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Networks 

  

 

                                                                 

Undirected Graphs 

  

Types of graphs 
Simple graph – No loops or duplicate edges. 
Isolated vertex – A graph has an isolated vertex if there is a vertex that is not connected to another vertex by an edge.  
Degenerate graph – Degenerate graphs have all vertices isolated. Therefore, there are no edges in the graph at all.  
Connected graph – Each vertex is either directly or indirectly connected to every other vertex. 
Bridge – A bridge is an edge that when removed makes the graph unconnected. 
Subgraph – Are graphs that are part of larger graphs. 
Equivalent (isomorphic) graph – Look different but have the same information  
Complete graph – Every vertex has a direct connection to every other vertex. 
Bipartite Graph – A bipartite graph is a graph whose set of vertices can be split into two subsets X and Y in such a way that each 

edge of the graph joins a vertex in X and a vertex in Y. 

Isomorphic graphs –Two graphs have: ① same numbers of edges and vertices; ② corresponding vertices have the same degree 

and the edges connect the same vertices. 
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Planar Graphs & Euler’s Formula 

 

                   

  

                     

Adjacency Matrix Representation 

  

Euler & Hamilton 
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Travelling in graphs 

Route – A description of your travels, given by the vertices visited in the order they are visited. 

Walk – A walk can be any type of journey within a graph, you can walk wherever you wish. 

Trail – A special kind of walk, you can’t repeat any of the edges that you have taken, but you can revisit vertices.  

Path – A path is a special kind of trail, with a path you can’t repeat any edges or vertices.  

Eulerian trails and circuits  

Eulerian trails – Is a trail in which every edge is visited once. Vertices can be repeated.  

A Eulerian trail will only exist if:  

- The graph is connected 

- The graph has exactly two vertices of an odd degree 
Eulerian circuit – Is a Eulerian trail (travels every edge once) that begins and ends from the same vertex.  

A Eulerian circuit will only exist if: 

- The graph is connected 

- All the vertices have an even degree 
Hamiltonian paths and cycles 

Hamiltonian path – Is a path that visits all of the vertices in a graph only once.  

Hamiltonian cycle – Is a cycle that visits every vertex and begins and ends at the same vertex. 

 

Weighted Graphs 

 

 

    

Directed Graphs 

 



4 
 

Network Flows 

 

Capacity 

The capacity of an edge is the maximum amount that can flow through it.  

The capacity of a cut is the sum of the weights of the edges in the cut. 

The capacity of a network is the maximum amount that can flow from the sink to the source. 
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Shortest Path Problem 

  

 

   

 

Matching & Allocation Problems 
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Critical Path Problems 
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Different Types of Greedy Algorithm 
Prim's Minimal Spanning Tree Algorithm 

Kruskal’s Minimal Spanning Tree algorithm 

Dijkstra's Shortest Path Algorithm 

Ford-Fulkerson Networks Flows Algorithm 

Hungarian Algorithm 

 

Mathematical Terminologies 
Undirected Graphs Directed Graphs 

Terminologies Algorithm Terminologies Algorithm 

Eulerian trails  Exactly 2 vertices of an odd degree The Maximum Flow 8.1 Ford-Fulkerson Algorithm 

 

Eulerian circuits All vertices even degree The Shortest Path Dijkstra's Algorithm  

 

Hamiltonian paths  Visits all of the vertices in a graph only once  Matching & Allocation Problems Hungarian Algorithm 8.2 

Hamiltonian cycles Visit All vertices, begin & end @ the same vertex  Critical Path Problems Forward scanning = Biggest Number 

Backward scanning = Smallest Number 

Float = LST―EST Minimal Spanning Tree Prim's Algorithm, Kruskal’s Algorithm  

 

 

 

 

 

 

 

 

 

 

 

 
 



Networks Notes 
8A: Introduction to graphs and networks 

 
• Graph: a diagram used to show connections 

between groups of things, people of activities. 

