDP. Let GDP be the explanatory variable and lifespan the response variable. The plot is clearly non-linear.
- 6 Press and + I and select Add Data & Statistics. Construct a scatterplot of lifespan against log(GDP). The plot is now clearly linear.
- 7 Press menu>Analyze>Regression>Show Linear (a + bx) to plot the line on the scatterplot with its equation. Note: The x in the equation on the screen corresponds to the transformed variable log (GDP).
- 8 Write the regression equation in terms of the variables lifespan and log (GDP).
- 9 Substitute 20 000 for GDP in the equation to find the lifespan of people in a country with GDP of \$20 000.

1.1		*TI-Ns			EG [×
A	lifespan	8 gdp	c	D		1
=						F
1	80.4	36032.				
2	79.8	34484.				
3	79.2	26664.				
4	77.4	41890.				
5	78.8	26893.				
AI -	80.4				4	

GDP

36 0 32

34 4 8 4

26 6 6 4

41 890

26 893

25 592

7454

1713

7073

1 1 9 2

631

1 302

79.2

77.4

78.8

81.5

74.9

72.0

77.9

70.3

73.0

68.6

3.5 Applying the reciprocal transformation

CAS 3: Using the TI-Nspire CAS to perform a reciprocal transforma-

The table shows the length (in cm) and width (in cm) of eight sizes of sticky labels.

Length	6.8	5.6	4.6	4.2	3.5	4.0	5.0	5.5
Width	1.8	2.0	2.5	3.0	3.5	2.6	2.0	1.9
Using the 1	/v trans	formati	on.					

Inearise the data, and fit a regression line to the transformed data (*length* is the EV)

- write its equation in terms of the variables *length* and *width*
- use the equation to predict the width of a sticky label with a length of 5 cm.
- Steps

- 1 Start a new document by pressing etrl + N. 2 Select Add Lists & Spreadsheet
- Enter the data into lists named length and width 3 Name column C as recipwidth (short for 1/width). Calculate the values of recipwidth Move the cursor to the formula cell below the recipwidth heading. Type in =1/width. Press enter to calculate the values of recipwidth.
- 4 Press etri + I and select Add Data & Statistics. Construct a scatterplot of width against length. Let length be the explanatory variable and width the response variable. The plot is clearly non-linear.

=1/width

0.5

1.8 0.55555

3. 0.333333

5.6 2.

4.6 2.5 0.4

4.2

- 5 Press erri + 1 and select Add Data & Statistics. Construct a scatterplot of recipwidth (1/width) against length. The plot is now clearly linear.
- 6 Press menu>Analyze>Regression>Show Linear (a + bx) to plot the line on the scatterplot with its equation

Note: The y in the equation on the screen corresponds to the transformed variable 1/width

- 7 Write down the regression equation in terms of the variables width and length.
- 8 Substitute 5 cm for *length* in the equation.

 $1/width = 0.015 + 0.086 \times 5 = 0.445$ Thus width = 1/0.445 = 2.25 cm (to 2 d.p.)

 $1/width = 0.015 + 0.086 \times length$

3.6 Using the "BI Transformer Residual" template Steps

1. Enter new data into "xev", "yrv" columns (green boxes)

	-				- /
1.2	1.3 🕨	*Bl Mans	sfual		rad 📋 🗙
A xev	B yrv	BI Transf	D X.Y	esidual ⊨ X	F x
			=LinR(×.ysqu R	=LinR
1.	11.	Title	Linea	Linea	Linea
2.	13.	RegE	a+b*	a+b*	a+b*
З.	15.	a*y−	9.5	77.5	0.99
	1.2 A xev 1. 2. 3.	1.2 1.3 A xev B yrv 1. 11. 2. 13. 3. 15.	1.2 1.3 Billion A xev B yrv 1. 11. Title 2. 13. RegE 3. 15. a*y	1.2 1.3 •Bl Panst. val A xev Byrv Bi Transformer R = LinRv 1. T1. Title 2. 13 RegE., a+b* 3. 15 a*y 9.5	1.2 1.3 Fell Yanst ust A xev B yrv B Transformer Residual D Xy E X =LinRuwer R 1 11. Title Linea 2 13. RegE. a+b* a+b* 3 15. a'y 9.5 77.5

2. Transformed values will appear in columns E-J; r value and r^2 value can be found in rows 5 & 6 (blue and brown writing respectively); a & b can be found in rows 3 & 4 (pink writings) for equations.

