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Abstract 

    The aim of this study is to shed light on the system of  Ordinary 

Differential Equations and their solutions and the stability of these solutions 

and to present some definitions related to them and to provide some 

examples supported by practical examples . 
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Introduction 

We begin by reviewing the theory concerning the stability of 

solutions of differential equation system. This review will begin with study 

of systems of ordinary differential equations (ODEs), furnishing the relevant 

stability definitions and the extensive Lyapunov stability theory that is often 

of use in this area. 

 It is well-known that the solutions of ordinary differential equations 

and its systems occur in certain domain. These solutions may not be stable, 

that is to say it extends outside the domains. But mostly the solutions are 

stable under specific conditions. 

 In this research, we will take a study of stability of solutions of the 

system of ordinary differential equations using the elementary principles 

and Lyapunov theory. 

In this study we will discuss the following chapters: 

Chapter 1: Main concepts. 

 It contains some definitions and introduction to ordinary differential 

equations and their systems and some solutions to them. 

Chapter 2: Stability Solutions for systems of differential equations. 

 We will address the concept of stability and examine stability and 

instability in general and will focus on some important concepts. 
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Chapter 3: Stability of Zero solution. 

 We will discuss the stability at a fixed point and examine some types 

of stationary points and the stability of the zero solution. 

Chapter 4: Stability in the sense of Lyapunov. 

 We will present the definitions of stability as defined by Lyapunov 

and examine some of the theories of stability of his view. 

. 



 

 

Chapter 1  

Main Concepts 

 1.1 Definitions 

 1.2 System of Differential Equation 
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Main Concepts 

 This chapter contains some concepts of ordinary differential 

equation and systems. 

 The material in this chapter are taken from the following references 

[2],[4],[9],[10] and [11].  

1.1 Definitions 

Definition 1.1.1 (Differential Equation) 

 A differential equation is an equation containing one or more 

derivatives of a single unknown function. 

    For a function of one variable, in symbols, a differential equation has the 

form: 

𝑓(𝑥) = 𝑝(𝑥, 𝑦, 𝑦′, … , 𝑦(𝑛)), 

where 𝑝 is any function of indicated inputs 𝑦 the solution of the differential 

equation, is a function of 𝑥 and 𝑓 is any function of 𝑥. 

 Differential equations involving derivatives of a function of one 

variable are called Ordinary Differential Equations, often abbreviated to 

ODE, some examples of an ODEs are: 

𝑥3𝑦′′
+ 𝑥𝑦′ + (𝑥2 − 𝑣2)𝑦 = 0, 𝑣 ∈ [0, ∞), (𝐵𝑒𝑠𝑠𝑒𝑙 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑜𝑟𝑑𝑒𝑟 𝑣) 

𝑦′ + 𝑦 = 𝑥2, 

𝑦(4) + 3𝑥𝑦′′′ + 16 cos(𝑥) 𝑦′′ + 𝑒𝑥𝑦′ + 3𝑦 = 4, 
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 Notice that there is one restriction on the number of independent 

variable that the unknown function may have for example the equation: 

𝜕𝑢

𝜕𝑥
+

𝜕2𝑢

𝜕𝑦2
= 0, 

where 𝑢 is a function of 𝑥 and 𝑦 is a perfectly valid differential equation. 

This type of differential equation is known as a Partial Differential Equation, 

often abbreviated to PDE, some popular PDEs are: 

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
= 0, (𝐿𝑎𝑝𝑙𝑎𝑐𝑐𝑒 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛) 

𝑎2
𝜕2𝑢

𝜕𝑥2
=

𝜕𝑢

𝜕𝑡
 , (𝐻𝑒𝑎𝑡 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛) 

𝑎2
𝜕2𝑢

𝜕𝑥2
=

𝜕2𝑢

𝜕𝑡2
 , (𝑊𝑎𝑣𝑒 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛) 

Definition 1.1.2 (Trivial/Nontrivial Solution) 

 The trivial solution to a differential equation: 

𝑓(𝑥) = 𝑝(𝑥, 𝑦, 𝑦′, 𝑦′′, … , 𝑦(𝑛)), 

is the solution  𝑦 = 0 for all 𝑥. 

 Any other type of solution is called nontrivial. 

Definition 1.1.3 (General Solution) 

 The general solution to the differential equation:  

𝑓(𝑥) = 𝑝(𝑥, 𝑦, 𝑦′, 𝑦′′, … , 𝑦(𝑛)) is a solution of the from: 
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𝑦 = 𝑦(𝑥, 𝑐1, 𝑐2, … , 𝑐𝑛) 

where 𝑐1, 𝑐2, … , 𝑐𝑛 are taken to be arbitrary constants. 

Definition 1.1.4 (Order of Differential Equation) 

 The order of a differential equation is the order of the highest 

derivative involved in the differential equation. 

Definition 1.1.5 (Linear Differential Equation) 

 An 𝑛𝑡ℎ order differential equation is said to be linear if it is of the 

form: 

𝑎𝑛(𝑥)𝑦(𝑛) + 𝑎𝑛−1(𝑥)𝑦(𝑛−1) + ⋯ + 𝑎1(𝑥)𝑦′ + 𝑎0(𝑥)𝑦 = 𝑓(𝑥) 

where 𝑎𝑖(𝑥), 0 ≤ 𝑖 ≤ 𝑛 and 𝑓(𝑥) are given functions of the independent 

variable 𝑥 and it is assumed that 𝑎𝑛(𝑥) ≠ 0. 

Otherwise it is said to be nonlinear. 

1.2 System of Differential Equations 

Introduction: 

 A simple problem of the dynamics of a particle can lead to systems of 

differential equation given forces acting on a particle, find the law of 

motion, i.e. find the functions 𝑥 = 𝑥(𝑡), 𝑦 = 𝑦(𝑡) and 𝑧 = 𝑧(𝑡) which 

express the relationship between the coordinates of the moving particle 

and time. The system of equations which results has the form: 
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𝑑2𝑥

𝑑𝑡2
= 𝑓 (𝑡, 𝑥, 𝑦, 𝑧,

𝑑𝑥

𝑑𝑡
,
𝑑𝑦

𝑑𝑡
,
𝑑𝑧

𝑑𝑡
)

𝑑2𝑦

𝑑𝑡2
= 𝑔 (𝑡, 𝑥, 𝑦, 𝑧,

𝑑𝑥

𝑑𝑡
,
𝑑𝑦

𝑑𝑡
,
𝑑𝑧

𝑑𝑡
)

𝑑2𝑧

𝑑𝑡2
= ℎ (𝑡, 𝑥, 𝑦, 𝑧,

𝑑𝑥

𝑑𝑡
,
𝑑𝑦

𝑑𝑡
,
𝑑𝑧

𝑑𝑡
)

 ,                             (1.1) 

Here 𝑥, 𝑦 and 𝑧 are the coordinates of the moving particle, 𝑡 is time, 𝑓, 𝑔 

and ℎ are known functions of their arguments. 

 A system of form (1.1) is known as a canonical system of differential 

equations. 

Definition 1.2.1 

 System of equations of the first order solved for the derivatives of 

the required functions: 

                    𝑥′𝑖 = 𝑓𝑖(𝑡, 𝑥1, 𝑥2, … , 𝑥𝑛),      𝑖 = 1,2, … , 𝑛,                      (1.2) 

 are called normal system. 

Definition 1.2.2 

 The solution of the normal system (1.2) on the interval (𝑎, 𝑏) of 

variation of the argument 𝑡 is any system of 𝑛 functions: 

                𝑥1 = 𝑥1(𝑡), 𝑥2 = 𝑥2(𝑡), … , 𝑥𝑛 = 𝑥𝑛(𝑡),                          (1.3) 

Differentiable on the interval 𝑎 < 𝑡 < 𝑏 which turns the equations of 

system (1.2) into identities with respect to 𝑡 on the interval (𝑎, 𝑏). 

 For system (1.2) Cauchy’s problem is formulated as follows: 
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Find a solution (1.3) of the system which satisfies, for 𝑡 = 𝑡0 the initial 

conditions: 

              𝑥1|𝑡=𝑡0
= 𝑥1

0, 𝑥2|𝑡=𝑡0
= 𝑥2

0, … , 𝑥𝑛|𝑡=𝑡0
= 𝑥𝑛

0,                  (1.4) 

Theorem 1.2.1(The Uniqueness and Existence of the Solution of Cauchy’s 

Problem) 

 Given a normal system of differential equations: 

𝑑𝑥𝑖

𝑑𝑡
= 𝑓𝑖(𝑡, 𝑥1, 𝑥2, … , 𝑥𝑛),    𝑖 = 1,2, … , 𝑛,    

 Assume that the functions: 

𝑓𝑖(𝑡, 𝑥1, 𝑥2, … , 𝑥𝑛),    𝑖 = 1,2, … , 𝑛, 

are defined in a certain 𝑛–dimensional domain 𝐷 of variation of the 

variables 𝑡, 𝑥1, 𝑥2, … , 𝑥𝑛. 

If there is a neighborhood Ω of the point 𝑀0(𝑡0, 𝑥1
0, 𝑥2

0, … , 𝑥𝑛
0) at which the 

functions 𝑓𝑖 are continuous jointly with respect to the arguments and 

passes bounded partial derivatives with respect to the variables 

𝑥1, 𝑥2, … , 𝑥𝑛, then there is an interval 𝑡0 − ℎ0 < 𝑡 < 𝑡0 + ℎ0 of variation of 

𝑡 on which there is the unique solution (1.3) of the normal system satisfying 

the initial conditions (1.4). 

