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Abstract

Visual cameras used in object tracking applications often struggle in poor visual
conditions sch as dark environments. This report investigates integration of a low-cost
thermal camera into the design of visual tracking systems to improve their performance
under poor visual conditions. This high level objective was then broken up into smaller
sub-objectives which aided with design processes such as component selection, mechanical
part designs and software development. All components were selected to provide the best
results within budget constraints with main components being the Adafruit AMGS8833
Thermal camera, Raspberry Pi 5MP Mini camera and the Raspberry Pi 3B. The mechanical
parts were designed after the component selection process and the dimensions were
tailored to house the specific components. Two algorithms were developed, one that
uses only the visual camera to perform tracking and another one that uses both cameras.
The first algorithm was used as a benchmark to see how much the use of a thermal camera
can improve the performance of the system. The use of a thermal camera allowed the
device to track objects in darker environments where the visual camera performed poorly.
However the overall real-time tracking performance of both algorithms was poor due to
the computational limits of the Raspberry Pi 3B. Overall the device met all the basic

requirements set out at the start but can be improved a lot in future work.
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Chapter 1

Introduction

1.1 Background to the study

Camera tracking systems have become more popular in recent times with the rise of
computer vision in the main stream along with the availability of better computational
hardware at cheaper prices. The most popular modern applications include self-driving

cars and home security and surveillance systems.

Typically these systems would make use of a visual camera and a some sort of
computer vision object detection algorithm to identify and track an object on a visual
frame. The most common algorithms used for these tasks are CNN based algorithms
such as YOLO, RCNN and Fast-RCNN. Other object detection methods like background
subtraction are also used to track moving targets when the project has hardware limitations

and the background of the visual frame is constant over time.

A common problem with using visual cameras for object detection is that they struggle
in poor visual conditions especially in dark environments. Thus the aim of this thesis
is to investigate how the integration of a low cost thermal camera into visual tracking

systems can improve the overall performance in poor visual conditions.

1.2 Problems Statement

The use of only visual cameras in tracking applications (i.e, self driving cars and
security surveillance systems) are limited to situations with good visual conditions. As
a result such systems are rarely able to be used in the night or in enclosed areas where
there is little to no light.
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1.3 Project Objectives

This project aims to improve the performance of visual camera tracking systems under
poor visual conditions by incorporating a low-cost thermal camera into the design using
sensor fusion techniques. To achieve the main objective the project can be subsequently

divided into smaller sub-objectives. These sub-objectives include:

o The design and testing of a camera tracking system using only a visual camera

o The design and testing of a algorithm that improves the performance of the visual

tracking system under poor performance by incorporating a thermal camera

e The design and construction of a mechanical platform that can rotate the cameras

with at least one degree of freedom in order to keep a target within the field view
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1.4 Terms of Reference

The table below outlines the terms of reference for this project.

Table 1.1: Software subsystem acceptance test protocols

Project ID:

JS-03

Supervisor:

Jarryd Son

Description:

Visual cameras are commonly used sensors for a variety of applications
such as pedestrian tracking in self-driving cars and surveillance.
Visual cameras suffer under low visibility conditions which could be
caused by poor lighting, fog etc.

This project aims to develop a camera tracking system that can be
used to keep a target within the visual field. Additionally, the project
aims to use a low-cost thermal camera as an additional source of data
that should improve the performance of the visual target tracking
system. The thermal images would be able to provide some useful
information regardless of lighting and environmental conditions and

should improve the performance of the overall target tracking system.

Deliverables:

The student is expected to complete the following:

o Refine the technical requirements of the proposed project and

develop acceptance test procedures

e Design and implement:

— A visual tracking system to track at least a single target

(e.g.person) in a visual scene

— An algorithm to incorporate the thermal image data to

improve the visual tracking under poor visual conditions

— A mechanical platform to move the cameras to track the
target and keep it within the visual field. A single degree

of freedom will suffice for this platform

o Perform test procedures on sub-systems and integrated solution.

e Submit a final report

Skills/Requirements:

This project requires skills in electronics and embedded systems.

Machine learning knowledge may be beneficial.
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GA1l: Problem
Solving:

Identify, formulate,
analyse  and  solve
complex engineering

problems creatively and

This project aims to develop a target tracking camera that
incorporates visual and thermal images. The combination or potential
fusion of information from these two sources is non-trivial and requires
innovative problem-solving attributes.

This

algorithms for effectively utilising both sources of data (visual

project requires identifying or formulating appropriate

innovatively and thermal images), selecting hardware, and developing a moving
platform as necessary

GA 4: | Design: Refinement of technical requirements, development of

Investigations, acceptance test procedures, justifiable selection of hardware for the

Experiments task, design of the algorithms to incorporate both data sources

and Analysis: | Investigations: Investigate visual target tracking and the use of

Demonstrate additional supplementary data sources, especially thermal images.

competence to | Experiments: Analyse and compare the performance of the visual

design and conduct | tracking with and without incorporation of the thermal image data

investigations and

experiments.

