
1

Networks

Undirected Graphs

Types of graphs
Simple graph – No loops or duplicate edges.
Isolated vertex – A graph has an isolated vertex if there is a vertex that is not connected to another vertex by an edge.
Degenerate graph – Degenerate graphs have all vertices isolated. Therefore, there are no edges in the graph at all.
Connected graph – Each vertex is either directly or indirectly connected to every other vertex.
Bridge – A bridge is an edge that when removed makes the graph unconnected.
Subgraph – Are graphs that are part of larger graphs.
Equivalent (isomorphic) graph – Look different but have the same information
Complete graph – Every vertex has a direct connection to every other vertex.
Bipartite Graph – A bipartite graph is a graph whose set of vertices can be split into two subsets X and Y in such a way that each

edge of the graph joins a vertex in X and a vertex in Y.

Isomorphic graphs –Two graphs have: ① same numbers of edges and vertices; ② corresponding vertices have the same degree

and the edges connect the same vertices.

2

Planar Graphs & Euler’s Formula

Adjacency Matrix Representation

Euler & Hamilton

3

Travelling in graphs

Route – A description of your travels, given by the vertices visited in the order they are visited.

Walk – A walk can be any type of journey within a graph, you can walk wherever you wish.

Trail – A special kind of walk, you can’t repeat any of the edges that you have taken, but you can revisit vertices.

Path – A path is a special kind of trail, with a path you can’t repeat any edges or vertices.

Eulerian trails and circuits

Eulerian trails – Is a trail in which every edge is visited once. Vertices can be repeated.

A Eulerian trail will only exist if:

- The graph is connected

- The graph has exactly two vertices of an odd degree
Eulerian circuit – Is a Eulerian trail (travels every edge once) that begins and ends from the same vertex.

A Eulerian circuit will only exist if:

- The graph is connected

- All the vertices have an even degree
Hamiltonian paths and cycles

Hamiltonian path – Is a path that visits all of the vertices in a graph only once.

Hamiltonian cycle – Is a cycle that visits every vertex and begins and ends at the same vertex.

Weighted Graphs

Directed Graphs

4

Network Flows

Capacity

The capacity of an edge is the maximum amount that can flow through it.

The capacity of a cut is the sum of the weights of the edges in the cut.

The capacity of a network is the maximum amount that can flow from the sink to the source.

5

Shortest Path Problem

Matching & Allocation Problems

6

7

Critical Path Problems

8

Different Types of Greedy Algorithm
Prim's Minimal Spanning Tree Algorithm

Kruskal’s Minimal Spanning Tree algorithm

Dijkstra's Shortest Path Algorithm

Ford-Fulkerson Networks Flows Algorithm

Hungarian Algorithm

Mathematical Terminologies
Undirected Graphs Directed Graphs

Terminologies Algorithm Terminologies Algorithm

Eulerian trails Exactly 2 vertices of an odd degree The Maximum Flow 8.1 Ford-Fulkerson Algorithm

Eulerian circuits All vertices even degree The Shortest Path Dijkstra's Algorithm

Hamiltonian paths Visits all of the vertices in a graph only once Matching & Allocation Problems Hungarian Algorithm 8.2

Hamiltonian cycles Visit All vertices, begin & end @ the same vertex Critical Path Problems Forward scanning = Biggest Number

Backward scanning = Smallest Number

Float = LST―EST Minimal Spanning Tree Prim's Algorithm, Kruskal’s Algorithm

Networks Notes
8A: Introduction to graphs and networks

• Graph: a diagram used to show connections

between groups of things, people of activities.

• Vertex: the dots

• Edge: line that connects two vertices

• Isolated vertex: a vertex that is not connected to
an edge

• Multiple edges: connects the same vertex using
more than one edge

• Loop: attach twice to a vertex

• Degree of a vertex: the number of edges that
attach to a vertex. The degree of vertex D is 4.

