Networks

Vertex (plural Vertices) -

An object, represented with a dot.

Adjacent

Ed ge Vertices

A connection between two vertices represented with
a line or an arrow.

Loop
An edge that connect from an vertex to itself.

Graph

A collection of vertices that are connected (or not) to —

each other using edges in some specific way.

The Degree of a Vertex Example

The number of edges connected to a vertex.
A loop counts as two edges for the degree.

Vertices are classified as even or odd if their degree
is an even number or odd number.

Direction on Graphs

Undirected Graph
A graph where the edge between two
vertices acts in both directions.

Edge / Path Vertex [Node

™\

A
AN T Parallel / Multiple

| Connections

@ [solated Vertex

Y Degrees
. Deg(4) =2
f Deg(B) = 4
Deg(C) =0 Handshaking Lemma
Deg(D) =5 Every edge is counted by the degree of two vertices.
ce Deg(E) =3 Sum of vertex degrees = 2 x number of edges.

A loop counts as one edge in the number of edges.

Directed Graph / Digraph
A graph where specific direction is indicated for every edge.
Some vertices may not be reachable from other vertices.

Undirected Graphs
® O N A
.‘ 'P - — ~
® ® (—_ < N\
L N ~—\
Degenerategraph Complete graph Bl) e .
Connectedgraph Disconnected graph Simple graph
B ¥ N
" 5 r ¢ i Graph Number of Edges with n
- y ‘ & A Ad Y Tvype vertices
— o \ /> Complete n(n—1)
= wial a4
. D P 2
Non-simple graphs Subgraph Bipartite graph Connected n —1

Types of graphs

Simple graph — No loops or duplicate edges.

Isolated vertex — A graph has an isolated vertex if there is a vertex that is not connected to another vertex by an edge.
Degenerate graph — Degenerate graphs have all vertices isolated. Therefore, there are no edges in the graph at all.
Connected graph — Each vertex is either directly or indirectly connected to every other vertex.

Bridge — A bridge is an edge that when removed makes the graph unconnected.

Subgraph — Are graphs that are part of larger graphs.

Equivalent (isomorphic) graph — Look different but have the same information

Complete graph — Every vertex has a direct connection to every other vertex.

Bipartite Graph — A bipartite graph is a graph whose set of vertices can be split into two subsets X and Y in such a way that each
edge of the graph joins a vertex in X and a vertexin Y.

Isomorphic graphs —Two graphs have: @) same numbers of edges and vertices; 2) corresponding vertices have the same degree

and the edges connect the same vertices.

Planar Graphs & Euler’s Formula

Planar Graphs

called a planar graph.
® Some graphs can be redrawn to be planar, others not.
¢ Euler's formula is used to confirm whether graphs are planar or not.
¢ Allsimple graphs with four or fewer vertices are planar.

Euler’s Formula

Euler’s Formula:

Planar Graph: A graph that can be drawn in such a way that no two edges meet (or have common points), except at the vertices where they are both incident, is

Consider the connected planar graph opposite. It has 4 faces, 6
vertices and 8 edges.

v—e+f=2
v—e+f=2 6-8 + 4 =2
V= E = ~ Euler'sformula confirms that this graph is a planar graph
Vertices Edges Faces
Vertices Edges Faces Prove Euler’'s Formula/Degree of a Face
v=e—-f+2 e=v+f-2 f=e-v+2 v+f—-e=2 e+6=<3v
Degree of a Face Example
D;'g'r;; (;fa m; T—— dhoia . Example VCAA 2016 Exam 1 Sample Question 6 / VCAA 2014 Exam 1 Question 7
egrees i i
* edges along its boundary . . . Deg(4) = 3 Consider the following four graphs. How many of the four graphs above are planar?
« vertices along its boundary # Deg(B) = 4
« faces with which it shares an edge A L Deg(C) =3
0 Deg(D) = 4
Every edge is shared by exactly two faces. Therefore, ¥ - = Deg(E) =6

Sum of face degrees = 2 x number of edges
Since planar graphs are simple, they must have a degree of at least 3, otherwise they would be
defined by only two vertices. Therefore

3 x number of faces < sum of face degrees 3 x number of faces < 2 X number of edges.
Combining Euler's Formula and the Result from the Degree of a Face

Earlier we determined that 3 X number of faces < 2 X number of edges (3f < 2e).
Then using 3f < 2e
=23f=3e-3v+6<2e
=2e+6<3v

Multiplying Euler's formula for faces by 3
f=e—-v+2
=23f=3e-3v+6

Adjacency Matrix Representation

Matrix Representation Loops

Networks can be represented using adjacency

matrices. The numbers on the leading diagonal

represent loops, and all undirected graphs are
symmetrical about the leading diagonal.

Node Ahas degree 3.
B To
A~ ABCDE ~ o —al
/i\ \ Afo1000 (v /‘\\
P, B y¢ Bl1012 11 \ A / \
[\ Fom ClO 1010 [C
E \ plo2101 o™ -~
D E o1010

Euler & Hamilton

O N W

Graph1:v=5,e=8 Graph2:v=5,e=5 Graph3:v=5 e=7 Graphd:v=5e=9
8+6<3x5 5+46<3x5 7+6<3x5 9+6<3x5
14<15¢/ 11<15¢/ 13<15¢ 15<15¢/
Therefore, all 4 graphs are planar.

Kuratowski's Theorem

A graph is planar if and only if it does NOT
contain a subgraph homeomorphic to K, or K,

Aloop in an undirected network adds two to
the degree of a vertex, and adds one to the
leading diagonal of a matrix. For example:

The adjacency matrix 4 of a graph is an n * n matrix in which,
for example, the entry in row C and column F is the number of
edges joining vertices C and F.

A loop is a single edge connecting a vertex to itself.

Loops are counted as one edge.