₹ 1.	.1	1.2	1.3	*BI Tran	sf ual		RAD 📘	×
	A	xev	B yrv	С	D x.y	E x	F x	f
=					=LinR	e=LinR	=LinR	1
3		3.	15.	a*y	9.5	77.5	0.99	1
4		4.	16.	b*slo	1.7	46.1	0.05	
5		_		r²	0.97	0.98	0.96	١.
6				r	0.98	0.99	0.98	1

3. Bivariate data prediction Residual Actual Values can be found in Columns K L M (pink area)

1	.1 1.2	1.3	*Bl Tran	sfual	RAD 📘	×
—	J xr	к рг	∟ re	M actual	И	Î
=	=LinR(=d3+d	residual -	=residual+		-
1	_inea	11.2	-0.2	11.		
2	a+b*	12.9	0.1	13.		
З	17 . 0	14.6	0.4	15.		
4	-6 . 3	16.3	-0.3	16.		

4. Transformed data plot in page 1.2. Residual plot in page 1.3. Click on "xev" & "yrv" to choose right transformation to show corresponding equations and r^2 value.

5. Example Qs

 Apply the squared transformation to the variable ws3.00 pm and determine the equation of the least squares regression line that allows (ws3.00 pm)² to be predicted from ws9.00 am in the boxes provided, write the coefficients for this equation, correct to 3 significant figures.
 Wind speed (km/h)

 9.00 am 3.00 pm
 3.00 pm

 10 gures.
 2

							4	6
(ws3.00 pm) ² =	3.38	+	6.59		× ws9.00 am r ² =0.82	[4	7
						[4	4
(ws3.00 pm) =	0.29	+	8 27		$\times \log(w_{9.00 \text{ am}}) = r^2 = 0.84$	1	13	11
(inserve prin)	0.25		0.27			/ [6	7
							3	3
(ws3.00 pm) =	10.2	+	16.7		/ ws9.00 am r ² =0.74	[16	10
				12		1 [6	7
				10	•	[13	8
				10	••	1 [11	9
				8		[2	4
		win	d speed 3.00 pm (km/h)	6		[7	8
			ws3.00pm		•	[5	5
				4		1 [8	6
				2	+ + + + + + + + + + + + + + + + + + + +	[6	7
] [19	11
					0 2 4 6 8 10 12 14 16 18 2 wind speed 9.00 am (km/b)	20	9	9
					nina speed stor and (anony			

3.7 Using "Slopey Predi" template

1. Two dots entering in green boxes and b slope and a y-intercept will come out in pink boxes

4 (§1 🕨		SLOPEY	_EDI		rad 📋 🗙
	A	в	С	D	E	F
=						
1	title	entry	title	resul	title	entry
2	X1	-	b*slo		х	-
3	Уı	_	a*y−i	_	у	_
4	X2	_	b*slo	_	х	_
5	y2	_	a*y−i		у	

2. Following values entering green boxes, and b slope and a y-intercept will come out in above orange boxes

∢ 1	.1 🕨		SLOPEY	EDI		RAD 📘	\times
	A	в	С	D	E	F	f
=							11
6	r	_					
7	Sx	_					
8	Sy	_					
9	x	_					
10	⊽	_					•

3. Given values of \boldsymbol{x} or \boldsymbol{y} values entering to column F, prediction will come out inside pink boxes

∢ 1.	1		*SLOPEYEI	DI	RAD 📋	×
	E	F	G	н	1	Î
=						-
1	title	entry	prediction			
2	х	_				
3	у	_				
4	х	_	-			
5	у	_	_			•
4.1	Cons	tructir	ig time se	ries plot	s	

CAS 1: How to construct a time series using the TI-Nspire CAS

Construct a time series plot for the data presented below, which shows the birth rate in Australia (in births per woman) from 2011–2020.

year	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
birth	1.926	1.920	1.855	1.826	1.814	1.752	1.741	1.740	1.657	1.580

Steps

- **1** Start a new document by pressing **dr** + **N**.
- 2 Select Add Lists & Spreadsheet. Enter the data into lists named *year* and *birth*.
- Press ent + 1 and select Add Data & Statistics. Construct a scatterplot of *birth* against *year*. As is the case for a time series plot, *year* is the explanatory variable and *birth* the response variable.
- 4 To display as a connected time series plot, move the cursor to the main graph area and press [cfr] + [mem]>Connect Data Points. Press [enter].