Theorem 1.2.2 (Picard’s Theorem) 

 Suppose that 𝑓(. , . ) is a continuous function of its argumeats in a 

region 𝑢 of the (𝑥, 𝑦) plane which contains the rectangle: 
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𝑅 = {(𝑥, 𝑦): 𝑥0 < 𝑥 < 𝑋𝑚 , |𝑦 − 𝑦0| ≤ 𝑌𝑚}, 

where 𝑋𝑚 > 𝑥0 and 𝑌𝑚 > 0 are constants. 

 Suppose also that there exists a positive constant 𝐿 such that; 

|𝑓(𝑥, 𝑦) − 𝑓(𝑥, 𝑧)| ≤ 𝐿|𝑦 − 𝑧|, 

holds whenever (𝑥, 𝑦) and (𝑥, 𝑧) lie in the rectangle 𝑅. 

Finally, letting: 

𝑀 = max{|𝑓(𝑥, 𝑦): (𝑥, 𝑦) ∈ 𝑅}, 

Suppose that: 

𝑀(𝑋𝑚 − 𝑥0) ≤ 𝑌𝑚, 

Then, there exists a unique continuously differentiable function 𝑥 → 𝑦(𝑥) 

defined on the closed interval [𝑥0, 𝑋𝑚] which satisfies 𝑦′ = 𝑓(𝑥, 𝑦) and 

𝑦(𝑥0) = 𝑦0. 

 The condition 

|𝑓(𝑥, 𝑦) − 𝑓(𝑥, 𝑧)| ≤ 𝐿|𝑦 − 𝑧|, 

is called a Lipchitz condition and 𝐿 is the Lipchitz constant for 𝑓. 

Definition  1.2.3 

 A system of 𝑛 functions: 

                                      𝑥𝑖 = 𝑥𝑖(𝑡, 𝑐1, 𝑐2, … , 𝑐𝑛),   𝑖 = 1,2, … , 𝑛,                    (1.5) 
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which depend on 𝑡 and 𝑛 arbitrary constants 𝑐1, 𝑐2, … , 𝑐𝑛 is called the 

general solution of the normal systems of equations (1.2) in a domain Ω of 

the existence and uniqueness of the solution of Cauchy’s problem if: 

1. For any permissible values of 𝑐1, 𝑐2, … , 𝑐𝑛 the system of function (1.5) 

turns equations (1.2) into identities. 

2. In the domain Ω functions (1.5) solve any Cauchy problem. 

The solutions which result from the general solution for specific values of 

the constants 𝑐1, 𝑐2, … , 𝑐𝑛 are known as particular solution. 

Definition 1.2.4 (System of Linear Differential Equations) 

A system of differential equations is said to be Linear if it is linear with 

respect to the unknown functions and their derivatives entering into the 

equations. A system of 𝑛 Linear equations of the first order written in 

normal form can be written as: 

                       
𝑑𝑥𝑖

𝑑𝑡
= ∑ 𝑎𝑖𝑗(𝑡)𝑥𝑗 + 𝑓𝑖(𝑡),

𝑛

𝑖=1

    𝑖, 𝑗 = 1,2, … , 𝑛,                 (1.6) 

and in matrix form as: 

                                        
𝑑𝑥

𝑑𝑡
= 𝐴𝑋 + 𝐹,                                                  (1.7) 

where: 

𝑋 = (

𝑥1(𝑡)
𝑥2(𝑡)

⋮
𝑥𝑛(𝑡)

) ,       𝐹 = (

𝑓1(𝑡)
𝑓2(𝑡)

⋮
𝑓𝑛(𝑡)

), 



Stability solutions for systems of differential equations                                                                    chapter   2  

 

11 

 

𝐴 = (

𝑎11(𝑡) 𝑎12(𝑡) ⋯ 𝑎1𝑛(𝑡)

𝑎21(𝑡) 𝑎22(𝑡) … 𝑎2𝑛(𝑡)
⋯

𝑎𝑛1(𝑡)

… …
𝑎𝑛2(𝑡) …

…
𝑎𝑛𝑛(𝑡)

), 

Theorem 1.2.3 

If all the functions 𝑎𝑖𝑗(𝑡) and 𝑓𝑖(𝑡), 𝑖, 𝑗 = 1,2, … , 𝑛 are continuous on the 

interval 𝑎 ≤ 𝑡 ≤ 𝑏, then in a sufficiently small neighborhood of every point 

𝑀0(𝑡0, 𝑥1
0, 𝑥2

0, … , 𝑥𝑛
0), where 𝑡0 ∈ (𝑎, 𝑏), the conditions of the theorem on 

the unique existence of the solution of Cauchy’s problem are fulfilled and 

consequently, a single integral curve of system (1.6) passes through every 

such point. 

Indeed, in such a case the right-hand sides of system of equations (1.6) are 

continuous jointly with respect to the arguments 𝑡, 𝑥1, 𝑥2, … , 𝑥𝑛 and their 

partial derivatives with respect to 𝑥𝑗 , 𝑗 = 1,2, … , 𝑛 and bounded since they 

are equal to the coefficients 𝑎𝑖𝑗(𝑡) continuous on the interval [𝑎, 𝑏] we 

introduce a Linear operator  𝐿 =
𝑑

𝑑𝑡
− 𝐴. 

Then we can use a brief notation: 

                                             𝐿[𝑋] = 𝐹,                                                      (1.8) 

for system (1.7), if the matrix 𝐹 is zero, i.e. 𝑓𝑖(𝑡) ≡ 0, 𝑖 = 1,2, … , 𝑛 on the 

interval (𝑎, 𝑏), then system (1.6) is said to be homogeneous Linear and has 

the form: 

                                        𝐿[𝑋] = 0,                                                     (1.9) 
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Theorem 1.2.4 

 If 𝑋(𝑡) is a solution of homogeneous Linear system 𝐿[𝑋] = 0, then 

𝑐𝑋(𝑡) is a solution of that system where 𝑐 is an arbitrary constant. 

Theorem 1.2.5 

 The sum 𝑋1(𝑡) + 𝑋2(𝑡) of two solutions 𝑋1(𝑡) and 𝑋2(𝑡) of a 

homogeneous linear system of equations is a solution of that system. 

Corollary 1.2.1 

 A Linear combination ∑ 𝑐𝑖𝑋𝑖(𝑡)𝑚
𝑖=1  with arbitrary constant 

coefficients 𝑐𝑖 of the solutions 𝑋1(𝑡), … , 𝑋𝑚(𝑡) of a homogeneous linear 

system of differential equations 𝐿[𝑋] = 0, is a solution of that system. 

Theorem 1.2.6 

 If �̃�(𝑡) is a solution of an inhomogeneous Linear system 𝐿[𝑋] = 𝐹 

and 𝑋0(𝑡) is a solution of the corresponding homogeneous system 𝐿[𝑋] =

0, then the sum �̃�(𝑡) + 𝑋0(𝑡) is a solution of the inhomogeneous system 

𝐿[𝑋] = 𝐹. 

 Indeed, by the hypothesis, 𝐿[�̃�] = 𝐹 and 𝐿[𝑋0] = 0. Using the 

property of additivity of the operator 𝐿, we get; 

𝐿[�̃� + 𝑋0] = 𝐿[�̃�] + 𝐿[𝑋0] = 𝐹, 

This means that the sum �̃� + 𝑋0 is a solution of the inhomogeneous system 

of equations 𝐿[𝑋] = 𝐹. 
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Definition 1.2.5 

 The vectors 𝑋1(𝑡), 𝑋2(𝑡), … , 𝑋𝑛(𝑡) where: 

𝑋𝑘(𝑡) = (

𝑋1𝑘(𝑡)
𝑋2𝑘(𝑡)

⋮
𝑋𝑛𝑘(𝑡)

), 

are said to be linearly dependent on the interval 𝑎 < 𝑡 < 𝑏 if there are 

constant numbers 𝛼1, 𝛼2, … , 𝛼𝑛 such that: 

                       𝛼1𝑋1(𝑡) + 𝛼2𝑋2(𝑡) + ⋯ + 𝛼𝑛𝑋𝑛(𝑡) = 0,                           (1.10) 

for 𝑡 ∈ (𝑎, 𝑏) and at least one of numbers 𝛼𝑖 is nonzero. If identity (1.10) is 

valid only for 𝛼1 = 𝛼2 = ⋯ = 𝛼𝑛 = 0, then the vectors 

𝑋1(𝑡), 𝑋2(𝑡), … , 𝑋𝑛(𝑡) are said to be Linearly independent on (𝑎, 𝑏). 

Definition 1.2.6 

 One vector identity (1.10) is equivalent to 𝑛 identities; 

∑ 𝛼𝑘𝑋1𝑘(𝑡)

𝑛

𝑘=1

= 0, 

∑ 𝛼𝑘𝑋2𝑘(𝑡)

𝑛

𝑘=1

= 0, 

⋯ 

∑ 𝛼𝑘𝑋𝑛𝑘(𝑡)

𝑛

𝑘=1

= 0, 
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The determinant: 

𝑊(𝑡) = |

𝑥11(𝑡) 𝑥12(𝑡) ⋯ 𝑥1𝑛(𝑡)

𝑥21(𝑡) 𝑥22(𝑡) … 𝑥2𝑛(𝑡)
⋯

𝑥𝑛1(𝑡)

… …
𝑥𝑛2(𝑡) …

…
𝑥𝑛𝑛(𝑡)

|, 

is known as the wronskian of the system of vectors 𝑋1(𝑡), 𝑋2(𝑡), … , 𝑋𝑛(𝑡). 

Definition 1.2.7 

 Given a homogeneous linear system: 

                                                       
𝑑𝑋

𝑑𝑡
= 𝐴(𝑡)𝑋,                                              (1.11) 

where 𝐴(𝑡) is an 𝑛 × 𝑚 matrix with elements 𝑎𝑖𝑗(𝑡). 