A
1
1
0
0

b—ﬂv-o»-m
o monO
A~]

| i i ' If Neither Edge If No Edge Repeats W
LI_'l_&_h_ﬁll}(i)[l_l?Q_J Nor Vertices Repeat [] (Vertices may Repeat) -
- l Walk in Graph Theory J deg(B)=5
'e deg(C)=3
1 .
"_] Every ’
Path d L
E_J i ® deg(D)=4
BBADCDEBC
Closed Closed
All Even Vertices dgg(4)=2 o deg(B)=6
¥ ¥ A
| Every (eg(C)=4
Cycle Circuit oC

N,
Important Chart to Remember £ 5

coceeapesc Ue8(D)=4

Travelling in graphs
Route — A description of your travels, given by the vertices visited in the order they are visited.
Walk — A walk can be any type of journey within a graph, you can walk wherever you wish.
Trail — A special kind of walk, you can’t repeat any of the edges that you have taken, but you can revisit vertices.
Path — A path is a special kind of trail, with a path you can’t repeat any edges or vertices.
Eulerian trails and circuits
Eulerian trails — Is a trail in which every edge is visited once. Vertices can be repeated.
A Eulerian trail will only exist if:

- The graph is connected

- The graph has exactly two vertices of an odd degree

Eulerian circuit — Is a Eulerian trail (travels every edge once) that begins and ends from the same vertex.
A Eulerian circuit will only exist if: ~

- The graph is connected </
- All the vertices have an even degree
Hamiltonian paths and cycles

Hamiltonian path — Is a path that visits all of the vertices in a graph only once.
Hamiltonian cycle — Is a cycle that visits every vertex and begins and ends at the same vertex.

Weighted Graphs

A tree is a connected, simple graph with no circuits.
A spanning tree is a sub graph of a connected graph which contains all the vertices of the original graph.

The weight of a spanning tree is the combined weight of all its edges, and there are two ways in which the minimum- weight spanning tree can be found:

Prim's algorithm: which involves choosing random vertex as a starting graph and constantly building to it by adding the shortest edges which will

connect it to another node.

Apply Prim’s algorithm to obtain a minimum spanning
tree for the graph shown. Write down its weight, and

compare it to the weight of the original graph.
I. Chooseavertexandconnectittoasecondvertexchosensothattheweightoftheedge is as

small as possible.
Il. In each step thereafter, take the edge with the lowest weight, producing a tree with Solution

Step 2 8
.) =
the edges already selected. (If two edges have the same weight the choice can be ! / 3 .
A -
arbitrary.) “
Ill. Repeat until all the vertices are connected and then stop. Step 4 . & Step s . €
2 =\ 2 A
4 s D \ “ F [
= A minimum spanning tree = the spanning tree of minimum length (may be ‘ 3 ‘

minimum distance, minimum time, minimum cost, etc.). There may be more than
one minimum spanning tree in a weighted graph. The total weight is 17. The total weight of the original graph is 50,

Kruskal’s Algorithm

Choose the edge with the least weight as the starting edge. If there is more than Al \ A
one least-weight edge, any will do. o o
g =0 y p \; o T _;

= Next, from the remaining edges, choose an edge of least weight which does not gAY TN
form a cycle. If there is more than one least-weight edge, any will do.
= Repeat the process until all vertices are connected. The result is a minimum N N o
spanning tree. / . —)
= Determine the length of the spanning tree by summing the weights of the chosen /”\ / \v
vertices. w
Directed Graphs

In a directed graph, each edge has a direction. Also, each vertex in a network can be reachable or unreachable.
This is often abbreviated to digraph.

[

, S

” ' In this network, no node isreachable

fromF, and A is not reachable from B.

\

,

'
1<

~ | o

Nl -
4 —
4]

Network Flows

Weighted graphs can be used to model the flow of people, water or traffic. The flow is always from the source vertex to the sink vertex. The weight of an edge
represents its capacity.

Cuts are used as a way of preventing all flow from source to sink. A valid cut must completely isolate the source from the sink. By adding the weights of the
cut edges, the value of a cut can be obtained. The minimum value cut that can be made represents the maximum flow possible through the network.

Capacity

The capacity of an edge is the maximum amount that can flow through it.

The capacity of a cut is the sum of the weights of the edges in the cut.

The capacity of a network is the maximum amount that can flow from the sink to the source.

* THE MINIMUM CUT CAPACITY = THE MAXIMUM FLOW

* DETERMINE THE MAXIMUM FLOW FROM S TO T FOR THE DIGRAPH SHOWN ON THE RIGHT.

The capadity of C; =8+11=192
The capadity of C; =3+11=14
The capadty of O3 =3+5+11=19¢
The capadty of £y =8+3+1=12
The capadity of (5 =3+3+1=7
The capadity of Cg =3+5+1=9

i

The minimum cut capacity is 7 so the maximum —

flow from Sto Tis /. [

o
ek / £
Ford-Fulkerson Algorithm
Ford-Fulkerson Algorithm For multiple sources - singular terminal
An algorithm for finding the maximum flow through a network. 6} Maximum flow from each source is the capacity of the values leading directly out of each source.
7} The maximum flow into the terminal is the capacity of the values leading directly into the terminal.
1) Choose any path from the source to the terminal 8) Total flow out of the sources = flow into the terminal

2} Choose the smallest capacity on that path and write it above each capacity on that path)))

3) Choose a path from the source to the terminal that is non-full forwards, and non-empty backwards For multiple sources - multiple terminals

4) Choose the smallest remaining capacity on that path and write it above each capacity on that path, ~ 6) Maximum flow from each source is the capacity of the values leading directly out of each source.
add it to any that have already got values 7) Maximum flow inte each terminal is the capacity of the values leading directly into each terminal.

5) Repeat steps 3 and 4 until there are no paths that are non-full forwards, and non-empty backwards 8} Total flow out of the sources = total flow into the terminals

For singular source - singular terminal For singular sources - multiple terminals
6) The maximum flow from the source is the capacity of the values leading directly out of the source 6) The maximum flow from the source is the capacity of the values leading directly out of the source
7) The maximum flow into the terminal is the capacity of the values leading directly into the terminal. 7) Maximum flow into each terminal is the capacity of the values leading directly into each terminal.
8) Flow out of the source = flow into the terminal 8) Flow out of the source = total flow into the terminals

2 5CT
1 5-ABT

Send 2 units of flow in the path.
Update residual capacities.

