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I. INTRODUCTION

The following report deals with the design of a digital filter
using an STM32F0Discovery board. The overview and design
processed followed is covered through the contents of this
report.

A. Problem Statement

For our project, we selected Task 1 of the DSP section. The
task states that we must implement a digital filter in hardware
using a system like an STM32. We need to implement an
ADC and DAC so that experiments can be conducted on the
system using lab equipment. Additionally, a project description
can be selected to provide further directions for the project.
We decided to implement a cross-over frequency filter set to
filter out signals above 800 Hz. This would be for the woofer
element of the speaker.

B. Literature review

This literature review focuses on the design and
implementation of digital filters by making use of Digital
Signal Processing (DSP) theory as a foundation. It will
investigate the evolution of digital filters as well as the
advantages and disadvantages of different filter structures
within the realm of digital filtering processes. The two filter
structures to be investigated are Finite Impulse Response (FIR)
and Infinite Impulse Response Filters(IIR).

Brief History of DSP technology
Digital Signal processing as it is known in the modern day
is still a relatively new field as it only really gained traction
with the invention of the MOSFET and its adaption into
integrated circuits (IC) back in the 1970’s. However the first
stand alone digital signal processor chip was only invented
late in the 1970’s by Texas Instruments facility, this chip was
named TMS5100 [5]. From there, other developers such as
American Microsystems (AMI) and Intel started to develop
their own DSP ICs. This helped to propel the technology
even further with faster ICs being developed and new features
being added over time. One such feature was the inclusion
of an internal ADC/DAC and a internal signal processor
on their 2920 DSP chip in 1979 [6]. Fast forward 30 years
with many more improvements leading up to the modern day
digital processors which have greater performance as well
as a range of features such as internal ADC/DAC, multiple
external peripheral support and very high operating speeds.

Finite Impulse Response Filter - FIR
A finite impulse response filter can be seen as a filter who’s
impulse response becomes zero over a period of time. These
filters are very commonly used in digital filters especially audio
filtering as they are easy to implement and have a linear phase
response which is desirable for audio processing. A FIR filter
with order N can be described by the following linear constant
coefficient different equation:

y[n] =

N∑
i=0

bix[n− i]

where:
• y[n]: Output of the system
• x[n]: Input to the system
• bi: The value of the FIR at a particular instance.
Properties of FIR Filters:
• FIR filters are always stable. This means that a FIR filter

will never tend to infinity for a finite input.
• Commonly have linear phase.
• The order [N] of the filter dictates the amount of memory

needed in order to implement it digitally.
• FIR filters require no feedback thus making the

implementation simpler.
FIR filter design can be done easily by making use of a filter

design tool such as Matlab’s filter design tool. They can also be
designed by making use of standard FIR filter design methods
like the Window Sinc method and the Least mean error method.

Infinite Impulse response filter - IIR Filter
Unlike the FIR filter the IIR filter has a infinite impulse response
as suggested by the name. This means that irrespective of how
much time passes the impulse response will never reach zero.
However, the impulse response often tends to zero in the from
of an decaying exponential. The IIR filter has a more complex
difference equation implementation than the FIR filter as they
never truly decay. The general form of a difference equation
for the IIR filter can be described by the following equation:

y[n] =
1

a0
(

P∑
i=0

bix[n− i]−
Q∑

j=0

ajx[n− j])

where:
• y[n]: Output of the system
• x[n]: Input to the system
• bi: Feedforward filter Coefficients
• aj : Feedback filter Coefficients
• P: Feedforward filter order
• P: Feedback filer order
Properties of IIR Filters:
• IIR Filters have a infinite impulse response
• Not always stable. This means for a bounded input the

output can grow infinitely big under certain circumstances.
• Often computationally less expensive than FIR filters to

perform the same task.
• IIR filters have non-linear phase.
IIR filters can also be designed by making use of a filter

design tool or by making use of standard IIR filter design
techniques.
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Comparison between FIR and IIR Filters

Criteria FIR filter IIR filter
Implementation Complexity Low Higher

Computational resources Often higher Low
Phase response Linear non-linear

Impulse response finite infinite
Stability Always Stable Can become unstable

TABLE I: FIR vs IIR

Sampling Theory
Sampling theory is a fundamental part of DSP as it outlines
the properties of sampled continuous time signals. This is
important as almost all real world signals are analogue signals
and would thus need to be sampled into discrete time so that
they can be analysed using DSP principles. To convert a signal
from continuous time to discrete time the continuous to discrete
converter can be used and vise versa (please note that these
are not analogue-to-digital or digital-to-analogue converters but
rather an idealised version of them). In the real-world, analog
signals can be converted to digital through the use of a DAC
or digital-to-analog converter.