 A system of 𝑛 solutions 𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥𝑛(𝑡) of homogeneous Linear 

system (1.11) which are Linearly independent on the interval 𝑎 < 𝑡 < 𝑏 is 

said to be fundamental. 

Theorem 1.2.7 

 The wronskian 𝑤(𝑡) of the system of solutions, fundamental on the 

interval 𝑎 < 𝑡 < 𝑏, of the homogeneous Linear system (1.11) with 

coefficients 𝑎𝑖𝑗(𝑡) continuos on the interval 𝑎 ≤ 𝑡 ≤ 𝑏 is nonzero at all 

points of the interval (𝑎, 𝑏). 
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Theorem 1.2.8 (The Structure of the General Solution of a 

Homogeneous Linear System) 

 The general solution in the domain 𝑎 < 𝑡 < 𝑏, |𝑥𝑘| < +∞, 𝑘 =

1,2, … , 𝑛 of the homogeneous Linear system 
𝑑𝑋

𝑑𝑡
= 𝐴(𝑡)𝑋 with coefficients 

𝑎𝑖𝑗(𝑡) continuous on the interval 𝑎 ≤ 𝑡 ≤ 𝑏, is a Linear combination of 𝑛 

solutions 𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥𝑛(𝑡) of system (1.11) Linearly independent on 

the interval 𝑎 < 𝑡 < 𝑏: 

𝑋𝑔.ℎ = ∑ 𝑐𝑖𝑋𝑖(𝑡),

𝑛

𝑖=1

 

where 𝑐1, 𝑐2, … , 𝑐𝑛 are arbitrary constant numbers. 

(𝑋𝑔.ℎ is the general solution of the homogeneous linear system). 

Definition 1.2.8 

 The square matrix: 

𝑋(𝑡) = |

𝑥11(𝑡) 𝑥12(𝑡) ⋯ 𝑥1𝑛(𝑡)

𝑥21(𝑡) 𝑥22(𝑡) … 𝑥2𝑛(𝑡)
⋯

𝑥𝑛1(𝑡)

… …
𝑥𝑛2(𝑡) …

…
𝑥𝑛𝑛(𝑡)

|, 

whose columns are Linearly independent solutions 𝑋1(𝑡), 𝑋2(𝑡), … , 𝑋𝑛(𝑡) 

of system (1.11) is known as a fundamental matrix of the system, it is easy 

to verify that the fundamental matrix satisfies the matrix equation: 
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𝑑𝑋

𝑑𝑡
= 𝐴(𝑡)𝑋(𝑡), 

 If 𝑋(𝑡) is the fundamental matrix of system (1.11) then the general 

solution of the system can be represented as; 

                                                  𝑋(𝑡) = 𝑥(𝑡)𝑐,                                            (1.12) 

where: 

𝑐 = (

𝑐1
𝑐2

⋮
𝑐𝑛

), 

is a constant column-matrix with arbitrary elements setting  

𝑡 = 𝑡0 in (1.12) we obtain: 

𝑋(𝑡0) = 𝑥(𝑡0)𝑐 ,   𝑤ℎ𝑒𝑟𝑒  𝑐 = 𝑥−1(𝑡0)𝑋(𝑡0), 

Consequently,  

𝑋(𝑡) = 𝑥(𝑡)𝑥−1(𝑡0)𝑋(𝑡0), 

the matrix 𝑥(𝑡)𝑥−1(𝑡0) = 𝑘(𝑡, 𝑡0) is known as Cauchy’s matrix. Using it, we 

can represent the solution of system (1.12) as: 

                                              𝑋(𝑡) = 𝑘(𝑡, 𝑡0)𝑋(𝑡0),                                 (1.13) 

Theorem 1.2.9 (The Structure of the General Solution of an 

inhomogeneous Linear System of Differential Equations) 

The general solution in the domain 𝑎 < 𝑡 < 𝑏, |𝑥𝑘| < +∞, 𝑘 = 1,2, … , 𝑛 of 

the inhomogeneous linear system of differential equation: 
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𝑑𝑋

𝑑𝑡
= 𝐴(𝑡)𝑋 + 𝐹(𝑡), 

with coefficients 𝑎𝑖𝑗(𝑡), continuous on the interval 𝑎 ≤ 𝑡 ≤ 𝑏 and the right-

hand sides 𝑓𝑖(𝑡) is equal to the sum of the general solution ∑ 𝑐𝑘𝑋𝑘(𝑡)𝑛
𝑖=1  of 

the corresponding homogeneous system and some particular solution �̃�(𝑡) 

of the inhomogeneous system 
𝑑𝑋

𝑑𝑡
= 𝐴(𝑡)𝑋 + 𝐹(𝑡): 

𝑋𝑔.𝑖𝑛ℎ = 𝑋𝑔.ℎ + 𝑋𝑝.𝑖𝑛ℎ 

(𝑋𝑔.𝑖𝑛ℎ is the general solution of the inhomogeneous system). 

Definition 1.2.9 (System of Linear Differential Equations with Constant 

Coefficlents)  

 Let us consider a linear system of differential equations; 

𝑑𝑥𝑖

𝑑𝑡
= ∑ 𝑎𝑖𝑗𝑥𝑗 + 𝑓𝑖(𝑡)

𝑛

𝑗=1

, 𝑖 = 1,2, … , 𝑛, 

in which all the coefficients 𝑎𝑖𝑗  (𝑖, 𝑗 = 1,2, … , 𝑛) are constant. 

It is easier to integrate such a system by reducing it to one equation of a 

higher order when the latter equation is also linear with constant 

coefficients. Laplace’s method of transformation is another method of 

integrating systems with constant coefficients. 

 We seek a solution of the system: 
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𝑑𝑥1

𝑑𝑡
= 𝑎11𝑥1 + 𝑎12𝑥2 + ⋯ + 𝑎1𝑛𝑥𝑛,

𝑑𝑥2

𝑑𝑡
= 𝑎21𝑥1 + 𝑎22𝑥2 + ⋯ + 𝑎2𝑛𝑥𝑛

⋮
𝑑𝑥𝑛

𝑑𝑡
= 𝑎𝑛1𝑥1 + 𝑎𝑛2𝑥2 + ⋯ + 𝑎𝑛𝑛𝑥𝑛

,                          (1.14) 

in the form: 

                          𝑥1 = 𝛼1𝑒𝜆𝑡 , 𝑥2 = 𝛼2𝑒𝜆𝑡 , … , 𝑥𝑛 = 𝛼𝑛𝑒𝜆𝑡 ,                    (1.15) 

where 𝜆, 𝑎1, 𝑎2, … , 𝛼𝑛 are constants. Substituting 𝑥𝑘 in the form (1.14) into 

(1.15) cancelling by 𝑒𝜆𝑡 and transferring all the terms into the same side of 

the equation we get a system: 

                             

(𝑎11 − 𝜆)𝛼1 + 𝑎12𝛼2 + ⋯ + 𝑎1𝑛𝛼𝑛 = 0
𝑎21𝛼1 + (𝑎22 − 𝜆)𝛼2 + ⋯ + 𝑎2𝑛𝛼𝑛 = 0

⋮
𝑎𝑛1𝛼1 + 𝑎𝑛2𝛼2 + ⋯ + (𝑎𝑛𝑛 − 𝜆)𝛼𝑛 = 0

,                          (1.16) 

for the system (1.16) of homogeneous linear algebraic equations in 𝑛 

unknowns 𝛼1, 𝛼2, … , 𝛼𝑛 to have a nontrivial solution, it is necessary and 

sufficient that its determinant be equal to zero: 

                              |

𝑎11 − 𝜆 𝑎12
… 𝑎1𝑛         

𝑎21 𝑎22 − 𝜆 … 𝑎2𝑛         

⋮
𝑎𝑛1

⋮
𝑎𝑛2

⋮
… 𝑎𝑛𝑛 − 𝜆

| = 0,                  (1.17) 

Equation (1.17) is characteristic. Its left-hand side includes a polynomial 

with respect to 𝜆 of degree 𝑛. From this equation we find the values of 𝜆 

for which system (1.16) has nontrivial solutions 𝛼1, 𝛼2, … , 𝛼𝑛 if all 𝜆𝑖 , 𝑖 =

1,2, … , 𝑛 of the characteristic equation (1.17) are distinct, then successively 
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substituting them into system (1.16) we find the corresponding nontrivial 

solutions 𝛼1𝑖 , 𝛼2𝑖 , … , 𝛼𝑛𝑖 , 𝑖 = 1,2, … , 𝑛 of the system, and, consequently, 

find 𝑛 solutions of the initial system of differential equations (1.14) in the 

form: 

  𝑥1𝑖 = 𝛼1𝑖𝑒𝜆𝑖𝑡 , 𝑥2𝑖 = 𝛼2𝑖𝑒𝜆𝑖𝑡 , … , 𝑥𝑛𝑖 = 𝛼𝑛𝑖𝑒𝜆𝑖𝑡 , 𝑖 = 1,2, … , 𝑛      (1.18) 

where the second index indicates the number of a solution and the first 

index indicates the number of unknown functions. Then particular solutions 

of the homogeneous linear system (1.14) : 

𝑋1(𝑡) = (

𝑥11(𝑡)
𝑥21(𝑡)

⋮
𝑥𝑛1(𝑡)

) , 𝑋2(𝑡) = (

𝑥12(𝑡)
𝑥22(𝑡)

⋮
𝑥𝑛2(𝑡)

) , … , 𝑋𝑛(𝑡) = (

𝑥1𝑛(𝑡)
𝑥2𝑛(𝑡)

⋮
𝑥𝑛𝑛(𝑡)

),     (1.19) 

constructed in this way form as is easy to verify a fundamental system of 

solutions of the system consequently, the general solution of the 

homogeneous system of differential equation (1.14) has the form: 

𝑋(𝑡) = 𝑐1𝑋1(𝑡) + 𝑐2𝑋2(𝑡) + ⋯ + 𝑐𝑛𝑋𝑛(𝑡), 

or the form: 

𝑥1(𝑡) = 𝑐1𝑥11(𝑡) + 𝑐2𝑥12(𝑡) + ⋯ + 𝑐𝑛𝑥1𝑛(𝑡), 

𝑥2(𝑡) = 𝑐1𝑥21(𝑡) + 𝑐2𝑥22(𝑡) + ⋯ + 𝑐𝑛𝑥2𝑛(𝑡), 

… 

𝑥𝑛(𝑡) = 𝑐1𝑥𝑛1(𝑡) + 𝑐2𝑥𝑛2(𝑡) + ⋯ + 𝑐𝑛𝑥𝑛𝑛(𝑡), 

where 𝑐1, 𝑐2, … , 𝑐𝑛 are arbitrary constants. 
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Stability Solutions for Systems of Differential Equations 

 This chapter discusses the concept of stability and contains 

definitions of stability solutions of systems of differential equations, also 

discusses stability for linear systems and stability in the first approximation. 