• Vertex: the dots  

• Edge: line that connects two vertices 

• Isolated vertex: a vertex that is not connected to 
an edge  

• Multiple edges: connects the same vertex using 
more than one edge  

• Loop: attach twice to a vertex  

• Degree of a vertex: the number of edges that 
attach to a vertex. The degree of vertex D is 4. 

 
Types of graphs: 
Simple graph: no loops or multiple edges  

 
Degenerate graph: all vertices are isolated, there are 
no edges  

 
Connected graph: every vertex is connected to every 
other vertex, either directly or indirectly  

 
Bridge: an edge in a connected graph, that if removed 
will cause the graph to be disconnected. Edge C to E is 
a bridge 

 
Complete graph: every vertex is connected to every 
other vertex 

 
Subgraph: a tree, a part of a larger graph 
 

Equivalent/isomorphic graph: graphs that contain the 
EXACT same information, vertices and the connections 
between them, they are just drawn differently  

 
Planar graph: a graph that can be re-drawn without 
any overlapping edges. If it cannot be re-drawn and 
has overlapping edges, the graph is non-planar. 

 
Faces: faces are found in planar graphs and are the 
sections enclosed by edges. There is an infinite face 
outside of the graph. There is an infinite face outside 
of the graph.  

 
Euler’s rule: there is a relationship between the 
number of vertices (v), edges (e) and faces (f) in a 
connected planar graph. 

 
 
8B: Graphs, networks and matrices 
Adjacency matrix: a matrix that records the number 
of connections between vertices. The number of 
vertices on the graph tells you how many rows and 
columns you need. A ‘0’ mean no direct connection, a 
‘1’ means one connecting edge etc. Ensure you label 
the matrix with the vertex letters.  

 
Representing directed graphs: this is a network 
containing arrows on each edge, signalling one 
direction. These matrices need to be labelled with 
‘from’ and ‘to’.  
 
 
 
 
 



Networks Notes 
8C: Travelling 
Identifying types of walks: A route is a list of the 
vertices travelled through, in order, when moving from 
one vertex to another.  
Walk: a continuous sequence of edges that pass 
through any number of vertices, in any order, starting 
and finishing at any vertex.  
Trail: a walk with no repeated edges. The same vertex 
can be visited multiple times. 
Path: a walk with no repeated edges or vertices.  
Circuit: a trail beginning and ending at the same 
vertex.  
Cycle: a path beginning and ending at the same 
vertex.  
 
Eulerian trails: a walk that includes every edge in a 
graph exactly once. It must: 

• Exactly two vertices of odd degree, the rest 
are even  

• Start and finish at a vertices of odd degree 
Eulerian circuit: an Eulerian trail that starts and ends 
at the same vertex. It must: 

• Have all vertices of even degree 
 
Hamiltonian paths: a walk that includes every vertex 
exactly once, with no repeated edges. Every edge does 
not need to be included.  
Hamiltonian cycle: a Hamiltonian path that starts and 
ends at the same vertex.  
 
8D: Minium connector problems 
Weighted graph: numerical information attached to 
each edge of a graph. ‘Weights’ often represent time 
or distance. 
 
Tree: type of connected graph that has no loops, 
duplicate edges or cycles. It uses the least number of 
edges to connect the vertices.  

• The number of edges in a tree is always one 
less than the number of vertices  

• e = v – 1  

• A tree can be a subgraph and so not all 
vertices in the larger graph need to be 
included.  

 
Spanning tree: a tree which connects ALL vertices in 
the original graph. 

• There are often multiple spanning trees for 
the one graph  

 
Minimum spanning tree: a spanning tree with the 
LOWEST TOTAL WEIGHT. 

• Prim’s algorithm can be used to find the 
minimum spanning tree.  

 
 

8E: Flow Problems 
Directed graph: network containing arrows on each 
edge. Networks show directional information between 
vertices. Weights can represent distance, time or cost.  
Flow: flow problems involve the transfer or flow of 
material from one point (source) to another point 
(sink), example; water flowing through pipes or traffic 
flow on roads.  