Send 1 units of flow in the path.
Update residual capacities.

This is the original network.

& -

—

(o Capacity [Path __________|

2 S-CT 2 scT
1 S5-A-B-T 1 S-A-B-T
2 $DT . N
5 - Send 2 units of flow in the path. 2 S-D-T Here is the Maximum Flow.
ot . o
= Update residual capacities. 5 Total

Shortest Path Problem

B Cc D E F

G 2 Bl X X X

c [4] |3k N X X

s [B B x|

D [] [3] lsf——=hapy | 1

EEOEEC £
BB sl |

3+ 5+ 3 = 11Hours

3+ 1+ 3 =7 minutes

4. Label the last vertex

Finding the shortest path by Dijkstra’s Algorithm

. Fde the shortest path from vertex A to vertex E in this network. The

numbers represent time in hours.

. From Starting vertex. 4
. The shortest edge

first. m 6
. Write distance from

the starting vertex. 4 =S5

04

passing by.

. Cover all edges from
this vertex.

. Find the next shortest “
distance vertex to o X

start over again.
. Until all vertices and
edges covered.

3+5+3=11 Hours

Weights from starting vertexthe last passing by vertex

Finding the shortest path by Dijkstra’s Algorithm

* Find the shortest path from vertex B to vertex F in this network. The
numbers represent time in minutes.

A C D E F G 1. From Starting vertex.
— 2. The shortest edge first.
5 6 X X Mﬂ 3. Write distance from the starting
— L vertex.
I ra) 4 raY > 4. Label the last vertex passing by.

Eﬂ. L 10 i lél_ 5. Cover all edges from this vertex.

iy =1 6. Find the next shortest distance

|4 I(‘ i 6 i 10 7 3 vertex to start over again. 4‘G 5 /‘
— — 7. Until all vertices and edges covered.

6| | 10

Om=mio|>» 6w

=
o
H“"‘H NN~
=X

==
| K|
5]

SIS

[w][w][%]

3+1+3=7 minutes

Weights from starting vertexthe last passing by vertex

Matching & Allocation Problems

Four supermarkets (A, B, C and D) are supplied from four distribution outlets (W, X, Y and Z). The cost in dollars of supplying one vanload of goods is given in the

table. This table is called a cost matrix.
A B C D
W 30 40 50 60
X 70 30 40 70
Y 60 50 60 30
Zz 20 80 50 70

The aim is to supply each of the supermarkets at the lowest cost. This can be done by trial and error but that would be time consuming. The Hungarian algorithm

gives a method for determining this minimum cost.

Simplify the cost matrix by subtracting the minimum entry in each row from each of the elements in that row.
#* This process is repeated for columns if there is no zero entry.

A B C D
w 0 10 20 30
X 40 0 10 40
4 30 20 30 0
Z 0 60 30 50

A B e D
W 0 10 10 30
X 40 0 0 40
4 30 20 20 0
Z 0 60 20 50

i.e. 30 is subtracted from all entries in Row 1
30 is subtracted from all entries in Row 2
30 is subtracted from all entries in Row 3
20 is subtracted from all entries in Row 4

Because Row 2 did not contain a zero entry, the process was repeated for column 3.
10 is subtracted from Column 3 to obtain a 0 in Row 2.

Cover the zero elements with the minimum number of lines.

<+ If this minimum number equals the number of rows, then it is possible to obtain a maximum matching using all vertices immediately. Otherwise, continue

to step 3.
« | B | c | Db
w 0 | 10| 10 | 30
¥ 00 40
Yy | 30 |20 | 2 [0
z | 0 |60 | 20| s0

+10

Employee A B C D
Wendy 30 40 50 60
Xenefon 70 30 40 70
Yolanda 60 50 60 30
Zelda 20 80 50 70

Column Minus

Employee i B C

Wendy) 10 10

Xenefon -=-48-----9----f----4p

Yolanda 30 20 20
Zelda 060 20

+10

Add the minimum uncovered element to the rows and columns that are covered.
The minimum uncovered element (10) is now subtracted from all entries and step 2 is repeated.

A B C D
W 10 10 10 40
X 60 10 10 60
Y 40 20 20 10
4 10 60 20 60
A B 5 D
W 0 0 (0] 30—
X 50 0 0 50—
¥ 10 10 00—
z 0501050

The minimum number of lines is equal to the number of rows, so it is possible to obtain a maximum matching.

Possible allocations are represented using a barpitite graph.

<+ The edges are chosen through the zero entries in the table.

W - A
X B
Y C
Z D

The possibilities with four edges (one task per person) are as follows:

s,

N~ 3

A

B
c
D

X
Y
Z

C
D

Employee A B

c

2

Wendy

et (SRR SRRt B
! 5
R EEETE{ SERRY EREY (B
H :

10
10

0

=]

Xenefon
Yolanda 3010
Zelda D50

Wendy A
Xenefon B
Yolanda &

Zelda D

Cost (3) Cost (8)

Wito B =40 Wit C =50
XtwC=40 XtoB =730
YtoD =30 YtoD=30
ZtoAd=20 ZwoAd=20

Total = 130 Total = 130

—30
—30

—20

Row Minus

!
Employee 4 B C D
Wendy 0 2 3
Xencfon 40 D 10 4
Yolanda 30 20 30 0
Zelda L)
[

4 people = Minimum 4 lines

Intercept Plus & Uncovered Minus

0 in table = A line of Connection

Critical Path Problems

1. Draw a box for each going forward edge/activities.

2. EST = Going forward with Biggest Number.

3. LST=Going backward with Smallest Number.

4. Float time for each activity = LST — EST @ start of the edge
5. Label / Highlight Critical Path
6

. Write minimum completion time.

Developing and manufacturing a product frequently involves many interrelated activities. It is often the case that some of these activities cannot be started until
other activities are completed.