 The materials in this chapter are taken from the following references 

[1], [3] and [8]. 

2.1 Concept of Stability 

 Let the following system of differential equations be given: 

                           
𝑑𝑥𝑖

𝑑𝑡
= 𝑓𝑖(𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛, 𝑡),    𝑖 = 1,2, … , 𝑛                     (2.1) 

A solution 𝜑𝑖(𝑡), 𝑖 = 1,2, … , 𝑛 of system (2.1) satisfying the initial 

conditions 𝜑𝑖(𝑡0) = 𝜑𝑖0
  𝑖 = 1,2, … , 𝑛 is said to be a Lyapunov stable 

solution as 𝑡 → ∞ if for any 휀 > 0 there exists 𝛿(휀) > 0, such that for each 

solution 𝑥𝑖(𝑡), 𝑖 = 1,2, … , 𝑛 of system (2.1) whose initial values satisfy the 

conditions: 

                                      |𝑥𝑖(𝑡0) − 𝜑𝑖| < 𝛿, 𝑖 = 1,2, … , 𝑛                       (2.2) 

the inequalities: 

                                     |𝑥𝑖(𝑡) − 𝜑𝑖(𝑡)| < 휀, 𝑖 = 1,2, … , 𝑛                       (2.3) 

hold for all 𝑡 ≥ 𝑡0. 
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If for all arbitrarily small 𝛿 > 0 inequalities (2.3) fail to hold for at least one 

solution 𝑥𝑖(𝑡), 𝑖 = 1,2, … , 𝑛 then the solution 𝜑𝑖(𝑡) is said to be unstable. 

 If under condition (2.2) besides inequalities (2.3) the condition; 

                            lim
𝑡→∞

|𝑥𝑖(𝑡) − 𝜑𝑖(𝑡)| = 0 , 𝑖 = 1,2, … , 𝑛                      (2.4) 

also holds the solution 𝜑𝑖(𝑡), 𝑖 = 1,2, … , 𝑛 is said be asymptotically stable. 

 Investigating a solution 𝜑𝑖(𝑡), 𝑖 = 1,2, … , 𝑛 of system (2.1) for 

stability can be reduced to investigating for stability the zero (trivial) 

solution 𝑥𝑖 ≡ 0, 𝑖 = 1,2, … , 𝑛 of some system similar to system (2.1) : 

𝑑𝑥𝑖

𝑑𝑡
= 𝐹𝑖(𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛, 𝑡),    𝑖 = 1,2, … , 𝑛 

where, 

𝐹𝑖(0,0, … ,0, 𝑡) ≡ 0, 𝑖 = 1,2, … , 𝑛 

 A point 𝑥𝑖 = 0, 𝑖 = 1,2, … , 𝑛 is said to be a stationary point of 

system (2.1). 

 As applied to the stationary point the definitions of stability and 

instability can be formulated as follows. A stationary point                          

𝑥𝑖 = 0, 𝑖 = 1,2, … , 𝑛 is stable according to Lyapunov if whatever 휀 > 0 

there exists 𝛿 > 0 such that for any solution 𝑥𝑖(𝑡), 𝑖 = 1,2, … , 𝑛 whose 

initial date 𝑥𝑖0
= 𝑥𝑖(𝑡0), 𝑖 = 1,2, … , 𝑛 satisfy the condition: 

                                          |𝑥𝑖0
| < 𝛿, 𝑖 = 1,2, … , 𝑛                                    (2.5) 

the inequalities: 
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                                       |𝑥𝑖(𝑡)| < 휀, 𝑖 = 1,2, … , 𝑛                                    (2.6) 

hold for all 𝑡 ≥ 𝑡0. 

 

Figure 2.1( Concept of Stability) 

 Geometrically, for the case 𝑛 = 2 this implies the following. However 

small a cylinder of radius 휀 with the 𝑂𝑡 axis may be there is a                          

𝛿–neighbourhood of the point (0,0, 𝑡0) in the plane 𝑡 = 𝑡0 such that all in 

integral curves: 

𝑥1 = 𝑥1(𝑡), 𝑥2 = 𝑥2(𝑡), 

emanating from that neighbourhood will remain inside the cylinder for all 

𝑡 ≥ 𝑡0 (fig. 1). 
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 If besides inequalities (2.3) the condition: 

lim
𝑡→+∞

|𝑥𝑖(𝑡)| = 0, 𝑖 = 1,2, … , 𝑛 

also holds, then the stability is asymptotic. 

 A stationary point 𝑥𝑖 = 0, 𝑖 = 1,2, … , 𝑛 is unstable if for an 

arbitrarily small 𝛿 > 0 condition (2.6) does not hold for at least one 

solution 𝑥𝑖(𝑡), 𝑖 = 1,2, … , 𝑛. 

Examples 2.1.1 

Example 1: 

 Proceeding from the definition of Lyapunov stability investigates for 

stability the solution of the equation: 

𝑑𝑥

𝑑𝑡
= 1 + 𝑡 − 𝑥, 

satisfying the initial condition 𝑥(0) = 0. 

Solution: 

 The equation  

𝑑𝑥

𝑑𝑡
= 1 + 𝑡 − 𝑥, 

is a non-homogeneous Linear equation. Its general solution is: 

𝑥(𝑡) = 𝑐𝑒−𝑡 + 𝑡, 
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The initial condition 𝑥(0) = 0 satisfied by the solution 𝜑(𝑡) = 𝑡 of 

equation: 

𝑑𝑥

𝑑𝑡
= 1 + 𝑡 − 𝑥, 

The initial condition 𝑥(0) = 𝑥0 satisfied by the solution: 

𝑥(𝑡) = 𝑥0𝑒−𝑡 + 𝑡, 

we consider the difference of solution 𝑥(𝑡) = 𝑥0𝑒−𝑡 + 𝑡, and 𝜑(𝑡) = 𝑡 of 

equation: 

𝑑𝑥

𝑑𝑡
= 1 + 𝑡 − 𝑥, 

and write it as: 

𝑥(𝑡) − 𝜑(𝑡) = 𝑥0𝑒−𝑡 + 𝑡 − 𝑡 = (𝑥0 − 0)𝑒−𝑡 , 

 Hence it is seen that for any 휀 > 0 there exists 𝛿 > 0 (for example 

𝛿 = 휀), such that for any solution 𝑥(𝑡) of equation 

𝑑𝑥

𝑑𝑡
= 1 + 𝑡 − 𝑥, 

whose initial values satisfy the condition |𝑥0 − 0| < 𝛿 the inequality: 

|𝑥(𝑡) − 𝜑(𝑡)| = |𝑥0 − 0|𝑒−𝑡 < 휀, 

hold for all 𝑡 ≥ 0, therefor the solution 𝜑(𝑡) = 𝑡 is stable. More over since: 

lim
𝑡→+∞

|𝑥𝑖(𝑡) − 𝜑(𝑡)| = lim
𝑡→+∞

|𝑥0 − 0|𝑒−𝑡 = 0, 
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the solution 𝜑(𝑡) = 𝑡 is asymptotically stable. That solution 𝜑(𝑡) is 

unbounded when 𝑡 → +∞. (The above example shows that the stability of 

the solution of a differential equation does not imply the boundedness of 

the solution).  

Example 2: 

 Consider the equation: 

𝑑𝑥

𝑑𝑡
= 𝑠𝑖𝑛2𝑥, 

It has the obvious solutions: 

                                           𝑥 = 𝑘𝜋, 𝑘 = 0, ±1, ±2, … …                                ∗ 

we integrate equation   
𝑑𝑥

𝑑𝑡
= 𝑠𝑖𝑛2𝑥 :   

cot 𝑥 = 𝑐 − 𝑡, 𝑜𝑟  cot 𝑥 = cot 𝑥0 − 𝑡, 

whence: 

                                          𝑥 = 𝑎𝑟𝑐 cot(cot 𝑥0 − 𝑡) , 𝑥 ≠ 𝑘𝜋,                      ∗∗ 

All solution * and ** are bounded in (−∞, +∞) the solution 𝑥(𝑡) ≡ 0 is 

however, unstable when 𝑡 → +∞. 
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Figure 2.2 

 Since for any 𝑥0 ∈ (0, 𝜋) we have: 

lim
𝑡→+∞

𝑥(𝑡) = 𝜋, 

(Therefore, the boundedness of solution of differential equation does not 

imply their stability (fig. 2)). This phenomenon is characteristic of non linear 

equation and systems. 