Types of graphs:
Simple graph: no loops or multiple edges

Degenerate graph: all vertices are isolated, there are
no edges

Connected graph: every vertex is connected to every
other vertex, either directly or indirectly

Bridge: an edge in a connected graph, that if removed
will cause the graph to be disconnected. Edge C to E is
a bridge

Complete graph: every vertex is connected to every
other vertex

Subgraph: a tree, a part of a larger graph

Equivalent/isomorphic graph: graphs that contain the
EXACT same information, vertices and the connections
between them, they are just drawn differently

Planar graph: a graph that can be re-drawn without
any overlapping edges. If it cannot be re-drawn and
has overlapping edges, the graph is non-planar.

Faces: faces are found in planar graphs and are the
sections enclosed by edges. There is an infinite face
outside of the graph. There is an infinite face outside
of the graph.

Euler’s rule: there is a relationship between the
number of vertices (v), edges (e) and faces (f) in a
connected planar graph.

8B: Graphs, networks and matrices
Adjacency matrix: a matrix that records the number
of connections between vertices. The number of
vertices on the graph tells you how many rows and
columns you need. A ‘0’ mean no direct connection, a
‘1’ means one connecting edge etc. Ensure you label
the matrix with the vertex letters.

Representing directed graphs: this is a network
containing arrows on each edge, signalling one
direction. These matrices need to be labelled with
‘from’ and ‘to’.

Networks Notes
8C: Travelling
Identifying types of walks: A route is a list of the
vertices travelled through, in order, when moving from
one vertex to another.
Walk: a continuous sequence of edges that pass
through any number of vertices, in any order, starting
and finishing at any vertex.
Trail: a walk with no repeated edges. The same vertex
can be visited multiple times.
Path: a walk with no repeated edges or vertices.
Circuit: a trail beginning and ending at the same
vertex.
Cycle: a path beginning and ending at the same
vertex.

Eulerian trails: a walk that includes every edge in a
graph exactly once. It must:

• Exactly two vertices of odd degree, the rest
are even

• Start and finish at a vertices of odd degree
Eulerian circuit: an Eulerian trail that starts and ends
at the same vertex. It must:

• Have all vertices of even degree

Hamiltonian paths: a walk that includes every vertex
exactly once, with no repeated edges. Every edge does
not need to be included.
Hamiltonian cycle: a Hamiltonian path that starts and
ends at the same vertex.

8D: Minium connector problems
Weighted graph: numerical information attached to
each edge of a graph. ‘Weights’ often represent time
or distance.

Tree: type of connected graph that has no loops,
duplicate edges or cycles. It uses the least number of
edges to connect the vertices.

• The number of edges in a tree is always one
less than the number of vertices

• e = v – 1

• A tree can be a subgraph and so not all
vertices in the larger graph need to be
included.

Spanning tree: a tree which connects ALL vertices in
the original graph.

• There are often multiple spanning trees for
the one graph

Minimum spanning tree: a spanning tree with the
LOWEST TOTAL WEIGHT.

• Prim’s algorithm can be used to find the
minimum spanning tree.

8E: Flow Problems
Directed graph: network containing arrows on each
edge. Networks show directional information between
vertices. Weights can represent distance, time or cost.
Flow: flow problems involve the transfer or flow of
material from one point (source) to another point
(sink), example; water flowing through pipes or traffic
flow on roads.

• No matter the situation, things flow in one

direction only

• Weights of graphs are called capacities
Maximum flow: if edges of different capacities are
connected one after, the other, the maximum flow
through the edges is equal to the minimum capacity of
the individual edges

• Maximum flow = minimum capacity
Cuts: a cut divides the network into two parts,
completely separating the source from the sink

• It completely stops flow

• Cut A is a successful cut, cut B is not as it
doesn’t completely separate source from sink

Cut capacity: the sum of all capacities of the edges
that the cut passes through, taking into account the
direction of flow