Fig. 1: Example of a Continuous to discrete converter [1]

Sampling of continuous signals The ideal expression for
sampled continuous time signals can be seen below:

x[n] = xc[nT ],−∞ < T < ∞

where:
• T: Sampling period
One of the most important theories in sampling theory is

the Nyquist sampling theory. It states that to sample a signal
without causing aliasing, the sampling frequency must be at
least two times the maximum frequency component in the
signal you are trying to sample [7]. The Nyquist theory is
especially relevant in this project as we have hardware speed
limitations.

Audio cross over frequency
To reduce power usage and increase sound quality many audio
systems make use of what is called a crossover. This essentially
means that they make use of various different speaker that
are better suited to handle a different range of frequencies
[8]. The point at which the various frequency ranges intersect
is called the cross-over frequency. The cross over frequency
for any given speaker is specified by the manufacturer and is
proportional to the size of the speaker. Bigger speakers handle
low frequencies better but smaller speakers handle higher

frequencies better [9].This is important as smaller speakers also
need less power to produce higher frequencies which means
by carefully choosing the speaker arrangement, better sound
quality can be achieved at a lower power cost.

II. METHODOLOGY

The following section provides an overview of the theory
and equipment used to design and test an appropriate filter.
Additionally, the design processed used is shown as well as
the code used to implement the filter.

A. Project Apparatus

The following section shows the main apparatus used during
this project.

Oscilloscope
The oscilloscope was used to measure the output of our filter
as well as the respective input signal from the signal generator.

Fig. 2: Tedtronix 2004B Oscilloscope [2]

WaveTek Signal Generator
The Signal generator was used to produce various input signals
at different frequencies to test our filter response.

Fig. 3: WaveTek Signal Generator [3]

STM32F051 Development Board
The STM32F051 development board was used as the
micro-controller for our project. This board was mainly selected
due to its internal 12-bit ADC and DAC peripherals. The
STM32 series also has extensive support and documentation for
implementation of digital filters, thus making implementation
relatively easy.
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Fig. 4: STM32F051 Development board [4]

Other Relevant Apparatus
The following apparatus were also used during the project:

• Multi-meter: Used to take measurements and perform
circuit debugging

• Matlab (FilterDesign Tool): Used to perform digital filter
design for FIR filter

B. Design and Theory

All digital filters require coefficients to implement the
difference equation required. The coefficients can be obtained
through a design tool like Matlab’s filterDesigner tool. The
below image shows our filter design using Matlab’s tools.

Fig. 5: Matlab’s filter design tool

Two different designs were done using Matlab’s
filterDesigner tool and 1 design was done using TI’s
filter design tool. The purpose for using two design tools
was to test the validity of the system operation. Below is the
coefficients generated. The bode responses will be shown and
discussed in the results section. For our filter design, the pass
band was set to 800 Hz and the stop band was set to 1.2 kHz.
This is so that the filter designed would perform the task of a
cross-over frequency filter as defined in the problem statement.

Fig. 6: Filter coefficients

To prevent high frequency components of our original signal
from causing aliasing at the output we need to include a anti
aliasing filter at the input. This filter is basically a low pass filter
that will attenuated any high frequency components above fs

4 .
The anti-aliasing filter was implemented using analog hardware
and a fourth order Bessel Filter was chosen as the optimal
design. The detailed filter design can be seen below.

Fig. 7: Anti-aliasing filter design

The theory for the design comes from UCT’s EEE3090F
course which references the table shown below [10].
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Fig. 8: Filter Design table

The values for a fourth order Bessel filter were used in the
calculations shown above.

C. System Code

The main elements of our code include the actual FIR
algorithm and coefficients array. The first few code snippets
that are shown implement the actual FIR Filter. The FIR
filter can be implemented in one of two ways, both use a
difference equation. The difference comes in how the previous
input data buffer is updated. The first implementation shown
updates all the values in the data buffer after a calculation.
The algorithm shifts all the data values over by 1. This can
become computationally expensive for high order FIR filters as
the amount of array updates equals the FIR filters order. The
second implementation that is shown makes use of a circular
buffer. Instead of updating all the values in the data array,
you update only one, the oldest, and change the pointer array
referencing where data elements are. This saves computational
resources of the system as less array modifications have to be
made. Experimentation shows that our implementation of a
order 15 FIR filter has both methods producing acceptable
filter responses. However, the circular buffer will be more
efficient. The third code snippet shown initiates an ADC read
which brings data into the system. Following this, the ADC
data is sent to the FIR Filter code which then performs is
filtering operation on the data. After the data has been filtered,
the data is sent to the DAC so that it can be measured. The
measured values can be seen in the results section.