 
• No matter the situation, things flow in one 

direction only  

• Weights of graphs are called capacities 
Maximum flow: if edges of different capacities are 
connected one after, the other, the maximum flow 
through the edges is equal to the minimum capacity of 
the individual edges  

• Maximum flow = minimum capacity 
Cuts: a cut divides the network into two parts, 
completely separating the source from the sink  

• It completely stops flow  

• Cut A is a successful cut, cut B is not as it 
doesn’t completely separate source from sink 

 
Cut capacity: the sum of all capacities of the edges 
that the cut passes through, taking into account the 
direction of flow  

• The capacity is only counted if it flows from 
source to sink 

 
Minimum cut capacity: a cut that has the lowest cut 
capacity for a network  

• Minimum cut capacity = maximum flow 



Networks Notes 
8F: Shortest path problems 
Exist so that you can minimise cost, time or distance. 
Involves finding the shortest path from one vertex to 
another. You can do this by eye or using Dijkstras 
algorithm.  
Dijkstra’s Algorithm 
1. Create a table, the starting vertices is in the first 

row, the rest of the vertices form the column 
labels 

2. Complete the first row 

• Write the distance from the starting vertex to 
each other vertex in the corresponding column 

• If there is no direct connection, mark with a 
cross ‘X’ 

• Find the smallest number in the first row and 
put a box/square around it (if there are two or 
more the same, any can be chosen) 

• The column vertex that has the box around it 
becomes the next row  

3. Complete further rows 

• Copy all boxed numbers into the next row  

• Add the boxed number from the row vertex to 
the column vertex  
o If the value is greater than the value above 

it, ignore the new number and copy down 
the smaller one  

o If the value is less than or equal to the value 
above it, write down the new value  

o If there is no direct connection, mark with a 
cross ‘X’ 

• Look for the smallest unboxed number in the 
row and draw a box around it 

• The column vertex for this new boxed number 
becomes the next row vertex 

4. Repeat step 3 until the destination vertex value 
has a box around it  

5. Backtrack to identify the shortest path and it’s 
length  

• Start at the destination box – this is the length 
of the shortest path 

• Draw a line up the column to the last number 
that is the same 

• Look at the row vertex for this number and 
draw a horizontal line to the column  

• Repeat until you reach the start 

• The horizontal lines indicate the shortest path  
 
 
 
 
 
 
 
 
 

Shortest path from General to English: 

 

 
 
Helpful hints: 

• If there is no direct connection and there is a 
number above, bring it down  

• Always bring down the smallest number  

• don’t forget to add the previous total to your 
new moves  

• if two numbers are the same it doesn’t matter 
which one you bring down  

 
8G: Matching Problems 
Bipartite graph: used to show connections between 
vertices which fall into two separate groups. A vertex 
cannot be directly connected to another vertex from 
the same group.  

 
 
Solving matching problems: the Hungarian Algorithm 
uses cost matrices to find the optimal allocation, the 
one which gives the minimum cost.  
 
 
 
 
 
 
 
 
 
 
 



Networks Notes 
Hungarian Algorithm steps: 
1. Locate the lowest value in each row and subtract 

that from each element in the row  
2. Find the minimum number of lines required to 

cover all of the zeros (if it is the same as the 
number of subjects then skip to step 7) (it is 
usually 4 so if you have four lines then skip) 

3. Locate the lowest value in each column (it may be 
zero) and subtract that from each element in the 
column  

4. Find the minimum number of lines requires to 
cover all of the zeros (skip to step 7 if you have the 
same number of lines as there are subjects) 

5. Locate the smallest value which is not covers by a 
line. Subtract that from all uncovered elements 
and add the value to all elements covered by 2 
lines  

6. Find the minimum number of lines required to 
cover all the zeros in the table (if it is not the same 
as the number of subjects repeat step 5) 

7. Make the allocation based on the location of the 
zeros in the matrix  

8. Find the minimum time by referring to the initial 
table costs  

 
8H: Activity Networks and Precedence Tables 
Immediate predecessor (IP): is an activity that must 
be completed before another activity can begin. They 
are displayed in precedence tables.  
Precedence tables: show activities and IP’s. The 
information is used to draw networks.  