4.2 Using the "Smoothie" template

Using the "smoothie" template

If all formulas are correct, the following results should be visible for the dataset provided. Check that your template has generated the same smoothed values. Then save the file again ([etr.] (S))

P	^ time	^B yval	C mea3	D mea5	E med3	F med5	G mea4	H cmea4	med4	J cmed4
=										
	1.00	120.00	122	140	12	2		1.241	241	1.72
2	2.00	150.00	123.33		120.00		137.50		135.00	
3	3.00	100.00	143.33	150.00	150.00	150.00	157.50	147.50	165.00	150.00
4	4.00	180.00	160.00	174.00	180.00	180.00	180.00	168.75	190.00	177.50
5	5.00	200.00	206.67	191.00	200.00	200.00	213.75	196.88	217.50	203.75
6	6.00	240.00	225.00	220.00	235.00	235.00	230.00	221.88	237.50	227.50
7	7.00	235.00	240.00		240.00					
8	8.00	245.00								

The template can be used to

find the correct smoothed values based on a given time period, or range of time periods

 create smoothed bivariate data sets upon which regression methods may be applied (would need to be copied and pasted to new lists to ensure that the two variables had same number of values, and lined up with time period correctly

VIP Notel: To use the template with a new time series, select the time column and press **A** until the entire column is selected. Then press menu > Data > Clear Data to clear the data (this does not delete the variable name, which is important as these names are used in the formulas in other columns). Repeat for the yval column, and then enter the data for the new time series.

RAD 📘 🗡

147.50

168.75

196.88 4 >

J cmea4

137.50

157.50

180.00

213.75

ve X Varia

9: Add Y Summary Lis A: Remove Y Variable

÷

130.00

132.50

165.00

205.00

1: Plot Ty / 1: Conn

A 3: Acti

36.8

36.5

Linear Regression (a+bx)

Category List

1.4 1.5 1.6 ▶ Brake data
 □

LinRegBx spdsq, distance, 1: CopyVar stat. Re

Include Categories:

"Title" "RegEqn" "a" "b"

"r²

"Resid'

X List: spdsq

distance Y List: Save RegEqn to: Frequency List

> ΟK Cance

"Linear Regression (a+bx)" "a+b·x" -0.095317 0.01469 0.987778

0.99387

"{...)

DEG 🚺 🗙

4: Analy 5: Wind

6: Setting

Using CAS SMOOTHIE to do 2/4-mean smoothing \bigcirc

4.3 Comparing two or three time series graphs

To get both temperature and threepointsmooth on the y-axis, follow these steps

To add a second y-variable, press:

- MENU menu
- . 2: Plot Properties 2
- . 6: Add Y Variable 6
- . Select threepointsmooth Enter enter .

4.4 A full statistic display of LSRL

A full statistical display can be shown in a Calculator page using menul>Statistics>Stat Calculations>Linear Regression (a+bx).

Note: if you have performed a linear regression in the Data & Statistics page you can access the statistics in the Calculator page by pressing var >Stat Results.

The regression equation y=-0.0953+0.0147x in this case is:

distance= -0.0953 + 0.0147 speed squared

4.5 Using regression equation to predict

Use the regression equation to predict the stopping distance (to the nearest metre) of a car travelling at 50 km/h

In the Calculator page recall the regression equation by pressing var and select stat.regeqn to paste to work area.

