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7A: introduction to matrices
A matrix is an array of numerical values 
· Values are arranged into ROWS and COLUMNS
ROWS: are horizontal 
· Number rows from top to bottom
[image: Describing Matrices: Rows, Columns, Elements (video lessons, examples and  solutions)]COLUMNS: are vertical
· Number columns from left to right
ORDER OF A MATRIX: 
· Way to describe the dimensions (size) of a matrix
ORDER = ROWS × COLUMNS 
· × is ‘by’

Types of Matrices: 
	Column: only one column, any number of rows
	Row: only one row, any number of columns 
	Zero: every element is ‘0’. Can be any size
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Square matrices: have the same number of rows and columns. 
	Diagonal matrix: all values apart from the leading diagonal are zero
	[image: ]

	Identity matrix: diagonal matrix, where the leading diagonals elements are all ‘1’
	[image: A rectangular black and white rectangular object with numbers
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	Symmetric matrix: unchanged by transposition, the elements above the leading diagonal are a mirror image of the elements below
	[image: A purple rectangle with black numbers and a purple arrow
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	Upper triangular matrix: all elements below the leading diagonal are zero
	[image: A purple square with black numbers
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	Lower triangular matrix: all elements above the leading diagonal are zero
	[image: ]



Elements and notation:
· Matrices are labelled with a capital letter 
· The values within a matrix are called elements
· Elements are labelled with lowercase letters 
· For matrix A, element amn refers to the entry in the mth row and nth column 


	[image: A diagram of a number
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Eg. Element a21 = 3



xij – matrices can be constructed using element rules. 
Eg. Matrix C is a 2×2 matrix with the element rule 
[image: A number and plus symbols

Description automatically generated with medium confidence]cij = i+j. Create the matrix.

7B Operations with matrices
ADDITION AND SUBTRACTION: 
· Matrices must have the same order
· Add/subtract elements in the same position 

[image: A math equation with black text
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Description automatically generated with medium confidence]

SCALAR MULTIPLICATION:
· Multiply each element in the matrix by a scalar 
[image: A black and white image of a mathematical equation

Description automatically generated]

Transpose: swapping a matrices rows and columns. The transpose of matrix A is AT. First row becomes first columns, etc. 
[image: A math equation with black text

Description automatically generated with medium confidence]
7C: Advanced operations with matrices
MATRIX MULTIPLICATION: Involves both multiplication and addition
· Post multiplication: AB, matrix A is ‘post multiplied’ by matrix B
· Pre multiplication: AB, matrix B is ‘pre multiplied’ by matrix A





You must check that matrices can be multiplied first:
· Multiplication criteria: the number of columns in the first matrix MUST EQUAL the number of rows in the second matrix. 
· ‘defined’ = can be multiplied 
· ‘undefined’ = cant be multiplied 
[image: A math equations with numbers

Description automatically generated with medium confidence]
AB is defined, BA is not defined. 

Matrix product: the resulting matrix when two or more matrices are multiplied. The size of this matrix is determined by the outside numbers when writing the matrices orders. AB will produce a 2×1
[image: A math equations and numbers

Description automatically generated with medium confidence]
Multiplication by hand: multiply the rows of the first matrix by the columns of the second matrix.
[image: ]
Summing matrices: a row or column matrix where all elements are 1. 
· To sum the rows of an m×n matrix, post multiply by an n×1 summing matrix 
[image: A math equations with numbers and symbols

Description automatically generated]
· To sum the columns of an m×n matrix, pre multiply by a 1×m summing matrix 
[image: A number and number in a square

Description automatically generated with medium confidence]
Raising matrices to a power: only SQUARE matrices can be raised to a power. The power indicates how many times the matrix is multiplied by itself. 