• Activity networks no longer label vertices but 
instead label edges 

• Start/finish vertices get labelled 
Dummy activities: are required is two activities share 
SOME but NOT ALL IP’s 

• The dummy begins at the end of the shared IP 

• The dummy ends at the beginning of the 
activity that has additional IP’s  

• Drawn as a dotted line and labelled ‘d’ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Example: 

 
• A and B have no IP, therefore they are both 

come from the start vertex. 

• A and C must merge together for D to begin. 

• C, E and F all share B, except F also has D as an 
IP. Therefore, the dummy starts at the end of 
B (as this is the shared activity) and ends at 
the beginning of F. This allows for B and D to 
be brought together so that F can begin.  

• F and G are the only activities that aren’t an IP, 
this means that they attach to the finish 
vertex. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Networks Notes 
8I: Critical Path Planning: 
Scheduling: times that are associated with 
activities/edges, looks into the minimum overall time 
to complete a project.  
 
FORWARD SCANNING for EARLIEST START TIME (EST): 
• To minimise the total completion time for a 

project, each activity should begin at its earliest 
start time (EST)  

• Done via process of forward scanning  
Steps: 
1. Draw a box at each activity of the network, as well 

as the finish vertex 
2. The activities that connect to the start vertex have 

a 0 in the EST box  
3. Start filling in the EST box for all activities and the 

finish vertex  
i. If an activity has one immediate predecessor, 

its EST can be found by adding the EST and 
duration of the immediate predecessor  

ii. If an activity has two or more predecessors, the 
EST will be the LARGEST value  

4. The EST for the finish vertex is the minimum 
possible completion time for the project 

 
BACKWARD SCANNING for LATEST START TIME (LST): 
• Some activities may be able to start later than the 

earliest possible start time and not impact the 
total minimum completion time for the project.  

• Done via backward scanning  
Steps: 
1. Complete forward scanning (all left hand boxes 

should be full) 
2. Fill in the LST for the finish as the minimum 

possible completion time (this is the same number 
as the EST)  

3. Continue filling in the LST for all other activities  
i. If an activity has only one activity following it, 

its LST can be found by subtracting the 
duration of the activity from the LST of the 
activity following it  

ii. If an activity has two or more activities 
following it, its LST will be the SMALLEST value  

4. The LST for one of the starting activities should be 
zero.  

 

 
Critical Path = A-C-E-G-H 
 

Float time: flexibility around the start time of an 
activity. It is the maximum amount of time an activity 
can be delayed without impacting the minimum 
completion time.  

• Float time = LST – EST  

• LST = latest start time  

• EST = earlier start time 
 
Critical path planning: an activity is on the ‘critical 
path’ if it has a float time of zero. A delay in these 
activities will increase completion time. It is possible 
for there to be more than one critical path.  
 
8J: Crashing 

• Used to reduce the completion time of an activity 
network/project  

• Crashing an activity on the critical path will 
immediately impact the minimum completion 
time  

• Crashing off the critical path is sometimes still 
necessary to alter the minimum completion time 

• Crashing can cause the critical path/s to change  

• An extra cost may be applied when shortening the 
completion time of a new project  
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8E Directed graph:  

• Networks contain arrows on each edge  

• Networks show directional information between vertices  
Flow:  

• Flow problems involve the transfer or flow of material from one point (source) 
to another (sink) 

• Eg: water flowing through pipes or traffic flow on roads  

• No matter the situation, things flow in one direction only  

• Weights on graphs are called capacities 

 
Maximum flow:  

• If edges of different capacities are connected one after the other, the 
maximum flow through the edges is equal to the minimum capacity of the 
individual edge  

• Maximum flow = minimum capacity 
 

 
 
 
Cuts: 

• A cut divides the network into two parts, completely separating the source 
from the sink  

• Completely stops flow! 