Example 3: 

 Proceeding from the definition of Lyapunov stability show that the 

solution of system: 

𝑑𝑥

𝑑𝑡
= −𝑦, 

𝑑𝑦

𝑑𝑡
= 𝑥, 

satisfying the initial conditions 𝑥(0) = 0, 𝑦(0) = 0 is stable. 

𝑋0 

0 

𝑇𝑡 

𝑋 

𝑡 
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Solution: 

 The solution of this system satisfying the given initial conditions is 

𝑥(𝑡) ≡ 0, 𝑦(𝑡) ≡ 0. 

 Any solution of the system satisfying the conditions 𝑥(0) = 𝑥0,

𝑦(0) = 𝑦0 is of the form: 

𝑥(𝑡) = 𝑥0 cos 𝑡 − 𝑦0 sin 𝑡 ,    𝑦(𝑡) = 𝑥0 sin 𝑡 + 𝑦0 cos 𝑡, 

we shall take an arbitrary 휀 > 0 and show that there exists 𝛿(휀) > 0 such 

that for: 

|𝑥0 − 0| < 𝛿,   |𝑦0 − 0| < 𝛿, 

the inequalities: 

|𝑥(𝑡) − 0| = |𝑥0 cos 𝑡 − 𝑦0 sin 𝑡| < 휀, 

|𝑦(𝑡) − 0| = |𝑥0 sin 𝑡 + 𝑦0 cos 𝑡| < 휀, 

hold for 𝑡 ≥ 0. 

 This exactly means according to the definition that the zero solution 

𝑥(𝑡) ≡ 0, 𝑦(𝑡) ≡ 0 of system: 

𝑑𝑥

𝑑𝑡
= −𝑦,    

𝑑𝑦

𝑑𝑡
= 𝑥, 

is a Lyapunov stable solution. 

Obviously we have: 

               
|𝑥0 cos 𝑡 − 𝑦0 sin 𝑡| ≤ |𝑥0 cos 𝑡 | + |𝑦0 sin 𝑡| ≤ |𝑥0| + |𝑦0|

|𝑥0 sin 𝑡 − 𝑦0 cos 𝑡| ≤ |𝑥0 sin 𝑡 | + |𝑦0 cos 𝑡| ≤ |𝑥0| + |𝑦0|
 ,            ∗ 
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for all 𝑡. Therefore if: 

|𝑥0| + |𝑦0| < 휀 

then so much the more 

                        |𝑥0 cos 𝑡 − 𝑦0 sin 𝑡| < 휀,   |𝑥0 sin 𝑡 − 𝑦0 cos 𝑡| < 휀,                ∗∗  

for all 𝑡. 

 Consequently if we take for example 𝛿(휀) =
2
 then by * inequalities 

** will hold for all 𝑡 ≥ 0 when |𝑥0| < 𝛿 and |𝑦0| < 𝛿, i.e. the zero solution 

of system  

𝑑𝑥

𝑑𝑡
= −𝑦,    

𝑑𝑦

𝑑𝑡
= 𝑥, 

 is indeed a Lyapunov stable solution, but its stability is not asymptotic. 

2.2 Definitions 

Definition 2.2.1 

 A solution 𝑥 = 𝑋(𝑡) of �̇� = 𝑓(𝑡, 𝑥),  (�̇� =
𝑑𝑥

𝑑𝑡
 ), is said to be stable if 

given any 휀 > 0 and any 𝑡0 ≥ 0 there exists a 𝛿 = 𝛿(휀, 𝑡0) such that: 

|𝑥(𝑡0) − 𝑋(𝑡0)| < 𝛿 ⇒ |𝑥(𝑡) − 𝑋(𝑡)| < 휀    ∀ 𝑡 ≥ 𝑡0 ≥ 0, 

for any solution 𝑥(𝑡) of  �̇� = 𝑓(𝑡, 𝑥). 

Definition 2.2.2 

 A solution 𝑥 = 𝑋(𝑡) of �̇� = 𝑓(𝑡, 𝑥) is said to be uniformly stable if for 

every 휀 > 0 there exists 𝛿 = 𝛿(휀) independent of 𝑡0 such that: 
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|𝑥(𝑡0) − 𝑋(𝑡0)| < 𝛿 ⇒ |𝑥(𝑡) − 𝑋(𝑡)| < 휀    ∀ 𝑡 ≥ 𝑡0 ≥ 0, 

is satisfied for all 𝑡0 ≥ 0. 

Definition 2.2.3 

 A solution 𝑥 = 𝑋(𝑡) of �̇� = 𝑓(𝑡, 𝑥) is said to be unstable if it is not 

stable. 

Definition 2.2.4 

 A solution 𝑥 = 𝑋(𝑡) of �̇� = 𝑓(𝑡, 𝑥) is said to be asymptotically stable 

if it is stable and for any 𝑡0 ≥ 0 there exists a positive constant 𝑐 = 𝑐(𝑡0) 

such that: 

|𝑥(𝑡0) − 𝑋(𝑡0)| < 𝑐 ⇒ 𝑥(𝑡) − 𝑋(𝑡) → 0  𝑎𝑠  𝑡 → ∞, 

for any solution 𝑥(𝑡) of �̇� = 𝑓(𝑡, 𝑥). 

Definition 2.2.5 

 A solution 𝑥 = 𝑋(𝑡) of �̇� = 𝑓(𝑡, 𝑥) is said to be uniformly 

asymptotically stable if it is uniformly stable and there exists appositive 

constant 𝑐 independent of 𝑡0 such that for every 𝜂 > 0 there exists 𝑇 =

𝑇(𝜂) > 0 such that for all 𝑡 ≥ 0: 

|𝑥(𝑡0) − 𝑋(𝑡0)| < 𝑐 ⇒ |𝑥(𝑡)  − 𝑋(𝑡)| < 𝜂  ∀ 𝑡 ≥ 𝑡0 + 𝑇(𝜂), 

for any solution 𝑥(𝑡) of �̇� = 𝑓(𝑡, 𝑥). 
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Definition 2.2.6 

 A solution 𝑥 = 𝑋(𝑡) of �̇� = 𝑓(𝑡, 𝑥) is said to be globally uniformly 

asymptotically stable if it is uniformly stable with 𝛿(휀) satisfying: 

lim
→∞

𝛿(휀) = ∞, 

and for all positive 𝜂 and 𝑐 there exists 𝑇 = 𝑇(𝜂, 𝑐) > 0 such that for all 𝑡 ≥

0: 

|𝑥(𝑡0) − 𝑋(𝑡0)| < 𝑐 ⇒ |𝑥(𝑡) − 𝑋(𝑡)| < 𝜂  ∀ 𝑡 ≥ 𝑡0 + 𝑇(𝜂, 𝑐), 

for any solution 𝑥(𝑡) of �̇� = 𝑓(𝑡, 𝑥). 

2.3 Stability for Linear system 

 The problem of stability of solutions of the linear system: 

                                                      �̇� = 𝐴(𝑡)𝑥,                                                  (2.7) 

will first be considered. 

Here 𝑥 = 𝑥(𝑡) = (𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥𝑛(𝑡)) is an unknown vector function 

and the matrix 𝐴(𝑡) = (𝑎𝑖𝑗(𝑡)) is continuous for 𝑡0 ≤ 𝑡 < ∞. Recall that 

the solution of (2.7) satisfying 𝑥(𝑡0) = 𝑥0, then defined for 𝑡 ≥ 𝑡0 and given 

by 𝑥(𝑡; 𝑡0, 𝑥0) = 𝜑(𝑡)𝑥0 where 𝜑(𝑡) is the fundamental matrix satisfying 

𝜑(𝑡0) = 𝐼 we will need the notion of the norm of matrix. 

Definition 2.3.1 

Given the 𝑛 × 𝑛 matrix 𝐴 = (𝑎𝑖𝑗) then ||𝐴|| the norm of A, is defined by: 



Stability solutions for systems of differential equations                                                                    chapter   2  

 

32 

 

||𝐴|| = ∑ |𝑎𝑖𝑗|

𝑛

𝑖,𝑗=1

, 

Evidently || || is a real valued nonnegative function defined on the set of 

𝑛 × 𝑛 matrixes and if 𝐴 = 𝐴(𝑡) is continuous then ||𝐴(𝑡)|| is continuous. 

 In addition it satisfies the properties: 

i. ||𝐴 + 𝐵|| ≤ ||𝐴|| + ||𝐵||, ||𝐴𝐵|| ≤ ||𝐴|| ||𝐵||. 

ii. ||𝑐𝐴|| ≤ |𝑐| ||𝐴|| for all any scalar 𝑐. 

iii. ||𝐴(𝑡)𝑥|| ≤ ||𝐴|| ||𝑥|| for all any vector 𝑥. 

as may be easily verified. 

 In general, the notions of stability of a solution and boundedness of a 

solution are independent, for example the solution 𝑥 = 𝑡 + 𝑥0 of �̇� = 1 are 

stable but unbounded. 

Theorem 2.3.1 

 All solutions of �̇� = 𝐴(𝑡)𝑥 are stable if and only if they are bounded. 

Proof: 

 If all solutions of �̇� = 𝐴(𝑡)𝑥 are bounded then there exists a constant 

𝑀 such that ||𝜑(𝑡)|| < 𝑀, where 𝜑(𝑡) is the fundamental matrix of �̇� =

𝐴(𝑡)𝑥 satisfying 𝜑(𝑡0) = 𝐼. 

 Given any 휀 > 0 then ||𝑥0 − 𝑥1|| < 휀
𝑀⁄  implies that: 

||𝑥(𝑡; 𝑡0, 𝑥0) − 𝑥(𝑡; 𝑡0, 𝑥1)|| = ||𝜑(𝑡)(𝑥0 − 𝑥1)|| ≤ 𝑀||𝑥0 − 𝑥1|| < 휀, 
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and hence all solution are stable. 