// FIR Filter 1

uint16_t FIR_Filter(uint16_t Fin, uint16_t Order)

{

float FinF = (float)Fin;
float Output = 0;

for (int i=0;i<Order;i++)

{

Output +=

(Buffer[Order-i-1]*Coefficients[Order-i-1]);↪→
if(i == Order-1){

Buffer[Order-i-1] = FinF;

}

else{
Buffer[Order-i-1] = Buffer[Order-i-2];

}

}

return(uint16_t)Output;
}

// FIR Filter 2

uint16_t FIR_Filter(uint16_t Fin, uint16_t Order)

{

float FinF = (float)Fin;
float Output = 0;

for (int i=0;i<Order;i++)

{

Output += (Buffer[i]*Coefficients[Position[i]]);

Position[i]++;

}

Buffer[PosCounter]=FinF;

Position[PosCounter]=0;

PosCounter++;

if(PosCounter==Order)
{

PosCounter=0;

}

return(uint16_t)Output;
}

// Read ADC Value, Filter ADC value and send to DAC

void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* hadc)

{

//adc_val = HAL_ADC_GetValue(&HADC1);

adc_val = HAL_ADC_GetValue(hadc);

//Toggle Blue Led

HAL_GPIO_TogglePin(GPIOC, GPIO_PIN_8);

//add FIR call 8/5/2022

dac_val=FIR_Filter(adc_val,15);

// dac_val=adc_val;

HAL_DAC_SetValue(&hdac1, DAC_CHANNEL_1, DAC_ALIGN_12B_R,

dac_val);↪→
}

The next set of code is the setup of the coefficients data
arrays. There are 15 coefficients in the array as this is an order
15 FIR filter. These coefficients will be multiplied with the
various previous and current input data items in the FIR filter’s
difference equation. Three sets of coefficients were generated
from two different design tools. The two design tools are
Matlab’s filterDesigner (2 sets) and TI’s filter design tool (1
set). The reason 3 sets of coefficients were generated was to
confirm that the filter hardware operated and produced similar
results for data that should produce similar results.
//Added here 14/5/2022 rounded coefficients off to 3 places

//to allow the STM32 to keep up at 16kHZ sampling frequency

static float Coefficients[15]={

0.055,

0.042,

0.054,

0.067,

0.077,

0.086,

0.091,

0.093,

0.091,

0.086,

0.077,

0.067,

0.054,

0.042,

0.055

};

The last bit of code shows function prototypes for the various
functions used as well as some of the important global variables.
These include configuration functions that can be generated
when using STM32Cube IDE and the data buffer variables.
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/* Private variables

---------------------------------------------------------*/↪→
ADC_HandleTypeDef hadc;

DAC_HandleTypeDef hdac1;

TIM_HandleTypeDef htim1;

/* USER CODE BEGIN PV */

uint16_t adc_val; //added here 7/5/2022

uint16_t dac_val; //added here 7/5/2022

/* USER CODE END PV */

/* Private function prototypes

-----------------------------------------------*/↪→
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_ADC_Init(void);
static void MX_DAC1_Init(void);
static void MX_TIM1_Init(void);
/* USER CODE BEGIN PFP */

uint16_t FIR_Filter(uint16_t, uint16_t); // FIR

Filter Function↪→

static float Buffer[15]; // Contains previous inputs

for FIR filter↪→
static int Position[15]; // References coefficients

for a Buffer Position↪→
static int PosCounter=0;

As mentioned previously, some of the code can be generated
by STMCube IDE. The code includes port configuration
functions for the ADC, DAC, and TIMER module. In order
to generate the code, some settings must first be configured.
This process is described below. In the IDE, modules can
be configured in windows like those shown below. Once
configured, the code can be generated and provides a template
to base your project on.

Fig. 9: ADC configuration window

It is important to note that the ADC module is setup in
interrupt mode. Every time the timer1 module reaches its
maximum, it triggers an event. This triggers an ADC interrupt.
An interrupt based approach was taken to produce a finite

sampling time and frequency. Once the ADC has finished its
conversion, the FIR Filter algorithm is called. Refer to the last
code snippet shown.

Fig. 10: DAC configuration window

It is important to note that the counter period is set to a
value of the clock frequency, set to 48 MHz by the internal
oscillator multiplied by the PLL, divided the desired sample
frequency. The clock period selected is roughly the smallest
value that can be used to allow for interrupt latency to occur.
Interrupt latency is the amount of time it takes for the interrupt
to occur and be ready for the next trigger. A blue LED is
toggled every time the interrupt service routine is entered. The
toggling is done at half the sampling frequency and represents
the Nyquist frequency. The timer module allows for discrete
time interval sampling.