You need to add (x) after pasting as shown. When substituting in the speed value remember that the x now represents speed squared so enter as 50².

stat.RegEqn(x)	0.01469	x-0.095317
stat.RegEqn(x) x=50 ²	2	36.6301
0.01469 x-0.09531	7 x=50 ²	36.6297

Answer: 37 m (to the nearest metre)

4.6 Using "Seasoning" template

4 seasons 5 seasons			Data	a Input I	S Here h	.I. Res ere fo	ults will show r each season	
4 1.1 1.2 1.3 ▶ Seasonalces R	AD 🗌 🗙 🚾 📢 1	.1 1.2	1.3	🕨 Sea	sonal ces		rad 📘 >	<
1.2> 4 seasons (Spring-Winter)		A time1	1	B rv1	⊂ si1		D time2	•
1.3> 5 seasons (Mon-Fri)	=			+		+		1
1.4> 7 seasons (Mon-Sun)	1						1	
1.5> 12 seasons (Jan-Dec)		_				-		
Time1 rv1 si1> 1 year / week	2	_	2.			_	2	
Time2 rv2 si2 \rightarrow 2 years / weeks	3		З.				3	
Time3 rv3 si3> 3 years / weeks	4		4.				4	
Timed rv4 sid \rightarrow 4 years / weeks	5		5.			_	5 .	_
Time5 rv5 si5> 5 years / weeks	A1	=1					< >	

4.7 Using "Correct De Seasoning" template

Entering data into green area, answers come out in coloured area

1	1 1.2	۶.	Correct I	D…ing	ß	RAD		×
	A	в	С	D	E	Radia	an '	
=								[
1	title	entry	title	result				
2	s*i		inter	_				
3			corr	_				
4	actu		actu	_				
5	dese	_	dese	_				•
◀ 1.	1 1.2	•	*Correct	Ding		RAD		×
_							_	
		How to	interpret a sea	sonal index:			_	Â
-	_	How to	interpret a set $ndex - 1) \times 10$	asonal index: 00 =	_%			Î
	- Ane - Apo	How to (<i>seasonal in</i> gative %: (seas ositive %: (seas Cor	interpret a set $ndex - 1) \times 1$ son) is below th on) is above th precting for sea	asonal index: 00 = e seasonal ave e seasonal ave sonality:	_% rage]fy% rageJ&%			Î
	- Ane - Apo	How to (seasonal in gative %: (seas ositive %: (seas Cor (1 (seasonal i	interpret a set $ndex - 1 \times 1^{1}$ son) is below th on) is above th recting for sea $ndex - 1 \times 1^{1}$	asonal index: 00 = e seasonal ave sonality: 00 =	_% rage Jry% rage Jr%			Î
	- A ne - A po A negative %:	How to (seasonal in gative %: (seas sittive %: (seas Cor (1 (seasonal i To correct (sea	interpret a set ndex - 1 > 1i ion) is below th on) is above th recting for sea ndex - 1 > 1 ndex - 1 > 1	asonal index: 00 = e seasonal ave sonality: 00 = nality, (unit) ne	_% rage_fry% rage_fry% _% red to be deco	reased by		•
	- A ne - A po A negative %: positive %: To	How to (seasonal ii gative %: (seas ssitive %: (seas Cor (<i>1</i> (<i>seasonal i</i> : To correct (season	interpret a sea ndex - 1 > 1 andex - 1 > 1 andex - 1 > 1 ndex - 1 > 1 andex - 1 > 1 andex - 1 > 1 andex - 1 > 1 andex - 1) > 1 andex - 1 a andex - 1 a a andex - 1 a a andex - 1 a a andex - 1 a a a andex - 1 a a a a a a a a a a a a a a a a a a a	Isonal index: 00 = e seasonal ave e seasonal ave sonality: 00 = nality, (unit) need	_% rage fy% .% eed to be deci	reased by ed by	<u> </u>	
 Dese = Act	- A ne - A po A negative %: positive %: To asonalised Figu tual Figure + 1	How to (seasonal ii igative %: (seas solitive %: (seas Cor ($\frac{1}{(seasonal ii)}$ i: To correct (season correct (seas	interpret a sea ndex - 1 > 1 andex - 1 > 1 andex - 1 > 1 andex - 1 > 1 andex - 1 > 1 ason for season ason for seasonali andex - 1 andex - 1 > 1 andex - 1	Isonal index: 00 = Is seasonal aver sonality: 00 = nality, (unit) need 5 5 5 5 5 5 5 5 5 5 5 5 5	_% rage fy% % eed to be deci	reased by	%	