 Conversely if all solutions are stable then the solution 𝑥(𝑡; 𝑡0, 𝑥1) ≡ 0 

is stable, therefore given 휀 > 0 there exists 𝛿 > 0 such that ||𝑥1|| < 휀 

implies: 

||0 − 𝑥(𝑡; 𝑡0, 𝑥1)|| = ||𝜑(𝑡)𝑥1|| < 휀, 

in particular we can let 𝑥1 be the vector with 
𝛿

2
 in the 𝑖𝑡ℎ place and zero 

elsewhere. Then: 

||𝜑(𝑡)𝑥1|| = ||𝜑𝑖(𝑡)||
𝛿

2
< 휀, 

where 𝜑𝑖(𝑡) is the 𝑖𝑡ℎ column of 𝜑(𝑡) and hence 

||𝜑(𝑡)|| < 2𝑛휀𝛿−1 = 𝑘, 

Therefore for any solution we have 

||𝑥(𝑡; 𝑡0, 𝑥0)|| = ||𝜑(𝑡)𝑥0|| < 𝑘||𝑥0||, 

and hence all solutions are bounded. 

Theorem 2.3.2 

 If the characteristic polynomial of 𝐴 is stable then every solution of 

�̇� = 𝐴𝑥 is asymptotically stable. 
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Proof: 

 If the characteristic polynomial is stable then there exist positive 

constants 𝑅 and 𝛼 such that: 

||𝜑(𝑡)|| ≤ 𝑅𝑒−𝛼𝑡 , 𝑡 ≥ 𝑡0 ≥ 0, 

where 𝜑(𝑡) is fundamental matrix satisfying 𝜑(𝑡0) = 𝐼 since 𝑅𝑒−𝛼𝑡 is a 

decreasing function, given 휀 > 0, then ||𝑥0 − 𝑥1|| ≤ 휀𝑅−1𝑒−𝛼𝑡0  implies: 

||𝑥(𝑡; 𝑡0, 𝑥0) − 𝑥(𝑡; 𝑡0, 𝑥1)|| ≤ ||𝜑(𝑡)|| ||𝑥0 − 𝑥1|| ≤ 𝑅𝑒−𝛼𝑡||𝑥0 − 𝑥1||, 

 The right side is less then 휀 for 𝑡 ≥ 𝑡0 and furthermore approaches 

zero as 𝑡 approaches ∞ so all solutions are asymptotically stable. 

2.4 Stability in the First Approximation 

 Let the following system of differential equation be given: 

                              
𝑑𝑥𝑖

𝑑𝑡
= 𝑓𝑖(𝑥1, 𝑥2, … , 𝑥𝑛), 𝑖 = 1,2, … , 𝑛                      (2.8) 

and let 𝑥𝑖 ≡ 0, 𝑖 = 1,2, … , 𝑛 be a stationary point of system (2.8). i.e. 

𝑓𝑖(0,0, … ,0) = 0, 𝑖 = 1,2, … , 𝑛 we shall assume that functions 

𝑓𝑖(𝑥1, 𝑥2, … , 𝑥𝑛) can be differentiated a sufficiently large number of times 

at the origin of coordinates. 

 We expand the functions 𝑓𝑖 in the Taylor series of 𝑥 in the 

neighborhood of the origin of coordinates: 

𝑓𝑖(𝑥1, 𝑥2, … , 𝑥𝑛) = ∑ 𝑎𝑖𝑗𝑥𝑗 + 𝑅𝑖(𝑥1, 𝑥2, … , 𝑥𝑛)

𝑛

𝑗=1

, 
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Here 𝑎𝑖𝑗 =
𝜕𝑓𝑖(0,0,…,0)

𝜕𝑥𝑗
 and 𝑅𝑖 are terms of the second order of smallness 

with respect to 𝑥1, 𝑥2, … , 𝑥𝑛. 

 The original system (2.8) will then be written as: 

              
𝑑𝑥𝑖

𝑑𝑡
= ∑ 𝑎𝑖𝑗𝑥𝑗 + 𝑅𝑖(𝑥1, 𝑥2, … , 𝑥𝑛)

𝑛

𝑗=1

,   (𝑖 = 1,2, … , 𝑛),                 (2.9) 

Instead of system (2.9) we shall consider the system: 

                           
𝑑𝑥𝑖

𝑑𝑡
= ∑ 𝑎𝑖𝑗𝑥𝑗

𝑛

𝑗=1

,   (𝑖 = 1,2, … , 𝑛)(𝑎𝑖𝑗 + cos 𝑡),              (2.10) 

Called the system of equation of the first approximation for system (2.8). 

Theorem 2.4.1 

 The following propositions hold: 

1. If all roots of the characteristic equation: 

                      |

𝑎11 − 𝜆 𝑎12 … 𝑎1𝑛         

𝑎21 𝑎12 − 𝜆 … 𝑎2𝑛        
…

𝑎𝑛1

…
𝑎𝑛2

…
…

…
𝑎𝑛𝑛 − 𝜆

| = 0,                   (2.11) 

have negative real parts, then zero solutions 𝑥𝑖 ≡ 0, 𝑖 = 1,2, … , 𝑛 of system 

(2.10) and system (2.9) are asymptotically stable. 

2. If at least one root of the characteristic equation (2.11) has a positive 

real part then the zero solution of system (2.10) and system (2.9) is 

unstable. 

It is said that investigation for stability in the first approximation is possible 

in cases 1 and 2. 
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In critical cases when the real parts of all roots of the characteristic 

equation (2.11) are non positive with the real part of at least one root being 

zero investigation for stability in the first approximation is in general 

impossible (nonlinear terms 𝑅𝑖 starting to exert  influence). 

Example 2.4.1 

Investigate the stationary point 𝑥 = 0, 𝑦 = 0 of the system: 

�̇� = 2𝑥 + 𝑦 − 5𝑦2

�̇� = 3𝑥 + 𝑦 +
𝑥3

2

           (�̇� =
𝑑𝑥

𝑑𝑡
 , �̇� =

𝑑𝑦

𝑑𝑡
), 

for stability in the first approximation. 

Solution: 

 The system of the first approximation is; 

�̇� = 2𝑥 + 𝑦
�̇� = 3𝑥 + 𝑦

  

the nonlinear terms satisfy the necessary conditions their order being 

greater than or equal to two. 

We set up the characteristic equation for system; 

�̇� = 2𝑥 + 𝑦
�̇� = 3𝑥 + 𝑦

  

|
2 − 𝜆 1

3 1 − 𝜆
| = 0      𝑜𝑟     𝜆2 − 3𝜆 − 1 = 0, 

The roots of the characteristic equation 𝜆2 − 3𝜆 − 1 = 0: 

𝜆1 =
3 + √13

3
 , 𝜆2 =

3 − √13

3
 , 
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are real and 𝜆1 > 0. 

 There for the zero solution 𝑥 = 0, 𝑦 = 0 of system: 

�̇� = 2𝑥 + 𝑦 − 5𝑦2

�̇� = 3𝑥 + 𝑦 +
𝑥3

2

, 

is unstable.  
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Stability of zero solution 

 These chapters discuss the concept of stability of zero solution, the 

simplest types of stationary points, stability of fixed points, zero stability 

and consider some basic definitions and theorems about them. 

 The materials in this chapter taken from the following references [4], 

[6], [8]and [9]. 

  3.1 The Simplest Types of Stationary Points 

 Consider a system of two homogeneous linear differential equations 

with constant coefficients; 

                                                         

𝑑𝑥

𝑑𝑡
= 𝑎11𝑥 + 𝑎12𝑦,

𝑑𝑦

𝑑𝑡
= 𝑎21𝑥 + 𝑎22𝑦,

                                              (3.1) 

with 

∆= |
𝑎11 𝑎12

𝑎21 𝑎21
| ≠ 0, 

A point 𝑥 = 0, 𝑦 = 0 which the right-hand sides of the equations of system 

(3.1) vanish called a stationary point of system (3.1). 

 In order for a stationary point of system (3.1) to be investigated it is 

necessary to set up the characteristic equation: 

                                                    |
𝑎11 − 𝜆 𝑎12

𝑎21 𝑎21 − 𝜆
| = 0,                              (3.2) 

and find its roots 𝜆1 and 𝜆2. 
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 The following cases are possible:- 

1- The roots 𝜆1, 𝜆2 of the characteristic equation (3.2) are real and distinct: 

a) 𝜆1 < 0, 𝜆2 < 0 The stationary point is asymptotically stable (a stable 

node). 

 

Figure 3.1(A stable node) 

b) 𝜆1 > 0, 𝜆2 > 0 The stationary point is unstable (an unstable node). 
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 Figure 3.2 (An unstable node)  

c) 𝜆1 > 0, 𝜆2 < 0 The stationary point is unstable (a saddle point). 

 

Figure 3.3(A saddle point) 

2- The roots of the characteristic equation (2) are complex 𝜆1 = 𝑝 + 𝑖𝑞, 

𝜆2 = 𝑝 − 𝑖𝑞: 
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a) 𝑝 < 0, 𝑞 ≠ 0 The stationary point is asymptotically stable (a stable 

focus). 

 

Figure3.4(A stable focus) 

b) 𝑝 > 0, 𝑞 ≠ 0 The stationary point is unstable (an unstable focus). 

 

Figure 3.5 (An unstable focus) 

c) 𝑝 = 0, 𝑞 ≠ 0 The stationary point is stable (a mid point). 

 

Figure 3.6(A mid point) 
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3- The roots 𝜆1 = 𝜆2 are multiple: 

a) 𝜆1 = 𝜆2 < 0 The stationary point is asymptotically stable (a stable 

node). 