Two important facts about critical paths are:
I. The weight of the critical path is the minimal length of time required to complete the project.
Il. Increasing the time required for any critical activity will also increase the time necessary to complete the project.

. .) 3 . .) Activities | I ii. predecessors
Digraphs can be used to represent such situations with the following conditions applying: A
The edges (or arcs) represent the activities. z n
The vertices (or nodes) represent events. D B
The start/finish of one or mnra artivitiac ic rallad an avant E ¢
Precedence Table F cD
¢ An edge should lead ,fr(,jm 2 A table that details the events that must occur immediately before an event may begin and its duration. | S EF
+ Avertex (called the finish node) representing the completion of the project should be included in the network. H
An activity should not be represented by more than one edge in the network.

Two nodes can be connected directly by, at most, one edge.
In order to satisfy the final two conventions, it is sometimes necessary to introduce a dummy activity that takes zero time. Following these conventions the weighted
digraph can be redrawn.

C.1

EST | LST
BT ST
Earliest Starting Time Latest Starting Time Float/Slack Time
The earliest starting time refers to the earliest time the The latest start time is the latest time an activity can For critical activities the float time is zero
activity can commence. be left if the whole project is to be completed on time. | For non-critical activities the float is
The EST for activities without predecessors is zero. Latest event times are established by working worked out using:
The EST for activities should be the longest elapsed time | backwards through the network. Float Time = LST — EST

FLOAT TIMES
NO~DAED ~_D, § G A:0-0=0 F:13-13=0
BN, o~ o ~—_ GS . B:5-0=5 G:17-17=0
start B[] »——————e e finish] Ta o+ - fnshEI g 3.5
< e : -
N - D:9-6=3
@ v oo E6-6-0

Critical Activity: A critical activity is any task, that if delayed will hold up the earliest project. If LST = EST the activity is said to be critical.
Critical Path: The critical path in a project is the path that has the longest completion time. In the table, the critical path is: A-E-F-G

G 15|17

1,4
122)22

start finish 26|26

B 0|1
I D3|4 F13|13 HA9M?

If a project looks like running overtime, it may be crashed. Crashing involves spending extra money to reduce the time taken by certain activities in order to avoid
costs of completing the project late. The following steps illustrate the crashing process:
I. Write down all of the paths from the start node to the finish node, and determine the length of each.
Il. Calculate the cost per day of crashing each activity (note that some guestions may already have the cost per day, and watch for reductions that must be
made in full)
Ill. Reduce the cheapest (cost per day) activity on the critical path by one day.
IV. Calculate the new lengths of all of the paths.
V. Repeat steps three and four, each time using the new longest path after reductions. Stop when the budget is reached or the longest path cannot be
reduced. The new critical path is the longest path.

Example Modified VCAA 2001 Question 3
LiteAero Company designs and
makes light aircraft for the civil
aviation industry. They identify 10
activities required for production of
their new model, the MarchFly. A
network for this project is shown.

Ad BS D, 6 2 Al

The critical path(s) for this networkare A-B—-C—-F—-H—-jJandA-B—-C—-F—-G—-1—]
The length (in weeks) of a critical path for this project is 25 weeks.

By using more workers it is possible to speed up
some activities. However this will increase costs.
Activities which can be reduced in time and the

associated increased costs and maximum reduction

are shown in Table 3 below. The shortest time in
which the aircraft could now be finished is can be
found by investigating all the possible paths:

Activity Cost ($/week) Max reduction (weeks)

Current C:—=3 D:-2 E: -1 F:-2 | Cost

C-F-G-I1—-] 25 22 -
C-F-H-] 25 22 -
D-1-] 18 - 16
E-G-1-] 21 - -
E-H-] 21 - -

c 6000

D 2000 2

E 3000 1

F 4000 2
- 20 3 x 6000 + 2 x 4000 = 26000
- 20 3 x 6000 + 2 x 4000 = 26000
- - 2 x 2000 = 4000
20 - 1> 3000 = 3000
20 - 1> 3000 = 3000

By reducing C, E, F by their maximum amounts, this would reduce the time of this path down to 20 weeks.
A-B—-E—-G-I1—-]andA - B — E — H — [are now also critical paths. If you don't reduce E then it would
take 21 weeks and the critical paths would change. In total this would cost 26 000 + 3000 = $29 000.
Reducing D does not affect the time for the critical path or potential critical paths.

Different Types of Greedy Algorithm
Prim's Minimal Spanning Tree Algorithm
Kruskal’s Minimal Spanning Tree algorithm
Dijkstra's Shortest Path Algorithm
Ford-Fulkerson Networks Flows Algorithm

Hungarian Algorithm

Mathematical Terminologies

Undirected Graphs

Directed Graphs

Terminologies

Algorithm

Terminologies

Algorithm

Eulerian trails

Exactly 2 vertices of an odd degree

The Maximum FIow.

Ford-Fulkerson Algorithm

Eulerian circuits

All vertices even degree

The Shortest Path

Dijkstra's Algorithm

Hamiltonian paths

Visits all of the vertices in a graph only once

Matching & Allocation Problems

Hungarian Algorithm .

Hamiltonian cycles

Visit All vertices, begin & end @ the same vertex

Minimal Spanning Tree

Prim's Algorithm, Kruskal’s Algorithm

Critical Path Problems

Forward scanning = Biggest Number
Backward scanning = Smallest Number
Float = LST—EST

Networks Notes
8A: Introduction to graphs and networks

rnulh'ple cdac(\

loop —

isolated vertex — E.

e Graph: a diagram used to show connections
between groups of things, people of activities.

e \Vertex: the dots

e Edge: line that connects two vertices

e Isolated vertex: a vertex that is not connected to
an edge

e Multiple edges: connects the same vertex using
more than one edge

e Loop: attach twice to a vertex

o Degree of a vertex: the number of edges that
attach to a vertex. The degree of vertex D is 4.