Ta. Univariate Categorical Data: Frequency Table	
The [types of categories] of [total frequency] [frequency type] were classified as [list of categories].	
Modal Category	
The majority of [frequency type], [modal percentage], were found to be [modal category]. Of the remaining [frequency types], [percentage X] were found to be [category X], while [percentage Y] were found while [etc.].	to be [category Y], and
Equal Categories	
The [frequency types] all had roughly the same percentages where [category X] had [percentage X]. [category Y] had	d [percentage Y], [etc.],
The University Numerical Data: Histogram, Dot Plot, Stem Plot	
The shape of the distribution is [symmetric/positively skewed/negatively skewed] Refer to 1F: Describing numeric The distribution has a [standard dev./range/IQR] of [value] The distribution has a [mean/median/mode] of [value] The distribution [has #/has no] outliers. Refer to 1F: Describing numeric	al data
1c. Univariate Numerical Data: Box Plot	
The distribution is [positively skewed/negatively skewed] with [outliers/no outliers]. The distribution is centred at [The spread of the distribution, is measured by the IQR, is [value] and, as measured by the range [value]. If outliers pread outliers: [list of outliers]	value], the median value. resent: There are [value]
2a. Bivariate Data (Both Categorical): Two-way Frequency Table	
Worked example: Is there an association between interest in sports and age group?	Age group (%)
Yes, the percentage of males with a high level of interest in sport steadily decreases	years years years years 56.5 50.2 40.7 35.0
with age group from 56.5 % for the 'under 18 years' age group, to 35.0% for the '36-	im 30.1 34.4 36.8 45.8 13.4 13.4 22.5 20.3
So years age group.	100.0 100.0 100.0 100.0
2b. Bivariate Data (one categorical, One Numerical): Comparing two boxplots:	
Ine distributions at [variable name] are [symmetric/positively skewed/negatively skewed] for both [boxplot variable outliers. The median [variable name] is higher for [boxplot 1], (M= value), than [boxplot 2], (M= value). The IQR is a (IQR= value), than [boxplot 2], (IQR= value). The range of [variable name] is also greater for [boxplot 1], (R= value), value). Yes, there is an association between [variable name1] [variable name 2] as their median change from (M= value).	Nesj. There [are/are no] Ilso greater for [boxplot 1], than [boxplot 2], (R= alue) to (M= value).
2c. Bivariate Data (Both Numerical): Scatter Plot	
There is a [strong/moderate/weak], [positive/negative], [linear/non-linear] relationship between [response variable]	e y] and [explanatory
variable x]. There [are/are no] clear outliers.	
2d. The coefficient of determination (r ²):	
The coefficient of determination indicates that [r ² x 100] % of the variation in [response variable] is explained by the	variation in [explanatory
variable] and [remaining %] is explained by other factors.	
2e. Least squares line:	
The equation of the regression line is: [response variable] = [a] + [b] x [explanatory variable]	
Slope (b):	
On average, [response variable] [increases/decreases] by [b units] for every one [unit] increase in [explanatory variable]	able].
v- intercept (a):	
When [explanatory variable] is 0, [response variable] is predicted to be [a units].	
2f. Residual Plot	
The residual plot shows a [random scatter/ curved pattern] indicating there is a [linear/non-linear] relationship bet and [explanatory variable].	ween [response variable]
2g. Prediction Reliability	
The prediction using [explanatory variable] of [value of EV] is [reliable/ unreliable] as it is [within/ outside] the data [interpolation/extrapolation].	e range and is therefore
2h. The appropriateness of fitting a transformed regression analysis	
Transformations are [appropriate/ not appropriate] as the original data produces a [non-linear/ linear] scatterplot, [curved pattern/ random scatter] in the residual plot.	confirmed with a clear
[Log [EV]/Reciprocal [EV]/[EV]Squared/ Log[RV]/Reciprocal[RV]/[RV]Squared] is the most appropriate transformat strongest coefficient of determination r ² of [r ² x 100] %, compared with [r ² x 100] % and [r ² x 100] %.	ion, given it has the
2i. A residual analysis on the number	
The residual value is [positive/ negative], [above/ below] the LSRL or the LSRL is an [under prediction/ over predict	ion].
2j. Confounding variables	
Since the correlation coefficient [r value] indicates a [strong/moderate/weak] association. Therefore, factors (confort than the [explanatory variable] must be considered. Some of these factors include [list potential reasons here].	unding variables) other
2k. Reason for smoothing Time Series Plot	
Reduce Random Fluctuations; Highlight the Underlying Trend; Identify Seasonal Patterns; Prepare for Forecasting; Ou	Itlier Detection.