• The capacity is only counted if it flows from
source to sink

Minimum cut capacity: a cut that has the lowest cut
capacity for a network

• Minimum cut capacity = maximum flow

Networks Notes
8F: Shortest path problems
Exist so that you can minimise cost, time or distance.
Involves finding the shortest path from one vertex to
another. You can do this by eye or using Dijkstras
algorithm.
Dijkstra’s Algorithm
1. Create a table, the starting vertices is in the first

row, the rest of the vertices form the column
labels

2. Complete the first row

• Write the distance from the starting vertex to
each other vertex in the corresponding column

• If there is no direct connection, mark with a
cross ‘X’

• Find the smallest number in the first row and
put a box/square around it (if there are two or
more the same, any can be chosen)

• The column vertex that has the box around it
becomes the next row

3. Complete further rows

• Copy all boxed numbers into the next row

• Add the boxed number from the row vertex to
the column vertex
o If the value is greater than the value above

it, ignore the new number and copy down
the smaller one

o If the value is less than or equal to the value
above it, write down the new value

o If there is no direct connection, mark with a
cross ‘X’

• Look for the smallest unboxed number in the
row and draw a box around it

• The column vertex for this new boxed number
becomes the next row vertex

4. Repeat step 3 until the destination vertex value
has a box around it

5. Backtrack to identify the shortest path and it’s
length

• Start at the destination box – this is the length
of the shortest path

• Draw a line up the column to the last number
that is the same

• Look at the row vertex for this number and
draw a horizontal line to the column

• Repeat until you reach the start

• The horizontal lines indicate the shortest path

Shortest path from General to English:

Helpful hints:

• If there is no direct connection and there is a
number above, bring it down

• Always bring down the smallest number

• don’t forget to add the previous total to your
new moves

• if two numbers are the same it doesn’t matter
which one you bring down

8G: Matching Problems
Bipartite graph: used to show connections between
vertices which fall into two separate groups. A vertex
cannot be directly connected to another vertex from
the same group.

Solving matching problems: the Hungarian Algorithm
uses cost matrices to find the optimal allocation, the
one which gives the minimum cost.

Networks Notes
Hungarian Algorithm steps:
1. Locate the lowest value in each row and subtract

that from each element in the row
2. Find the minimum number of lines required to

cover all of the zeros (if it is the same as the
number of subjects then skip to step 7) (it is
usually 4 so if you have four lines then skip)

3. Locate the lowest value in each column (it may be
zero) and subtract that from each element in the
column

4. Find the minimum number of lines requires to
cover all of the zeros (skip to step 7 if you have the
same number of lines as there are subjects)

5. Locate the smallest value which is not covers by a
line. Subtract that from all uncovered elements
and add the value to all elements covered by 2
lines

6. Find the minimum number of lines required to
cover all the zeros in the table (if it is not the same
as the number of subjects repeat step 5)

7. Make the allocation based on the location of the
zeros in the matrix

8. Find the minimum time by referring to the initial
table costs

8H: Activity Networks and Precedence Tables
Immediate predecessor (IP): is an activity that must
be completed before another activity can begin. They
are displayed in precedence tables.
Precedence tables: show activities and IP’s. The
information is used to draw networks.

• Activity networks no longer label vertices but
instead label edges

• Start/finish vertices get labelled
Dummy activities: are required is two activities share
SOME but NOT ALL IP’s

• The dummy begins at the end of the shared IP

• The dummy ends at the beginning of the
activity that has additional IP’s

• Drawn as a dotted line and labelled ‘d’

Example:

• A and B have no IP, therefore they are both

come from the start vertex.

• A and C must merge together for D to begin.

• C, E and F all share B, except F also has D as an
IP. Therefore, the dummy starts at the end of
B (as this is the shared activity) and ends at
the beginning of F. This allows for B and D to
be brought together so that F can begin.

• F and G are the only activities that aren’t an IP,
this means that they attach to the finish
vertex.

Networks Notes
8I: Critical Path Planning:
Scheduling: times that are associated with
activities/edges, looks into the minimum overall time
to complete a project.