Types of graphs:
Simple graph: no loops or multiple edges

Ag—
\
\

Degenerate graph: all vertices are isolated, there are
no edges

D

=@

Connected graph: every vertex is connected to every
other vertex, either directly or indirectly

Bridge: an edge in a connected graph, that if removed
will cause the graph to be disconnected. Edge Cto E is
a bridge

o

A

Complete graph: every vertex is connected to every
other vertex

Subgraph: a tree, a part of a larger graph

Equivalent/isomorphic graph: graphs that contain the
EXACT same information, vertices and the connections
between them, they are just drawn differently

v
4%
N

Planar graph: a graph that can be re-drawn without
any overlapping edges. If it cannot be re-drawn and
has overlapping edges, the graph is non-planar.

.B/C N ‘
A ®D A ®D
13 oE

Faces: faces are found in planar graphs and are the
sections enclosed by edges. There is an infinite face
outside of the graph. There is an infinite face outside
of the graph.

LS

C
Euler’s rule: there is a relationship between the
number of vertices (v), edges (e) and faces (f) in a

connected planar graph.
v —e + f= 2,where

e yisthe number of vertices
e ¢is the number of edges

* fisthe number of faces

8B: Graphs, networks and matrices

Adjacency matrix: a matrix that records the number
of connections between vertices. The number of
vertices on the graph tells you how many rows and
columns you need. A ‘0’ mean no direct connection, a
‘1’ means one connecting edge etc. Ensure you label
the matrix with the vertex letters.

ABC
01 2]A
101 (B A
210]|C

Representing directed graphs: this is a network
containing arrows on each edge, signalling one
direction. These matrices need to be labelled with
‘from’ and ‘to’.

B

Networks Notes

8C: Travelling

Identifying types of walks: A route is a list of the
vertices travelled through, in order, when moving from
one vertex to another.

Walk: a continuous sequence of edges that pass
through any number of vertices, in any order, starting
and finishing at any vertex.

Trail: a walk with no repeated edges. The same vertex
can be visited multiple times.

Path: a walk with no repeated edges or vertices.
Circuit: a trail beginning and ending at the same
vertex.

Cycle: a path beginning and ending at the same
vertex.

Eulerian trails: a walk that includes every edge in a
graph exactly once. It must:

e Exactly two vertices of odd degree, the rest

are even

e Start and finish at a vertices of odd degree
Eulerian circuit: an Eulerian trail that starts and ends
at the same vertex. It must:

e Have all vertices of even degree

Hamiltonian paths: a walk that includes every vertex
exactly once, with no repeated edges. Every edge does
not need to be included.

Hamiltonian cycle: a Hamiltonian path that starts and
ends at the same vertex.

8D: Minium connector problems

Weighted graph: numerical information attached to
each edge of a graph. ‘Weights’ often represent time
or distance.

Tree: type of connected graph that has no loops,
duplicate edges or cycles. It uses the least number of
edges to connect the vertices.
e The number of edges in a tree is always one
less than the number of vertices
e e=v-1
e Atree can be a subgraph and so not all
vertices in the larger graph need to be
included.

Spanning tree: a tree which connects ALL vertices in
the original graph.
e There are often multiple spanning trees for
the one graph

Minimum spanning tree: a spanning tree with the
LOWEST TOTAL WEIGHT.
e Prim’s algorithm can be used to find the
minimum spanning tree.

8E: Flow Problems

Directed graph: network containing arrows on each
edge. Networks show directional information between
vertices. Weights can represent distance, time or cost.
Flow: flow problems involve the transfer or flow of
material from one point (source) to another point
(sink), example; water flowing through pipes or traffic
flow on roads.

sink

source

e No matter the situation, things flow in one
direction only
e Weights of graphs are called capacities
Maximum flow: if edges of different capacities are
connected one after, the other, the maximum flow
through the edges is equal to the minimum capacity of
the individual edges
e Maximum flow = minimum capacity
Cuts: a cut divides the network into two parts,
completely separating the source from the sink
e It completely stops flow
e Cut Ais asuccessful cut, cut B is not as it
doesn’t completely separate source from sink

source

Cut capacity: the sum of all capacities of the edges
that the cut passes through, taking into account the
direction of flow
e The capacity is only counted if it flows from
source to sink

source

sink

cut1 cu't 2

The capacity of cut 1is 8 + 9 = 17.

The capacity of cut 2is 5 + 4 = 9.
Minimum cut capacity: a cut that has the lowest cut
capacity for a network
e Minimum cut capacity = maximum flow

Networks Notes

8F: Shortest path problems

Exist so that you can minimise cost, time or distance.

Involves finding the shortest path from one vertex to

another. You can do this by eye or using Dijkstras

algorithm.

Dijkstra’s Algorithm

1. Create atable, the starting vertices is in the first
row, the rest of the vertices form the column
labels

2. Complete the first row

e Write the distance from the starting vertex to
each other vertex in the corresponding column

e If there is no direct connection, mark with a
cross ‘X’

e Find the smallest number in the first row and
put a box/square around it (if there are two or
more the same, any can be chosen)

e The column vertex that has the box around it
becomes the next row

3. Complete further rows

e Copy all boxed numbers into the next row

o Add the boxed number from the row vertex to
the column vertex

o Ifthe value is greater than the value above
it, ignore the new number and copy down
the smaller one

o Ifthe value is less than or equal to the value
above it, write down the new value

o If thereis no direct connection, mark with a
cross ‘X’

e Look for the smallest unboxed number in the
row and draw a box around it

e The column vertex for this new boxed number
becomes the next row vertex

4. Repeat step 3 until the destination vertex value
has a box around it

5. Backtrack to identify the shortest path and it’s
length

e Start at the destination box — this is the length
of the shortest path

e Draw a line up the column to the last number
that is the same

e Look at the row vertex for this number and
draw a horizontal line to the column

e Repeat until you reach the start

e The horizontal lines indicate the shortest path

Shortest path from General to English:

Methods

Biology

Physics 2

~J

2 s | =
S e]efe|m

o= |2 | v e
IR
o]l ede] v x| @

e
a

The shortest path is G-M-B-E.