 

Cut capacity:  

• The sum of all the capacities of the edges that the cut passes through, 
considering the direction of flow 

• The capacity is only counted it is flows from source to sink or isn’t cut off 
earlier 

 
 
 
Minimum cut capacity:  

• A cut that has the lowest cut capacity for a network  

• Minimum cut capacity = maximum flow  

• Example: determine the maximum flow from source (S) to sink (T)  
 

 



8F Dijkstra’s Algorithm 
1. Create a table, the starting vertices is in the first row, the rest of the vertices form the column labels  

2. Complete the first row 

• Write the distance from the starting vertex to each other vertex in the corresponding column  

• If there is no direct connection, mark with a cross ‘X’ 

• Find the smallest number in the first row and put a box/square around it (if there are two or more the same, any can be chosen) 

• The column vertex that has the box around it becomes the next row  

3. Complete further rows 

• Copy all boxed numbers into the next row  

• Add the boxed number from the row vertex to the column vertex  

o If the value is greater than the value above it, ignore the new number and copy down the smaller one  

o If the value is less than or equal to the value above it, write down the new value  

o If there is no direct connection, mark with a cross ‘X’ 

• Look for the smallest unboxed number in the row and draw a box around it  

• The column vertex for this new boxed number becomes the next row vertex 

4. Repeat step 3 until the destination vertex value has a box around it  

5. Backtrack to identify the shortest path and it’s length  

• Start at the destination box – this is the length of the shortest path 

• Draw a line up the column to the last number that is the same 

• Look at the row vertex for this number and draw a horizontal line to the column  

• Repeat until you reach the start 

• The horizontal lines indicate the shortest path  

OR 

1. Rest vertices on row 1 

2. Starting vertex with distance on row 2, x for no connection vertex. 

3.  Frame smallest number & copy to whole column 

4. Smallest number vertex with accumulating distance on row 3  

5. Frame next smallest number & copy to whole column 

6. Next smallest number vertex with accumulating distance on row 4 

7. Repeat step 5 & 6 until table complete 

8. Circle all vertices’ intersections  

9. Trace same column number from ending vertex 

10. Locate next circled vertex on the row 

11. Repeat step 9 & 10 until trace back to starting vertex 

12. Write down all passing by vertices from tracing above 

Examples: 

 

Shortest path from S to F 

      

S      

      

      

      

      

      
 

 

Shortest path from A to I 

         

A         

         

         

         

         

         

         

         

         
 

 

Helpful hints: 

o If there is no direct connection and there is a number above, bring it down  

o Always bring down the smallest number  

o don’t forget to add the previous total to your new moves  

o if two numbers are the same it doesn’t matter which one you bring down  



 

8G The table shows four employees, Wendy, Xenefon, Yolanda and Zelda. The 

machines in a factory are represented by the letters A, B, C, D. The numbers in the 

tables are the times in minutes it takes each employee to finish a task on each 

machine. Which machine should each employee operate to ensure the minimum 

time is taken?  

 

 

 

 

 

 

Steps: 

1. Locate the lowest value in each row and subtract that from each 
element in the row  

2. Find the minimum number of lines required to cover all of the 
zeros (if it is the same as the number of subjects then skip to step 
7) (it is usually 4 so if you have four lines then skip) 

3. Locate the lowest value in each column (it may be zero) and 
subtract that from each element in the column  

4. Find the minimum number of lines requires to cover all of the zeros 
(skip to step 7 if you have the same number of lines as there are 
subjects) 

5. Locate the smallest value which is not covers by a line. Subtract 
that from all uncovered elements and add the value to all elements 
covered by 2 lines (line intersection) 

6. Find the minimum number of lines required to cover all the zeros in 
the table (if it is not the same as the number of subjects repeat 5) 

7. Make the allocation based on the location of the zeros in the matrix 
(Bipartite) 

8. Find the minimum time by referring to the initial table costs  

 A B C D 

Wendy     

Xenefon     

Yolanda     

Zelda     

 
 A B C D 

Wendy     

Xenefon     

Yolanda     

Zelda     

 
 A B C D 

Wendy     

Xenefon     

Yolanda     

Zelda     

 
 A B C D 

Wendy     

Xenefon     

Yolanda     

Zelda     

 
 A B C D 

Wendy     

Xenefon     

Yolanda     

Zelda     

 