FORWARD SCANNING for EARLIEST START TIME (EST):
• To minimise the total completion time for a

project, each activity should begin at its earliest
start time (EST)

• Done via process of forward scanning
Steps:
1. Draw a box at each activity of the network, as well

as the finish vertex
2. The activities that connect to the start vertex have

a 0 in the EST box
3. Start filling in the EST box for all activities and the

finish vertex
i. If an activity has one immediate predecessor,

its EST can be found by adding the EST and
duration of the immediate predecessor

ii. If an activity has two or more predecessors, the
EST will be the LARGEST value

4. The EST for the finish vertex is the minimum
possible completion time for the project

BACKWARD SCANNING for LATEST START TIME (LST):
• Some activities may be able to start later than the

earliest possible start time and not impact the
total minimum completion time for the project.

• Done via backward scanning
Steps:
1. Complete forward scanning (all left hand boxes

should be full)
2. Fill in the LST for the finish as the minimum

possible completion time (this is the same number
as the EST)

3. Continue filling in the LST for all other activities
i. If an activity has only one activity following it,

its LST can be found by subtracting the
duration of the activity from the LST of the
activity following it

ii. If an activity has two or more activities
following it, its LST will be the SMALLEST value

4. The LST for one of the starting activities should be
zero.

Critical Path = A-C-E-G-H

Float time: flexibility around the start time of an
activity. It is the maximum amount of time an activity
can be delayed without impacting the minimum
completion time.

• Float time = LST – EST

• LST = latest start time

• EST = earlier start time

Critical path planning: an activity is on the ‘critical
path’ if it has a float time of zero. A delay in these
activities will increase completion time. It is possible
for there to be more than one critical path.

8J: Crashing

• Used to reduce the completion time of an activity
network/project

• Crashing an activity on the critical path will
immediately impact the minimum completion
time

• Crashing off the critical path is sometimes still
necessary to alter the minimum completion time

• Crashing can cause the critical path/s to change

• An extra cost may be applied when shortening the
completion time of a new project

8

0

1

7

8E Directed graph:

• Networks contain arrows on each edge

• Networks show directional information between vertices
Flow:

• Flow problems involve the transfer or flow of material from one point (source)
to another (sink)

• Eg: water flowing through pipes or traffic flow on roads

• No matter the situation, things flow in one direction only

• Weights on graphs are called capacities

Maximum flow:

• If edges of different capacities are connected one after the other, the
maximum flow through the edges is equal to the minimum capacity of the
individual edge

• Maximum flow = minimum capacity

Cuts:

• A cut divides the network into two parts, completely separating the source
from the sink

• Completely stops flow!

Cut capacity:

• The sum of all the capacities of the edges that the cut passes through,
considering the direction of flow

• The capacity is only counted it is flows from source to sink or isn’t cut off
earlier

Minimum cut capacity:

• A cut that has the lowest cut capacity for a network

• Minimum cut capacity = maximum flow

• Example: determine the maximum flow from source (S) to sink (T)

8F Dijkstra’s Algorithm
1. Create a table, the starting vertices is in the first row, the rest of the vertices form the column labels

2. Complete the first row

• Write the distance from the starting vertex to each other vertex in the corresponding column

• If there is no direct connection, mark with a cross ‘X’

• Find the smallest number in the first row and put a box/square around it (if there are two or more the same, any can be chosen)

• The column vertex that has the box around it becomes the next row

3. Complete further rows

• Copy all boxed numbers into the next row

• Add the boxed number from the row vertex to the column vertex

o If the value is greater than the value above it, ignore the new number and copy down the smaller one

o If the value is less than or equal to the value above it, write down the new value

o If there is no direct connection, mark with a cross ‘X’

• Look for the smallest unboxed number in the row and draw a box around it

• The column vertex for this new boxed number becomes the next row vertex

4. Repeat step 3 until the destination vertex value has a box around it

5. Backtrack to identify the shortest path and it’s length

• Start at the destination box – this is the length of the shortest path

• Draw a line up the column to the last number that is the same

• Look at the row vertex for this number and draw a horizontal line to the column