CAS reference sheet: Data

Univariate Data Statistics: to find the 5	 Enter data in 'list and spreadsheets' (ensure you give it a title) Menu > 4 > 1 > 1 				
number summary,	3. Select the title you gave the data in the 'X-List'				
deviation	MinX	1.		x	3.
	QıX	1.5		Σx	15.
	MedianX	3.		<u>∽</u> ∑∨²	55
	Q3X	4.5		20	1 50110
	MaxX	5.		SX := Sn	1.58113
Graphing Univariate Data: dot plot, boxplots, histograms	 Ente Ctrl 'dat Clicl Clicl Men Histogram s Men Wid the 	er data in 'list and spread doc or open a new page a and statistics' k to add data to the x-axi nu > 1 : choose the pot ty ettings: nu > 2 > 2 > 2 > 1 Ith is where you put your graph will start on the x- Equal Bin Width Settin Width 1 Alignment 0	Isheets' (i via the h s /pe you a · interval axis gs	ensure you gi ome menu a re after size. Alignme	ve it a title) nd select nt is where
			OK Car	ncel	
Graphing Bivariate Data: Grouped Bar Chart	1. Crea Menu >	ate first Bar Chart 2 > 9 > select second set	of data		
Graphing Bivariate Data:	2. Crea	ate first boxplot			
parallel boxplots	3. Mei	nu > 2 > 5 > select second	d set of da	ata oncuro vou gi	vo hoth
a, b, r, r ²	 Enter data in 'list and spreadsheets' (ensure you give both columns a title) Menu > 4 > 1 > 4 (Spreadsheets); Menu > 6 > 1 > 4 (Calculator) 				(Calculator)
	3. Sele	ect your EV in the 'X-List'	and your	RV in the 'Y-I	List'
	Linear Regressio	on (a+bx)	RegE	Eqn a+b	*x
	ΥI	List: b	а		0.51
	Save RegEqr Frequency I	List: 1	b		1.97
	Category I	List:	r²	0.99	032
		OK Cancel	r	0.99	515
			<u></u>		
Scatterplots	1. Ente colu 2. Ctrl 'dat 3. Clicl	er data in 'list and spread umns a title) doc or open a new page a and statistics' k to add the EV to the x-a	lsheets' (via the h axis and t	ensure you gi ome menu a he RV to the y	ve both nd select y-axis

Solve	1.	Calculator Page
	2.	Menu > 3 > 1
	3.	You write inside the brackets, there must be an equals sign (=),
		you must choose a variable (x) and then use the same variable
		at the end and do 'comma variable' (,x)
		solve(10=x+2,x) x=8.
Mean Smoothing	1.	Enter values into list and spreadsheet in column A
	2.	If 2 or 3 mean smoothing start in column B cell 2. If 4 or 5 mean
		smoothing start in column B cell 3
	3.	Write
		a. 2 mean =(a1+2a2+a3)/4
		b. 3 mean =(a1+a2+a3)/3
		c. 4 mean =(a1+2a2+2a3+2a4+a5)/8
		d. 5 mean =(a1+a2+a3+a4+a5)/5
	4.	Hover over the cell in the bottom right corner until the plus
	_	appears, click and drag and it will fill the values for you.
	5.	Comparing time series plots: Menu > 2 > 6
		AB
		-
		1 18.1
		2 24.8 23.1
		3 26.4
		4 13.9
		$B_{2} = \frac{a1 + a2 + a3}{a1 + a2 + a3}$
		3
Back to top of List		Ctrl 7