Helpful hints:

e Ifthereis no direct connection and there is a
number above, bring it down

e Always bring down the smallest number

e don’t forget to add the previous total to your
new moves

e if two numbers are the same it doesn’t matter
which one you bring down

8G: Matching Problems

Bipartite graph: used to show connections between
vertices which fall into two separate groups. A vertex
cannot be directly connected to another vertex from
the same group.

James @ @ basketball
Alice ® ® soccer
Harry @ ® tennis

Nathan @ @ football

Solving matching problems: the Hungarian Algorithm
uses cost matrices to find the optimal allocation, the
one which gives the minimum cost.

Networks Notes

Hungarian Algorithm steps:

1. Locate the lowest value in each row and subtract
that from each element in the row

2. Find the minimum number of lines required to
cover all of the zeros (if it is the same as the
number of subjects then skip to step 7) (it is
usually 4 so if you have four lines then skip)

3. Locate the lowest value in each column (it may be
zero) and subtract that from each element in the
column

4. Find the minimum number of lines requires to
cover all of the zeros (skip to step 7 if you have the
same number of lines as there are subjects)

5. Locate the smallest value which is not covers by a
line. Subtract that from all uncovered elements
and add the value to all elements covered by 2
lines

6. Find the minimum number of lines required to
cover all the zeros in the table (if it is not the same
as the number of subjects repeat step 5)

7. Make the allocation based on the location of the
zeros in the matrix

8. Find the minimum time by referring to the initial
table costs

8H: Activity Networks and Precedence Tables
Immediate predecessor (IP): is an activity that must
be completed before another activity can begin. They
are displayed in precedence tables.
Precedence tables: show activities and IP’s. The
information is used to draw networks.
e Activity networks no longer label vertices but
instead label edges
e Start/finish vertices get labelled
Dummy activities: are required is two activities share
SOME but NOT ALL IP’s
e The dummy begins at the end of the shared IP
e The dummy ends at the beginning of the
activity that has additional IP’s
e Drawn as a dotted line and labelled ‘d’

Example:
activity immediate predecessor(s)
A —
B _
C B
D AC
E B
F B,D
G E

e Aand B have no IP, therefore they are both
come from the start vertex.

e Aand C must merge together for D to begin.

e C,EandF all share B, except F also has D as an
IP. Therefore, the dummy starts at the end of
B (as this is the shared activity) and ends at
the beginning of F. This allows for B and D to
be brought together so that F can begin.

e Fand G are the only activities that aren’t an IP,
this means that they attach to the finish

vertex.
D
A_*® e __F
start @ C y ® finish
B ® ° G
E

Networks Notes

8l: Critical Path Planning:

Scheduling: times that are associated with
activities/edges, looks into the minimum overall time
to complete a project.

FORWARD SCANNING for EARLIEST START TIME (EST):
e To minimise the total completion time for a
project, each activity should begin at its earliest
start time (EST)
e Done via process of forward scanning
Steps:
1. Draw a box at each activity of the network, as well
as the finish vertex
2. The activities that connect to the start vertex have
a0inthe EST box
3. Start filling in the EST box for all activities and the
finish vertex
i. Ifan activity has one immediate predecessor,
its EST can be found by adding the EST and
duration of the immediate predecessor
ii. If an activity has two or more predecessors, the
EST will be the LARGEST value
4. The EST for the finish vertex is the minimum
possible completion time for the project

BACKWARD SCANNING for LATEST START TIME (LST):
e Some activities may be able to start later than the
earliest possible start time and not impact the

total minimum completion time for the project.

e Done via backward scanning

Steps:

1. Complete forward scanning (all left hand boxes
should be full)

2. Fillin the LST for the finish as the minimum
possible completion time (this is the same number
as the EST)

3. Continue filling in the LST for all other activities

i If an activity has only one activity following it,
its LST can be found by subtracting the
duration of the activity from the LST of the
activity following it

ii. If an activity has two or more activities
following it, its LST will be the SMALLEST value

4. The LST for one of the starting activities should be
zero.

A, 8
(forA) |0 W

start

(forB) |01

finish

[15]15]

67 911
Critical Path = A-C-E-G-H

Float time: flexibility around the start time of an
activity. It is the maximum amount of time an activity
can be delayed without impacting the minimum
completion time.

e Floattime = LST—EST

e LST = latest start time

e EST =earlier start time

Critical path planning: an activity is on the ‘critical
path’ if it has a float time of zero. A delay in these
activities will increase completion time. It is possible
for there to be more than one critical path.

8J): Crashin
e Used to reduce the completion time of an activity

network/project

e Crashing an activity on the critical path will
immediately impact the minimum completion
time

e Crashing off the critical path is sometimes still
necessary to alter the minimum completion time

e Crashing can cause the critical path/s to change

e An extra cost may be applied when shortening the
completion time of a new project

8E Directed graph: Cut capacity:

o Networks contain arrows on each edge e The sum of all the capacities of the edges that the cut passes through,

e Networks show directional information between vertices considering the direction of flow

Flow: e The capacity is only counted it is flows from source to sink or isn’t cut off
e Flow problems involve the transfer or flow of material from one point (source) earlier

to another (sink)
e Eg: water flowing through pipes or traffic flow on roads
e No matter the situation, things flow in one direction only
o Weights on graphs are called capacities

sink

7 —d
sink source

source

Minimum cut capacity:

e A cutthat has the lowest cut capacity for a network

e Minimum cut capacity = maximum flow

e Example: determine the maximum flow from source (S) to sink (T)

Maximum flow:

o If edges of different capacities are connected one after the other, the
maximum flow through the edges is equal to the minimum capacity of the
individual edge

e Maximum flow = minimum capacity

A

source

sink 1 1

Cuts:
e A cutdivides the network into two parts, completely separating the source

from the sink

e Completely stops flow!