Fig. 11: Timer configuration window

The below image shows the window that is used to set the
various clock parameters
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Fig. 12: Clock configuration window

D. Board Construction
Below shows the implemented design consisting of the

STMDiscovery, anti-aliasing filter and connecting components
soldered onto vero-board. This was done for neatness and
presentation of design. Additionally, the connection points
make it easier to connect signals and probes to the relevant
pins for measurements and system operation. The smaller board
is the anti-aliasing filter.

Fig. 13: Hardware Implementation

III. RESULTS

A. Filter Operation

The below images show the filter response at the various
frequencies. Orange shows the output and blue shows the input.

Fig. 14: Digital Filter Response at 100 Hz

Fig. 15: Digital Filter Response at 500 Hz

Fig. 16: Digital Filter Response at 800 Hz

Fig. 17: Digital Filter Response at 1000 Hz
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As can be seen from the images above, the frequency
responses for 100 Hz and 500 Hz show no attenuation. The
frequency response for 800 Hz, the cut-off frequency, shows
some attenuation. The frequency response for 1 kHz shows
heavy attenuation. The stop-band was set to 1.2 kHz in Matlab’s
filterDesigner tool. Therefore, this response is as expected.
The levels of attenuation for 800 Hz is as expected from the
design as the coefficient values were rounded and simulation
does not follow real-world scenarios exactly. Additionally, the
simulations seen in ?? show that the filter does attenuate the
signal to some degree at 800 Hz.

B. Bode response for different co-efficient values with similar
design specs

Referring to Figure 6,??, the below images are the bode
magnitude responses for the different coefficient sets.

Fig. 18: FIR Filter 1 - Matlab Tool

Fig. 19: FIR Filter 2 - Matlab Tool

Fig. 20: FIR Filter 3 - TI Tool

As can be seen from all three frequency magnitude responses,
the digital filter is operating as expected. The digital filter is
filtering out signals that are above 800 Hz.

C. Anti-aliasing

A problem was discovered during experimentation with our
final design. This problem is shown below.

Fig. 21: Aliasing effect at sampling frequency

While the full waveform cannot be shown due to the
limitations of the oscilloscope, what happened is that aliasing
occurred. This problem occurred around the sampling frequency
as well as successive octaves. The output wave-form became
unaffected by the filter and reached an amplitude of about
100 mV. A potential solution to this problem is to use an
anti-aliasing filter. The specific filter design used to test this
theory was a fourth order low-pass Bessel filter designed around
4 kHz. A Bessel implementation was chosen because of its
linear phase response, a desirable trait for audio filters. 4 kHz
was chosen as it would demonstrated whether the solution work
while not defeating the point of the digital filter. The digital
filter has a cut-off frequency of 800 Hz therefore a cut-off of 4
kHz should have no effect on the validity of our digital filters
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results. Below is the resulting waveform once the anti-aliasing
filter was added.

Fig. 22: Output at 15.38 kHz after anti-aliasing filter has been
added

The result shown above has a clearer waveform. The
Peak-to-Peak voltage of the output is about 20 mV. Further
experiment to 32 kHz showed no output. Therefore, the
anti-aliasing filter design will suppress the aliasing frequencies
that broke through the digital filter implementation alone.
The design of the anti-aliasing filter can be found in the
methodology section.

IV. CONCLUSION

This project explored the implementation of an online digital
filter with ADC and DAC capabilities for real time signal
filtering. The STM32F051 development board was used for
the filter implementation as it has built in DAC and ADC
capabilities thus reducing the amount of external circuitry
needed.
The filter design was primarily done in Matlab’s filter
design tool and verified using TI’s filter design tool. The
filter implemented was a FIR low-pass frequency with a
cut of frequency of 800Hz. 800Hz was chosen due to
project specifications. The sampling frequency of 16 kHz due
to micro-controller speed and interrupt latency constraints.
Therefore, this choice was to ensure smooth operation of
the system and satisfaction of the Nyquist sampling criterion.
Overall the project was a success as our filter attenuated values
above 800 Hz and pass through values below. However, due to
some leakage of high frequency components at the switching
frequency of 16 kHz and its successive octaves, An anti-aliasing
filter was included at the input of the filter to correct this. This
was done as an analogue 4th order Bessel filter.
In future projects we would like to explore the possibility of
having the anti-aliasing filter digitally as well. This would be
interesting as we might need to use faster hardware to account
for the extra calculation or develop a more computationally
efficient filter that can operate faster on current hardware.

Furthermore we would also look at implementing a multi-pass
(band-pass) filter digitally for the purpose of filtering out very
low frequency components such as 1 to 50 Hz. This would
result in a cleaner audio signal for our application.
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