8G Hungarian Algorithm Task Match Working Steps 

1. Row deduction (Min. No. of each row to deduct) 

   Tasks 
 

Person 

Task 1 Task 2 Task 3 Task 4 Task 5 

Person 1 

 
 
 

    

Person 2 
 

 
 

    

Person 3 
 

 
 

    

Person 4 
 

 
 

    

Person 5 
 

 
 

    

 

2. Column deduction (Min. No. of each non 0 column) 

   Tasks 
 

Person 

Task 1 Task 2 Task 3 Task 4 Task 5 

Person 1 

 
 
 

    

Person 2 
 

 
 

    

Person 3 
 

 
 

    

Person 4 
 

 
 

    

Person 5 
 

 
 

    

                                                                   

3. Line fitting to cover Max. 0 possible ≥ No. of tasks 

                                                                     ≥ More than or equal 

   Tasks 
 

Person 

Task 1 Task 2 Task 3 Task 4 Task 5 

Person 1 

 
 
 

    

Person 2 
 

 
 

    

Person 3 
 

 
 

    

Person 4 
 

 
 

    

Person 5 
 

 
 

    

↓Enough lines to step 6     ↓ Not enough lines to step 4 

4. Intersection addition uncovered deduction (use 

uncovered Min. No) 

   Tasks 
 

Person 

Task 1 Task 2 Task 3 Task 4 Task 5 

Person 1 

 
 
 

    

Person 2 
 

 
 

    

Person 3 
 

 
 

    

Person 4 
 

 
 

    

Person 5 
 

 
 

    

 

5. Line fitting to cover Max. 0 possible ≥ No. of tasks 

                                                                                            ≥ More than or equal 

   Tasks 
 

Person 

Task 1 Task 2 Task 3 Task 4 Task 5 

Person 1 

 
 
 

    

Person 2 
 

 
 

    

Person 3 
 

 
 

    

Person 4 
 

 
 

    

Person 5 
 

 
 

    

 

6. Bipartite task graph matching (0=line match) 

Person 1 
 

 
 

Task 1 

Person 2 
 

 
 

Task 2 

Person 3 
 

 
 

Task 3 

Person 4 
 

 
 

Task 4 

Person 5 
 

 
 

Task 5 

 

7. Task Allocation (possible 2 solutions) 

Person 1 
 

 
 

Person 1  

Person 2 
 

 
 

Person 2  

Person 3 
 

 
 

Person 3  

Person 4 
 

 
 

Person 4  

Person 5 
 

 
 

Person 5  



Hungarian Algorithm Task Match Working Steps 

1. Row deduction (Min. No. of each row to deduct) 

Person 
 

Task 

A 
 
 

B C D E 

1 
 

 
 

    

2 
 

 
 

    

3 
 

 
 

    

4 
 

 
 

    

5 
 

 
 

    

 

2. Column deduction (Min. No. of each non 0 column) 

Person 
 

Task 

A 
 
 

B C D E 

1 
 

 
 

    

2 
 

 
 

    

3 
 

 
 

    

4 
 

 
 

    

5 
 

 
 

    

                                                                   

3. Line fitting to cover Max. 0 possible ≥ No. of tasks 

                                                                     ≥ More than or equal 

Person 
 

Task 

A 
 
 

B C D E 

1 
 

 
 

    

2 
 

 
 

    

3 
 

 
 

    

4 
 

 
 

    

5 
 

 
 

    

↓Enough lines to step 6     ↓ Not enough lines to step 4 

4. Intersection addition uncovered deduction (use 

uncovered Min. No) 

Person 
 

Task 

A 
 
 

B C D E 

1 
 

 
 

    

2 
 

 
 

    

3 
 

 
 

    

4 
 

 
 

    

5 
 

 
 

    

 