sink

source

source € L :: > sink
7

8F Dijkstra’s Algorithm
1. Create a table, the starting vertices is in the first row, the rest of the vertices form the column labels
2. Complete the first row
. Write the distance from the starting vertex to each other vertex in the corresponding column
. If there is no direct connection, mark with a cross ‘X’
. Find the smallest number in the first row and put a box/square around it (if there are two or more the same, any can be chosen)
. The column vertex that has the box around it becomes the next row
3. Complete further rows
. Copy all boxed numbers into the next row
. Add the boxed number from the row vertex to the column vertex
o If the value is greater than the value above it, ignore the new number and copy down the smaller one
o If the value is less than or equal to the value above it, write down the new value
o If there is no direct connection, mark with a cross ‘X’
. Look for the smallest unboxed number in the row and draw a box around it
. The column vertex for this new boxed number becomes the next row vertex
4. Repeat step 3 until the destination vertex value has a box around it
5. Backtrack to identify the shortest path and it’s length
. Start at the destination box — this is the length of the shortest path
. Draw a line up the column to the last number that is the same
. Look at the row vertex for this number and draw a horizontal line to the column
. Repeat until you reach the start
. The horizontal lines indicate the shortest path
OR
. Rest vertices on row 1
. Starting vertex with distance on row 2, x for no connection vertex.
. Frame smallest number & copy to whole column
. Smallest number vertex with accumulating distance on row 3
. Frame next smallest number & copy to whole column
. Next smallest number vertex with accumulating distance on row 4
. Repeat step 5 & 6 until table complete
. Circle all vertices’ intersections

W o0 NOUVLDE WNR

. Trace same column number from ending vertex

10. Locate next circled vertex on the row

11. Repeat step 9 & 10 until trace back to starting vertex
12. Write down all passing by vertices from tracing above

Examples:

A 9 D Shortest path from Sto F

Shortest path from Ato |

A

Helpful hints:
o If there is no direct connection and there is a number above, bring it down
o Always bring down the smallest number
o don’t forget to add the previous total to your new moves
o if two numbers are the same it doesn’t matter which one you bring down

8G The table shows four employees, Wendy, Xenefon, Yolanda and Zelda. The
machines in a factory are represented by the letters A, B, C, D. The numbers in the
tables are the times in minutes it takes each employee to finish a task on each
machine. Which machine should each employee operate to ensure the minimum
time is taken?

Steps:

Employee A B C D

Wendy 30 40 50 60
Xenefon 70 30 40 70
Yolanda 60 50 60 30
Zelda 20 80 50 70

Locate the lowest value in each row and subtract that from each
element in the row

Find the minimum number of lines required to cover all of the
zeros (if it is the same as the number of subjects then skip to step
7) (it is usually 4 so if you have four lines then skip)

Locate the lowest value in each column (it may be zero) and
subtract that from each element in the column

Find the minimum number of lines requires to cover all of the zeros
(skip to step 7 if you have the same number of lines as there are
subjects)

Locate the smallest value which is not covers by a line. Subtract
that from all uncovered elements and add the value to all elements
covered by 2 lines (line intersection)

Find the minimum number of lines required to cover all the zeros in
the table (if it is not the same as the number of subjects repeat 5)
Make the allocation based on the location of the zeros in the matrix
(Bipartite)

Find the minimum time by referring to the initial table costs

Wendy

Xenefon

Yolanda

Zelda

Wendy

Xenefon

Yolanda

Zelda

Wendy

Xenefon

Yolanda

Zelda

Wendy

Xenefon

Yolanda

Zelda

Wendy

Xenefon

Yolanda

Zelda

8G Hungarian Algorithm Task Match Working Steps Tasks | Task 1 | Task2 | Task 3 [Task 4 ! Task 5
1. Row deduction (Min. No. of each row to deduct) Perso
Person 1
Jasks | Task 1 | Task 2 | Task3 | Task 4 || Task 5
Perso Person 2
Person 1
Person 3
Person 2
Person 4
Person 3
Person 5
Person 4
Person 5 5. Line fitting to cover Max. 0 possible > No. of tasks
2 More than or equal
. . Tasks | Task1 | Task2 | Task3 | Task 4 § Task 5
2. Column deduction (Min. No. of each non 0 column)
Perso
W:\ Task1l | Task2 | Task3 | Task4 || Task 5 Person 1
Perso
Person 1 Person 2
Person 2 Person 3
Person 3 Person 4
Person 4 Person 5
Person 5
6. Bipartite task graph matching (0=line match)
Person 1 Task 1
3. Line fitting to cover Max. 0 possible > No. of tasks Person 2 Task 2
2 More than or equal
wj\ Task1 | Task2 | Task 3 | Task 4 | Task 5 Person 3 Task 3
Perso
Person 1 Person 4 Task 4
Person 2 Person 5 Task 5
Person 3
7. Task Allocation (possible 2 solutions)
Person 4 Person 1 Person 1
Person 2 Person 2
Person 5
Person 3 Person 3
\l/ Enough lines to step 6 \l/ Not enough lines to step 4 Person 4 Person 4
4. Intersection addition uncovered deduction (use Person 5 Person 5

uncovered Min. No)

Hungarian Algorithm Task Match Working Steps erson | A B C D E
1. Row deduction (Min. No. of each row to deduct) Task
1
erson | A B C D E
Task 2
1
3
2
4
3
5
4
5 5. Line fitting to cover Max. 0 possible > No. of tasks
2 More than or equal
erson | A B C D E
2. Column deduction (Min. No. of each non 0 column) Task
erson | A B C D E 1
Task 5
1
2 3
3 4
4 5
5
6. Bipartite task graph matching (0O=line match)
1 A
3. Line fitting to cover Max. 0 possible > No. of tasks 2 B

2 More than or equal

erson | A B C D E 3 C
Task
4 D
1
5 E
2
3 7. Task Allocation (possible 2 solutions)
1 A
4 2 B
5 3 C
4 D
\l/ Enough lines to step 6 \l/ Not enough lines to step 4 5 E

4. Intersection addition uncovered deduction (use
uncovered Min. No)

8H: Precedence Tables and Networks

Immediate Predecessor (IP):