7D: Inverse Matrices
The determinant: 
· Used to identify if an inverse exists 
· Must be a positive or negative number 
· If the determinant equals ZERO, there is no inverse and the matrix is said to be ‘singular’
Calculating the determinant (2x2 by hand): 
[image: ]
The inverse:
· Only square matrices have an inverse 
· Inverse means opposite
· Something multiplied by its inverse is equal to 1, in this case, the IDENTITY MATRIX 
· A-1 = the inverse of matrix A
· A × A-1 = I (identity matrix)
Calculating the inverse:
[image: A black text with a number
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· b and c multiply by -1 
· a and d swap positions
· Multiply by the scalar so that the answer is just the matrix
**if you are given the inverse of a matrix and need to find the original**
· Put the inverse to the power of -1 
· (A-1)-1 = A

7E: Binary and Permutation Matrices
[image: A close-up of a number

Description automatically generated]
Binary: only has 1’s and 0’s as its elements (any size)
Permutation matrix: a type of binary matrix that has only one 1 in each row and column. It is always square and is used to rearrange elements. 
· Column permutation: rearranges columns.
· Post multiply (Q × P)
· Row permutation: rearranges rows. 
· Pre multiply (P× Q)












7F: Communication and Dominance Matrices
Communication: square binary matrix 
· 1’s represent a direct line of communication 
· Communication goes both ways 
· C = one step (direct communication)
· C2 = two step (communication via someone else)
· C + C2 = TC (total communication, showing all one and two step links)
Dominance: 
· Used to display hierarchy 
· One-way connections 
· 1’s are used for ‘winners’, 0’s for ‘losers’
· D = one step 
· D2 = two step 
· D + D2 = TD (total dominance)
· Directed, arrows point to loser
Determining dominance when given the sum of one step and two step dominance:
· One step dominance tells you how many times they won
· Two step dominance tells you the total sum of the one step dominances 

7G: Introduction to transition matrices
State matrix Sn
· Column matrix 
· Population at a given time 
Initial state matrix
· Starting population 
· S0
Transition matrix
· Square matrix 
· Studies change over time 
· Elements are decimal numbers (0-1) that represent percentages
· Each column must sum to 1 
· Other language: ‘now/next’, ‘today/tomorrow’, ‘from/to’
[image: A white background with black text

Description automatically generated]

Calculating state matrices:
· Used to find the next state 
· Use recursion (step by step)
[image: ]
[image: A close up of words

Description automatically generated]

· Use the rule (find future values, n, faster)
[image: A black letter on a white background

Description automatically generated]

***Note: Finding a previous state: say you are given T and S4, how could you find a previous state? For example, if you need to find S3 take the inverse of T and multiply is by S4. 

7H: The Equilibrium matrix 
· ‘Steady state’
· ‘In the long term’ 
· Over time the populations settle to where there is no visible change 
· This is when two consecutive matrices are equal (2dp for accuracy)
· Consecutive means finding S17 and S18 to be the same 

7I: Applications of transition matrices 
Transition diagram: a visual representation of how a transition matrix functions. 
[image: A diagram of a diagram with text

Description automatically generated]
Culling and Restocking:
· Populations are subject to change over time
· Considers external forces affecting the population 
[image: A black and white text

Description automatically generated]

Culling: reduction/removed, negative number in matrix B
Restocking: addition, positive number in matrix B
Keeping a population constant: all future state matrices are equal to the initial. This can be determined by calculating S0 – S1
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CAS reference sheet: Matrices 
	7.1 Enter a Matrix 
	1. Ctrl N > 1 > [image: ] [image: ] ↵
2. OR Ctrl N > 1 > Ctrl > Menu > 8 ↵
[image: A screenshot of a computer

AI-generated content may be incorrect.]
3. Select No. of rows & columns ↵
4. Type each element, using [tab] to move. 

	7.2 Define a Matrix  
	1. Name of the matrix > ctrl > [image: ] [image: ] > enter full matrix ↵ 
[image: A white background with black and white clouds

AI-generated content may be incorrect.]
2. OR Enter full matrix > [image: A close up of a logo

AI-generated content may be incorrect.] > name of the matrix↵
[image: A white background with black dots

AI-generated content may be incorrect.]

	7.3 Transpose Matrix   
	1. Name of the matrix > Menu > 7> 2↵
[image: A white background with black and white clouds

AI-generated content may be incorrect.]

	7.4 Determinant    
	       1.    Menu > 7 > 3> name of the matrix↵
[image: ]

	7.5 Inverse 
	1. Name of the matrix > Ʌ > Negation key (-) > 1 ↵
[image: A white background with a black and white flag

AI-generated content may be incorrect.]
2. Decimal → fraction
[image: A white background with black text

AI-generated content may be incorrect.]

	7.6 Forming matrix by i, j rule
	      1. Menu > 7 > 1 >A > ij rule, i, j, row size, column size ↵ 
[image: A close up of a number

AI-generated content may be incorrect.]
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