• Repeat until you reach the start

• The horizontal lines indicate the shortest path

OR

1. Rest vertices on row 1

2. Starting vertex with distance on row 2, x for no connection vertex.

3. Frame smallest number & copy to whole column

4. Smallest number vertex with accumulating distance on row 3

5. Frame next smallest number & copy to whole column

6. Next smallest number vertex with accumulating distance on row 4

7. Repeat step 5 & 6 until table complete

8. Circle all vertices’ intersections

9. Trace same column number from ending vertex

10. Locate next circled vertex on the row

11. Repeat step 9 & 10 until trace back to starting vertex

12. Write down all passing by vertices from tracing above

Examples:

Shortest path from S to F

S

Shortest path from A to I

A

Helpful hints:

o If there is no direct connection and there is a number above, bring it down

o Always bring down the smallest number

o don’t forget to add the previous total to your new moves

o if two numbers are the same it doesn’t matter which one you bring down

8G The table shows four employees, Wendy, Xenefon, Yolanda and Zelda. The

machines in a factory are represented by the letters A, B, C, D. The numbers in the

tables are the times in minutes it takes each employee to finish a task on each

machine. Which machine should each employee operate to ensure the minimum

time is taken?

Steps:

1. Locate the lowest value in each row and subtract that from each
element in the row

2. Find the minimum number of lines required to cover all of the
zeros (if it is the same as the number of subjects then skip to step
7) (it is usually 4 so if you have four lines then skip)

3. Locate the lowest value in each column (it may be zero) and
subtract that from each element in the column

4. Find the minimum number of lines requires to cover all of the zeros
(skip to step 7 if you have the same number of lines as there are
subjects)

5. Locate the smallest value which is not covers by a line. Subtract
that from all uncovered elements and add the value to all elements
covered by 2 lines (line intersection)

6. Find the minimum number of lines required to cover all the zeros in
the table (if it is not the same as the number of subjects repeat 5)

7. Make the allocation based on the location of the zeros in the matrix
(Bipartite)

8. Find the minimum time by referring to the initial table costs

 A B C D

Wendy

Xenefon

Yolanda

Zelda

 A B C D

Wendy

Xenefon

Yolanda

Zelda

 A B C D

Wendy

Xenefon

Yolanda

Zelda

 A B C D

Wendy

Xenefon

Yolanda

Zelda

 A B C D

Wendy

Xenefon

Yolanda

Zelda

8G Hungarian Algorithm Task Match Working Steps

1. Row deduction (Min. No. of each row to deduct)

 Tasks

Person

Task 1 Task 2 Task 3 Task 4 Task 5

Person 1

Person 2

Person 3

Person 4

Person 5

2. Column deduction (Min. No. of each non 0 column)

 Tasks

Person

Task 1 Task 2 Task 3 Task 4 Task 5

Person 1

Person 2

Person 3

Person 4

Person 5

3. Line fitting to cover Max. 0 possible ≥ No. of tasks

 ≥ More than or equal

 Tasks

Person

Task 1 Task 2 Task 3 Task 4 Task 5

Person 1

Person 2

Person 3

Person 4

Person 5

↓Enough lines to step 6 ↓ Not enough lines to step 4

4. Intersection addition uncovered deduction (use

uncovered Min. No)