 

Figure 7(A stable node) 

b) 𝜆1 = 𝜆2 > 0 The stationary point is unstable (an unstable node). 

 

Figure 8(An unstable node) 
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Example 3.1.1 

 Determine the character of the stationary point (0,0) of the system: 

𝑑𝑥

𝑑𝑡
= 5𝑥 − 𝑦, 

𝑑𝑦

𝑑𝑡
= 2𝑥 + 𝑦, 

Solution: 

 We set up the characteristic equation: 

   |
5 − 𝜆 −1

2 1 − 𝜆
| = 0      𝑜𝑟     𝜆2 − 6𝜆 + 7 = 0, 

its roots 𝜆1 = 3 + √2 > 0   , 𝜆2 = 3 − √2 > 0 are distinct and positive. 

 Therefore the stationary point (0,0) is an unstable node. 

Definition 3.1.1 

 Given an autonomous system: 

                           
𝑑𝑥𝑖

𝑑𝑡
= 𝑓𝑖(𝑥1, 𝑥2, … , 𝑥𝑛), 𝑖 = 1,2, … , 𝑛                        (3.3) 

Assume that (𝑎1, … , 𝑎𝑛) is a set of numbers such that 𝑓𝑖(𝑎1, … , 𝑎𝑛) = 0,

𝑖 = 1,2, … , 𝑛. 

 Then the system of functions 𝑥𝑖(𝑡) ≡ 𝑎𝑖 , 𝑖 = 1,2, … , 𝑛 is solution of 

system (3.3). The point (𝑎1, 𝑎2, … , 𝑎𝑛) of the phase space (𝑥1, 𝑥2, … , 𝑥𝑛) is 

called a rest point of the given system. 
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Definition 3.1.2 

 We say that the rest point 𝑥𝑖 = 0, 𝑖 = 1,2, … , 𝑛 of system (3.3) is 

stable if for any 휀 > 0 (0 < 휀 < 𝑅) there is 𝛿 = 𝛿(휀) > 0 such that any 

trajectory of the system which begins the initial moment 𝑡 = 𝑡0 at the point 

𝑀0 ∈ 𝑆(𝛿) remains all the time in the sphere 𝑆(휀). 

 The rest point is asymptotically stable if: 

1- It is stable. 

2- There is 𝛿1 > 0 such that every trajectory of the system which begins at 

the point 𝑀0 of the domain 𝑆(𝛿1) approaches the origin when the time 𝑡 

increases indefinitely. 

 

Figure 9 (The rest point) 
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3.2 Stability of Fixed Points 

Definition 3.2.1 

 A fixed point 𝑥0 of 𝑓(𝑥) is called stable if for any given neighborhood 

𝑈(𝑥0) the exists another neighborhood 𝑉(𝑥0) ⊆ 𝑈(𝑥0) such that any 

solution starting in 𝑉(𝑥0) remains in 𝑈(𝑥0) for all 𝑡 ≥ 0. 

 A fixed point which is not stable will be called unstable. 

Definition 3.2.2 

 A fixed point 𝑥0 of 𝑓(𝑥) is called asymptotically stable if it is stable 

and if there is a neighborhood  𝑈(𝑥0) such that: 

                       lim
𝑡→∞

|𝜑(𝑡, 𝑥) − 𝑥0| = 0 ,   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝑈(𝑥0),                         (3.4) 

Definition 3.2.3 

 A fixed point 𝑥0 of 𝑓(𝑥) is called exponentially stable if there are 

constants 𝛼, 𝛿, 𝑐 > 0, such that: 

                   |𝜑(𝑡, 𝑥) − 𝑥0| ≤ 𝑐𝑒−𝛼𝑡|𝑥 − 𝑥0|, |𝑥 − 𝑥0| ≤ 0,                  (3.5) 

Example 3.2.1 

 Consider �̇� = 𝑎𝑥 in 𝑅′ then 𝑥0 = 0 is stable if and only if 𝑎 ≤ 0 and 

exponentially stable if and only if 𝑎 < 0. 

 More generally, suppose the equation �̇� = 𝑓(𝑥) in 𝑅′ has a fixed 

point 𝑥0. Then it is not hard to see that 𝑥0 is stable if; 



Stability of zero solution                                                                                                                                  chapter 3 

 

47 

 

                                      
𝑓(𝑥) − 𝑓(𝑥0)

𝑥 − 𝑥0
≤ 0,     𝑥 ∈ 𝑈(𝑥0)\{𝑥0},                     (3.6) 

 For some neighborhood 𝑈(𝑥0) and asymptotically stable if strict 

inequality holds. It will be exponentially stable if: 

                                   
𝑓(𝑥) − 𝑓(𝑥0)

𝑥 − 𝑥0
≤ −𝛼, 0 ≤ |𝑥 − 𝑥0| ≤ 𝛿,              (3.7) 

In fact (3.5) with 𝑐 = 1 follows from a straightforward sub/super 

solution argument by comparing with solutions of the linear equation �̇� =

−𝛼𝑦. 

 In particular if 𝑓′(𝑥0) ≠ 0 the stability can be read of from the 

derivative of 𝑓 at 𝑥0 alone. 

Theorem 3.2.1 (Exponential Stability Via Linearization) 

 Suppose 𝑓 ∈ 𝑐1 has a fixed point 𝑥0 and suppose that all eigenvalues 

of the Jacobian matrix at 𝑥0 have negative real part, then 𝑥0 is 

exponentially stable. 

However if 𝑓′(𝑥0) = 0 no information on the stability of the 

nonlinear system can read off from the linearized one as can be seen from 

the following example. 

Examples 3.2.2 

1- The equation �̇� = 𝜇𝑥3 is asymptotically stable for 𝜇 < 0, stable for 𝜇 ≤ 0 

and unstable for 𝜇 > 0. 
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2- The system �̇� = 𝜇𝑥 − 𝑥3 has one stable fixed point for 𝜇 ≤ 0 which 

becomes unstable and splits off two stable fixed points at 𝜇 = 0. 

3- The system �̇� = 𝜇𝑥 + 𝑥2 has one stable and one unstable fixed point for 

𝜇 < 0 which collide at 𝜇 = 0 and vanish. 

4- The system �̇� = 𝜇𝑥 − 𝑥2 has two stable fixed points for 𝜇 ≠ 0 which 

collide and exchange stability at 𝜇 = 0. 

3.3 Zero Stability 

Definition 3.3.1 

 A linear  𝑘-step method for the ordinary differential equation 𝑦′ =

𝑓(𝑥, 𝑦) is said to be zero stable if there exists a constant 𝑘 such that for any 

two sequences (𝑦𝑛) and (�̂�𝑛) which have been generated by the same 

formula, but different initial data 𝑦0, 𝑦1, … , 𝑦𝑘−1 and �̂�0, �̂�1, … , �̂�𝑘−1 

respectively we have: 

      |𝑦𝑛 − �̂�𝑛| ≤ 𝑘 𝑀𝑎𝑥 {|𝑦0 − �̂�0|, |𝑦1 − �̂�1|, … , |𝑦𝑘−1 − �̂�𝑘−1|},             (3.8) 

  𝑓𝑜𝑟  𝑥𝑛 ≤ 𝑋𝑛  𝑎𝑛𝑑 𝑎𝑠 ℎ 𝑡𝑒𝑛𝑑𝑠 𝑡𝑜 0, 

We shall prove later on that whether or not a method is zero stable 

can be determined by merely considering its behavior when applied to the 

trivial differential equation 𝑦′ = 0 corresponding to 𝑦′ = 𝑓(𝑥, 𝑦) with 

𝑓(𝑥, 𝑦) ≡ 𝑜 it is for this reson that the kind of stability expressed in 

definition(3.3.1) is called zero stability. 

 While definition(3.3.1) is expressive in the sense that it conforms 

with the intuitive notion of stability where by “small perturbations at input 
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give rise to small perturbations at output” it would be a very tedious 

exercise to verify the zero-stability of linear multi-step method using 

definition(3.3.1) only, thus we shall next formulate an algebraic equivalent 

of zero stability known as the root condition which will simplify this task. 

Theorem 3.3.1 

 A linear multi-step method is zero-stable for any ordinary differential 

equation of the form 𝑦′ = 𝑓(𝑥, 𝑦) where 𝑓 satisfies the Lipchitz condition 

|𝑓(𝑥, 𝑦) − 𝑓(𝑥, 𝑧)| ≤ 𝐿|𝑦 − 𝑧| if and only if its first characteristic 

polynomial has zeros inside the closed unit disc with any which lie on the 

unit circle being simple. 

 The algebraic stability condition contained in this theorem namely 

that the roots of the first characteristic polynomial lie in the closed unit disc 

and those on the unit circle are simple is often called the root condition. 
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Stability in the sense of Lyapunov 

 This chapter discusses the concept of stability in the sense of 

Lyapunov theory and examines some theories related to these concepts. 

 The materials in this chapter taken from the following references [5], 

[7], [8] and [9]. 

4.1 History 

       

 

Aleksander Mikhailovich Lyapunov Russian 

Citizenship was born in Yaroslavl, the Russian 

Empire  in the June 6, 1857 and died in Odessa,

People’s Republic of Ukraine at the age of 61 on November 3, 1918 and 

specialized in the field of applied mathematics. 

 Lyapunov stability is named after Aleksandr Lyapunov who published 

his book the General problem of stability of Motion in 1892. 