5. Line fitting to cover Max. 0 possible ≥ No. of tasks 

                                                                                     ≥ More than or equal 

Person 
 

Task 

A 
 
 

B C D E 

1 
 

 
 

    

2 
 

 
 

    

3 
 

 
 

    

4 
 

 
 

    

5 
 

 
 

    

 

6. Bipartite task graph matching (0=line match) 
1 
 

 
 

A 

2 
 

 
 

B 

3 
 

 
 

C 

4 
 

 
 

D 

5 
 

 
 

E 

 

7. Task Allocation (possible 2 solutions) 
1 
 

 
 

 A 

2 
 

 
 

 B 

3 
 

 
 

 C 

4 
 

 
 

 D 

5 
 

 
 

 E 

 



8H: Precedence Tables and Networks  

Immediate Predecessor (IP): 

• An activity that must be completed before another activity can begin  

• They are displayed in a precedence table  

Precedence tables: 

• Shows activities and Ips 

• Info is used to draw networks  

• Activity networks no longer label vertices but instead label edges  

• Start/finish vertices get labelled 

Example- draw an activity network from the precedence table: Locate Start & Finish 

Activity IP 

A -- 

B A 

C A 

D A 

E B 

F C 

G D 

H E F G 

 

Dummy activities: 

• Required if two activities share SOME but NOT ALL IP’s 

• Begins at the shared IP and ends at the start of the activity that has additional IPS 

• Drawn as a dotted line and labelled ‘d’ 

Examples- draw an activity network from the precedence table: Locate Start, Finish & Dummy 

Activity IP 

A -- 

B -- 

C A 

D B 

E C D 

F C 

G E F 

 

More Practice: Locate Start, Finish & Dummy1 Dummy 2 

Activity IP 

A -- 

B A 

C A 

D B 

E C 

F C D 

G C D  

H E F 

I G 

J  G H 

 



8I FORWARD SCANNING for EARLIEST START TIMES (EST): 
• To minimise the total completion time for a project, each activity 

should begin at its earliest start time (EST)  
• Done via process of forward scanning  
• Steps: 

1. Draw a box at each activity of the network, as well as the 
finish vertex 

2. The activities that connect to the start vertex have a 0 in 
the EST box  

3. Start filling in the EST box for all activities and the finish 
vertex  

i. If an activity has one immediate predecessor, its 
EST can be found by adding the EST and duration 
of the immediate predecessor  

ii. If an activity has two or more predecessors, the 
EST will be the LARGEST value  

4. The EST for the finish vertex is the minimum possible 
completion time for the project 

 

 

 

 

 

 

 

 

 

 

 

8I BACKWARD SCANNING FOR LATEST START TIMES (LST): 
• Some activities may be able to start later than the earliest 

possible start time and not impact the total minimum completion 
time for the project.  

• Done via backward scanning  
• Steps: 

1. Complete forward scanning (all left hand boxes should be 
full) 

2. Fill in the LST for the finish as the minimum possible 
completion time (this is the same number as the EST)  

3. Continue filling in the LST for all other activities  
i. If an activity has only one activity following it, its 

LST can be found by subtracting the duration of 
the activity from the LST of the activity following 
it  

ii. If an activity has two or more activities following 
it, its LST will be the SMALLEST value  

4. The LST for one of the starting activities should be zero.  
 
 
 
 
 



8J 
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8.1 Using “NetworkFlow” Template

  

 

Step 1 Sample graph: shift letter for new vertex

    

Step 2 Press Enter to add Max Flow=3+4+1=8 in Green 

 

Step 3 Min Cut is showing as following in Orange 

 

8.2 Using “Hungarian Algorithms” Template      
Step 1: Define Matrix in file 1.3

 

Step 2: Go back to file 1.2 and press MENU→ Matrix→ 

User-defined 

 

 

 



2 
 

Step 3: Enter the defined matrix name here 

 

Step 4: Once you see all matrix number, press ENTER 

 

Step 5: Compare the result with manual calculation 

 

 

 

 

 