An activity that must be completed before another activity can begin
They are displayed in a precedence table

Precedence tables:

Shows activities and Ips

Info is used to draw networks

Activity networks no longer label vertices but instead label edges
Start/finish vertices get labelled

Example- draw an activity network from the precedence table: Locate Start & Finish

Activity | IP
A -
B A
C A
D A
E B
F C
G D
H EFG

Dummy activities:

Required if two activities share SOME but NOT ALL IP’s
Begins at the shared IP and ends at the start of the activity that has additional IPS
Drawn as a dotted line and labelled ‘d’

Examples- draw an activity network from the precedence table: Locate Start, Finish & Dummy

Activity | IP
A -
B -
C A
D B
E CD
F C
G EF

More Practice: Locate Start, Finish & Dummyl Dummy 2

Activity | IP
A -
B A
C A
D B
E C
F CD
G CD
H EF
[G
J GH

8| FORWARD SCANNING for EARLIEST START TIMES (EST):

To minimise the total completion time for a project, each activity
should begin at its earliest start time (EST)

Done via process of forward scanning

Steps:
1.

Draw a box at each activity of the network, as well as the
finish vertex
The activities that connect to the start vertex have a 0 in
the EST box
Start filling in the EST box for all activities and the finish
vertex
i If an activity has one immediate predecessor, its
EST can be found by adding the EST and duration
of the immediate predecessor
ii. If an activity has two or more predecessors, the
EST will be the LARGEST value
The EST for the finish vertex is the minimum possible
completion time for the project

1. Boxes or lines at the beginning of each edge

including dummy. [T] or

EST

LST

L]

2. Forwards scanning with numbers written on

each entry,
forward.

% biggest EST number going

A2

Start

D,7

3. Backwards scanning with smallest LST number

going backwards. é

B, 6

81 BACKWARD SCANNING FOR LATEST START TIMES (LST):

Some activities may be able to start later than the earliest
possible start time and not impact the total minimum completion
time for the project.

Done via backward scanning

C8

Steps:
1.

E 8

Complete forward scanning (all left hand boxes should be
full)
Fill in the LST for the finish as the minimum possible
completion time (this is the same number as the EST)
Continue filling in the LST for all other activities
i If an activity has only one activity following it, its
LST can be found by subtracting the duration of
the activity from the LST of the activity following
it
ii. If an activity has two or more activities following
it, its LST will be the SMALLEST value
The LST for one of the starting activities should be zero.

F.5
Finish

G 9

8l
1. Boxes or lines at the beginning of each edge

including dummy. [T] ©r |
EST LST

T]

2. Forwards scanning with numbers written on
each entry, biggest EST number going
forward.

3. Backwards scanning with smallest LST nhumber

going backwards. é

Crashing Steps:

1. Reducing all possible activities.

2. Froward and backward scanning to find critical

path.

3. Any activities on critical path must crash.

4. Checking multiple entry numbers ;not to
reduce some activities to lower the cost.

5. write reducing amount and cost on the table.

The directed network below shows the sequence of 8 activities that are needed to

complete a project. The time, in days, that it takes to complete each activity is also

shown.

The minimum completion time for the project is 24 days. It is possible to reduce the

completion time for activities D, E and H. The completion time for each of these three

activities can be reduced by a maximum of two days.

a What is the new minimum completion time, in days, of the project?

The reduction in completion time for each of these
three activities will incur an additional cost. The table
opposite shows the three activities that can have their
completion times reduced and the associated daily

cost, in dollars.

Finish
[1]

Days Cost
Activity Daily cost($) reduced | /activity
D 170
E 350
H 200

b What is the minimum cost that will achieve the greatest reduction in time taken to

complete the project?

Finish
[1]

NetworkFlow

The user can move the vertex markedbya *
circle with the arrow keys. The tab key
switches the mark from vertex to vertex. The
user can enter a new vertex by pressing an
alphbetic key (uppercase or lowercase),

which can then be moved. A new edge is
created between the marked vertex and
another existing vertex by entering the name *
of that vertex. Enter that name again to delete
the edge. Hitting the "-" key deletes the

W

marked vertex and all the edges starting from
it.

Enter shift + to change the number of
weights.

Step 1 Sample graph: shift letter for new vertex

1.1 (1.2 NetworkFlow rap [I] X
b
2 . I
o ; .
g .-
Enter vertices, edges and capacities

Step 2 Press Enter to add Max Flow=3+4+1=8 in Green

Press Enter for the next step

(1.1 [1.2 B

Step: 3

Press Enter for the next step

NetworkFlow

Press Enter for the next step

Step 3 Min Cut is showing as following in Orange

NetworkFlow

Maximal flow and minimal cut

Step 1: Define Matrix in file 1.3

Employee

A B C D

Wendy
Xenefon
Yolanda
Zelda

30 40 50 60
70 30 40 70
60 50 60 30
20 80 50 70

1112 13
dl

30 40 50
c:={70 30 40 70 70 30
60 50 60 30 60 50
20 80 50 70 20 80

p *Hungari..thm
Hungarian Algorithm

60 30 40

50
40
60
50

rao [Il] X

-

o U W
W 0 3

60]
70
30
70

Step 2: Go back to file 1.2 and press MENU-> Matrix>

User-defined

Sum: 0

141 New (ESC)

&

19 2 6x6
7 3 7x7
18 4 10x10

15 5 Random matrix
14 6 User-defined

19 24 31 3

Step 3: Enter the defined matrix name here

m 1.2 m *Hungari..thm RAD D ped

Please enter the name of a matrx

d

Press Enter to accept or Esc to cancel

Step 4: Once you see all matrix number, press ENTER

*Hungari..thm

70

60 50 60 [30]
[20]80 50 70

Minimal sum: 130

Step 5: Compare the result with manual calculation
Employee A B C D
Wendy 30 40 50 60
Xenefon 70 30 40 70
Yolanda 60 50 60 30
Zelda 20 80 50 70

« The minimum time taken to finish the
work=20+30+50+30=130 minutes.