Lyapunov is known for his development of the theory of a dynamical 

system as well as for his many contributions to mathematical physics and 

probability theory. 
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4.2 Definitions 

 Given differential equation:  

                                  
𝑑𝑥

𝑑𝑡
= 𝑓(𝑡, 𝑥),                                               (4.1) 

where the function 𝑓(𝑡, 𝑥) is defined and continuous for 𝑡 ∈ (𝑎, +∞) and 𝑥 

from a certain domain 𝐷 and possesses a bounded partial derivative   
𝜕𝑓

𝜕𝑥
. 

Assume that the function 𝑥 = 𝜑(𝑡) is a solution of equation (1) 

which satisfies the initial condition 𝑥|𝑡=𝑡0
= 𝜑(𝑡0), 𝑡0 > 𝑎, we assume 

furthermore that the function 𝑥 = 𝑥(𝑡) is a solution of the same equation 

which satisfies another initial condition 𝑥|𝑡=𝑡0
= 𝑥(𝑡0) it is assumed that 

the solutions 𝜑(𝑡) and 𝑥(𝑡) are defined for all 𝑡 ≥ 𝑡0. 

 i.e. can be extended indefinitely to the right. 

Definition 4.2.1 

 The solution 𝑥 = 𝜑(𝑡)  of equation (4.1) is said to be stable in the 

sense of Lyapunov as 𝑡 → +∞ if, for any 휀 > 0 there is 𝛿 = 𝛿(휀) > 0 such 

that for every solution 𝑥 = 𝑥(𝑡)   of that equation the inequality 

                                  |𝑥(𝑡0) − 𝜑(𝑡0)| < 𝛿,                                          (4.2) 

Yields an inequality: 

                                    |𝑥(𝑡) − 𝜑(𝑡)| < 휀,                                           (4.3) 

for all 𝑡 ≥ 𝑡0 (we can always assume that 𝛿 ≤ 휀). 
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 This means that solutions that are close to the solution 𝑥 = 𝜑(𝑡) as 

concerns the initial values remain close for all 𝑡 ≥ 𝑡0 as well. 

 In terms of geometry this means the following the solution 𝑥 = 𝜑(𝑡) 

of equation (4.1) is stable if however narrow the 휀 –strip containing the 

cure 𝑥 = 𝜑(𝑡) all the integral curves 𝑥 = 𝑥(𝑡) of the equation which are 

sufficiently close to the strip at the initial moment 𝑡 = 𝑡0 lie entirely in the 

indicated 휀 –strip for all 𝑡 ≥ 𝑡0. 

 

Figure 4.1  

If for an arbitrarily small 𝛿 > 0 inequality (4.3) does not hold for at 

least one solution 𝑥 = 𝑥(𝑡) of equation (4.1) then the solution 𝑥 = 𝜑(𝑡) of 

that equation is said to be unstable. 

 That solution which cannot be extended to the right 𝑡 → +∞ must 

be considered to be unstable. 

𝑥
= 𝜑(𝑡) 

휀 

휀 

𝑥 = 𝑥(𝑡) 

𝑡0 0 

𝑥 

𝑡 

𝛿 

𝛿 
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Definition 4.2.2 

 The solution 𝜑𝑖(𝑡), 𝑖 = 1,2, … , 𝑛  of system: 

                         
𝑑𝑥𝑖

𝑑𝑡
= 𝑓𝑖(𝑡, 𝑥1, 𝑥2, … , 𝑥𝑛), 𝑖 = 1,2, … , 𝑛                      (4.4) 

is said to be stable in the sense of Lyapunov as 𝑡 → +∞ if for any 휀 > 0 

there is 𝛿 = 𝛿(휀) > 0 such that for every solution 𝑥𝑖(𝑡), 𝑖 = 1,2, … , 𝑛 of 

that system, whose initial values satisfy the inequalities 

  |𝑥𝑖(𝑡0) − 𝜑𝑖(𝑡0)| < 𝛿, 𝑖 = 1,2, … , 𝑛 the inequalities; 

                              |𝑥𝑖(𝑡) − 𝜑𝑖(𝑡)| < 휀, 𝑖 = 1,2, … , 𝑛                          (4.5) 

are satisfied for all 𝑡 ≥ 𝑡0. 

i.e. the solutions close as concerns the initial values remain close for all 𝑡 ≥

𝑡0. 

 If for an arbitrarily small 𝛿 > 0 inequalities (4.5) do not hold even for 

one solution 𝑥𝑖(𝑡), 𝑖 = 1,2, … , 𝑛 then the solution 𝜑𝑖(𝑡) is unstable. 

4.3 Lyapunov’s theorem  

 The method of Lyapunov functions is to investigate directly the 

stability of the equilibrium position of the system  

𝑑𝑥𝑖

𝑑𝑡
= 𝑓𝑖(𝑡, 𝑥1, 𝑥2, … , 𝑥𝑛), 𝑖 = 1,2, … , 𝑛 



Stability in the sense of Lyapunov                                                                                                                 chapter 4 

 

56 

 

with the help of a suitably selected function 𝑣(𝑡, 𝑥1, 𝑥2, … , 𝑥𝑛) the 

Lyapunov function this being done without finding beforehand any 

solutions of the system. 

 We restrict ourselves to the consideration of autonomous system; 

                            
𝑑𝑥𝑖

𝑑𝑡
= 𝑓𝑖(𝑥1, 𝑥2, … , 𝑥𝑛), 𝑖 = 1,2, … , 𝑛                     (4.6) 

for which 𝑥𝑖 = 0, 𝑖 = 1,2, … , 𝑛 is a stationary point. 

Theorem 4.3.1 (Lyapunov’s Stability Theorem) 

 If for a system of differential equations (4.6) there exists a function of 

fixed sign 𝑣(𝑡, 𝑥1, 𝑥2, … , 𝑥𝑛) (a Lyapunov function) whose total derivative 

𝑑𝑣

𝑑𝑡
 with respect to time composed by virtue of system (4.6) is a function of 

constant signs of sign opposite to that of 𝑣 or identically equal to zero then 

the stationary point  𝑥𝑖 = 0, 𝑖 = 1,2, … , 𝑛 of system (4.6) is stable. 

Example 4.3.1 

 Consider the system: 

                                                              

𝑑𝑥

𝑑𝑡
= 𝑦   

𝑑𝑦

𝑑𝑡
= −𝑥

 ,                                                    (4.7) 

we choose the function 𝑣 = 𝑥2 + 𝑦2 as the function 𝑣(𝑥, 𝑦) it is positive 

definite. 

 The derivative of the function 𝑣 is by virtue of system (4.7) equal to: 
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𝑑𝑣

𝑑𝑡
= 2𝑥

𝑑𝑥

𝑑𝑡
+ 2𝑦

𝑑𝑦

𝑑𝑡
= 2𝑥𝑦 − 2𝑥𝑦 ≡ 0, 

 It follows from (Theorem 4.3.1) that the stationary point 𝑂(0,0) of 

system (4.7) is stable. 

Theorem 4.3.2 (Lyapunov’s Asymptotically Stability Theorem) 

 If for a system of differential (4.6) there exists a function of fixed sign 

𝑣(𝑡, 𝑥1, 𝑥2, … , 𝑥𝑛) whose total derivative with respect to time composed by 

virtue of system (4.6) is also a function of fixed sign of sign opposite to that 

of 𝑣 then the stationary point 𝑥𝑖 ≡ 0 of system (4.6) is asymptotically 

stable. 

Example 4.3.2 

 Consider the system: 

                                                

𝑑𝑥

𝑑𝑡
= 𝑦 − 𝑥3   

𝑑𝑦

𝑑𝑡
= −𝑥 − 3𝑦3

 ,                                                    (4.8) 

Taking 𝑣(𝑥, 𝑦) = 𝑥2 + 𝑦2 we find that, 

𝑑𝑣

𝑑𝑡
= 2𝑥(𝑦 − 𝑥3) + 2𝑦(−𝑥 − 3𝑦3) = −2(𝑥4 + 3𝑦4), 

Thus 
𝑑𝑣

𝑑𝑡
 is a negative definite function by (Theorem 4.3.2) the stationary 

point 𝑂(0,0) of system (4.8) is asymptotically stable. 
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Theorem 4.3.3 (Lyapunov’s Instability Theorem) 

 Let there exist for the system of differential equations (4.6) a 

function differentiable in the neighborhood of the origin of coordinates 

𝑣(𝑡, 𝑥1, 𝑥2, … , 𝑥𝑛) such that 𝑣(0,0, … ,0) ≡ 0. 

 If its total derivative 
𝑑𝑣

𝑑𝑡
 composed by virtue of system (4.6) is a 

positive definite function and arbitrarily close to the origin of coordinates 

there are points in which the function 𝑣(𝑥1, 𝑥2, … , 𝑥𝑛) takes positive 

values, then the stationary point 𝑥𝑖 = 0, 𝑖 = 1,2, … , 𝑛 is unstable. 

Example 4.3.3 

 Investigate the stationary point 𝑥 = 0, 𝑦 = 0 of the system: 

 

𝑑𝑥

𝑑𝑡
= 𝑥  

𝑑𝑦

𝑑𝑡
= −𝑦

 , 

for stability. 

Solution: 

 Take the function 𝑣(𝑥, 𝑦) = 𝑥2 − 𝑦2, then; 

𝑑𝑣

𝑑𝑡
=

𝜕𝑣

𝜕𝑥
.
𝑑𝑥

𝑑𝑡
+

𝜕𝑣

𝜕𝑦
.
𝑑𝑦

𝑑𝑡
= 2𝑥2 + 2𝑦2, 

is a positive definite function. 

 Since arbitrarily close to the origin of coordinates there are points 

which 𝑣 > 0 (for example 𝑣 = 𝑥2 > 0 along the straight line 𝑦 = 0) all the 
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conditions of (Theorem 4.3.3) hold and the stationary point 𝑂(0,0) is 

unstable (a saddle point). 
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