 Tasks

Person

Task 1 Task 2 Task 3 Task 4 Task 5

Person 1

Person 2

Person 3

Person 4

Person 5

5. Line fitting to cover Max. 0 possible ≥ No. of tasks

 ≥ More than or equal

 Tasks

Person

Task 1 Task 2 Task 3 Task 4 Task 5

Person 1

Person 2

Person 3

Person 4

Person 5

6. Bipartite task graph matching (0=line match)

Person 1

Task 1

Person 2

Task 2

Person 3

Task 3

Person 4

Task 4

Person 5

Task 5

7. Task Allocation (possible 2 solutions)

Person 1

Person 1

Person 2

Person 2

Person 3

Person 3

Person 4

Person 4

Person 5

Person 5

Hungarian Algorithm Task Match Working Steps

1. Row deduction (Min. No. of each row to deduct)

Person

Task

A

B C D E

1

2

3

4

5

2. Column deduction (Min. No. of each non 0 column)

Person

Task

A

B C D E

1

2

3

4

5

3. Line fitting to cover Max. 0 possible ≥ No. of tasks

 ≥ More than or equal

Person

Task

A

B C D E

1

2

3

4

5

↓Enough lines to step 6 ↓ Not enough lines to step 4

4. Intersection addition uncovered deduction (use

uncovered Min. No)

Person

Task

A

B C D E

1

2

3

4

5

5. Line fitting to cover Max. 0 possible ≥ No. of tasks

 ≥ More than or equal

Person

Task

A

B C D E

1

2

3

4

5

6. Bipartite task graph matching (0=line match)
1

A

2

B

3

C

4

D

5

E

7. Task Allocation (possible 2 solutions)
1

 A

2

 B

3

 C

4

 D

5

 E

8H: Precedence Tables and Networks

Immediate Predecessor (IP):

• An activity that must be completed before another activity can begin

• They are displayed in a precedence table

Precedence tables:

• Shows activities and Ips

• Info is used to draw networks

• Activity networks no longer label vertices but instead label edges

• Start/finish vertices get labelled

Example- draw an activity network from the precedence table: Locate Start & Finish

Activity IP

A --

B A

C A

D A

E B

F C

G D

H E F G

Dummy activities:

• Required if two activities share SOME but NOT ALL IP’s

• Begins at the shared IP and ends at the start of the activity that has additional IPS

• Drawn as a dotted line and labelled ‘d’

Examples- draw an activity network from the precedence table: Locate Start, Finish & Dummy

Activity IP

A --

B --

C A

D B

E C D

F C

G E F

More Practice: Locate Start, Finish & Dummy1 Dummy 2

Activity IP

A --

B A

C A

D B

E C

F C D

G C D

H E F

I G

J G H

8I FORWARD SCANNING for EARLIEST START TIMES (EST):
• To minimise the total completion time for a project, each activity

should begin at its earliest start time (EST)
• Done via process of forward scanning
• Steps:

1. Draw a box at each activity of the network, as well as the
finish vertex

2. The activities that connect to the start vertex have a 0 in
the EST box

3. Start filling in the EST box for all activities and the finish
vertex

i. If an activity has one immediate predecessor, its
EST can be found by adding the EST and duration
of the immediate predecessor

ii. If an activity has two or more predecessors, the
EST will be the LARGEST value

4. The EST for the finish vertex is the minimum possible
completion time for the project

8I BACKWARD SCANNING FOR LATEST START TIMES (LST):
• Some activities may be able to start later than the earliest

possible start time and not impact the total minimum completion
time for the project.

• Done via backward scanning
• Steps:

1. Complete forward scanning (all left hand boxes should be
full)

2. Fill in the LST for the finish as the minimum possible
completion time (this is the same number as the EST)

3. Continue filling in the LST for all other activities
i. If an activity has only one activity following it, its

LST can be found by subtracting the duration of
the activity from the LST of the activity following
it

ii. If an activity has two or more activities following
it, its LST will be the SMALLEST value

4. The LST for one of the starting activities should be zero.

8J

1

8.1 Using “NetworkFlow” Template

Step 1 Sample graph: shift letter for new vertex

Step 2 Press Enter to add Max Flow=3+4+1=8 in Green

Step 3 Min Cut is showing as following in Orange

8.2 Using “Hungarian Algorithms” Template
Step 1: Define Matrix in file 1.3

Step 2: Go back to file 1.2 and press MENU→ Matrix→

User-defined

2

Step 3: Enter the defined matrix name here

Step 4: Once you see all matrix number, press ENTER

Step 5: Compare the result with manual calculation