Extra Information:

Link: Infrared and visible image fusion methods and applications: A

survey

» Most of these are beyond the scope of the project, but this should

at least provide some context

BROAD  Research | Visual tracking
Area:

Ethics: No

Project suitable for | ME
ME/ECE/EE/ALL:



https://www.sciencedirect.com/science/article/pii/S1566253517307972
https://www.sciencedirect.com/science/article/pii/S1566253517307972

1.5. SCOPE AND LIMITATIONS
1.5 Scope and Limitations

1.5.1 Scope

The scope of this project includes the design and testing of visual camera tracking
system along with the integration of a thermal camera for improved tracking under poor

lighting conditions. A detailed scope breakdown can be seen below.

o Design and implementation of an object tracking system using a visual camera
o Development of sensor fusion algorithm for thermal- and visual-camera
o CAD design and construction of a mechanical platform to mount components

o The development and implementation of suitable Acceptable test protocols for each

subsystem along with the final system
The scope of this project does not include the following:

o Fast real time performance of the camera tracking system

1.5.2 Limitations

This project had the following limitations:

A limited budget of R2000
e Time constraint of 14 weeks

« Limited to a Raspberry pi 3B which has insufficient hardware to execute the project
properly (Lack of a GPU)

o Limited to real-time test data i.e, no simulations

o Limited to a quality thermal camera
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1.6 Plan of development

The report remainder of the report has been structured as follows:

Chapter 2 - Literature review - Provides insight into literature for the concepts

used during this project
Chapter 3 - Methodology - Describes methodology followed in this project
Chapter 4 - Design - Provides a detailed design process of the system
Chapter 5 - Results - Provides the results obtained from testing the system

Chapter 6 - Conclusion and Discussion - Discusses the results obtained, provides

concluding remarks and future recommendations
Bibliography

Appendices



Chapter 2
Literature Review

This section aims to provide insight into relevant literature associated with the implementation
of the given task. Its starts out by taking a closer look at thermal cameras which are one
of the primary sensors needed for this project. It then takes a look at sensor fusion which
is one of the primary objective of this project. Finally it takes a look at object detection
algorithms which are used to detect humans on a given frame to allow for tracking to be

implemented.

2.1 Visual cameras and object detection

A visual camera can best be described as a device with the capabilities to capture
and store visual information. The earliest form of a camera as we know it in the modern
era was created by Joseph Nicéphore Niépce in early 1800s. He managed to capture the
first permanent photograph that didn’t fade easily [16].

Most cameras used today are digital and are present in many commercial devices
such as self-phones, surveillance systems and laptops. Digital cameras are comprised of
a 2d-array of millions of light sensitive photosites that store information in the form of
an electrical signal when exposed to light. The strength of the electrical signal generated
by each photosite is then measured and processed to determine the color of the pixel and
subsequently form the digital image [I7]. The amount of photosites in the camera lens
define what is commonly known as the megapixel rating of the camera with each pixel

being comprised out of three photosites [17].
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Figure 2.1: Basic diagram showing how a digital camera generates a digital images from
incoming light [1]

Even though digital cameras are excellent for capturing still images and videos in most
scenarios they still have significant performance issues when used for object detection
applications. The most common problem is that visual cameras need to have an external
light source present in order to detect objects in the environment. Even a slight change in
the illumination level of the environment can severely impact the performance an object
detection algorithm due to objects appearing different under varying light conditions.
Another problem with visual cameras is occlusion which means that objects can sometimes
be partially hidden behind other objects that are in the foreground of the frame and as
a result they become difficult to detect [1§].

To improve the performance of object detection under low light conditions Morawsk
et al. [2] proposed the used of image enhancement methods and patch -wise light
augmentation along with object detection algorithms. However they were only able to
achieve a slight improvements in detection compared to using the object detection models
without their proposes improvements as seen in figure. The authors also stated that there
currently exists a huge gap in performance of object detection algorithm when they are
used in extreme low light conditions compared to when they are used in non-extreme

T

conditions [2].

Proposed Enh.
Detector init. Module APy APy4 AP
RetinaNet [E3] COCOo [0 f ;i‘i:;r :;;’;: 1;'::;
PAE  cocolm P aen  assn derm
Faster R-CNN [[E]  ImageNet [0 : i'llgl;ji_ :;;,;: ;;::‘
s wam  f %% G0 L&

Figure 2.2: Performance comparison of popular object detection models under extreme
light conditions with and without image enhancements light [2]



2.2. OBJECT DETECTION AND TRACKING

2.2 Object Detection and Tracking

Object detection is a process within the realm of computer vision that aims to identify
and locate specific objects in a digital video or image. Object detection is often the first
task performed in many computer vision processes as it provides crucial information
about the detected object. The information gathered from the object detection stage
allows computer vision systems to perform several tasks including feature recognition
and object tracking and as a result it is used in many modern applications such as

surveillance systems and security systems, robotics and autonomous driving vehicles [19].

Figure 2.3: illustration of how an object detection algorithm identifies different objects
on a visual frame [3]

2.2.1 Convolutional Neural Networks (CNN)

Convolution Neural Networks are artificial neural networks that are typically used in
image processing and recognition tasks. Most modern object detection algorithms such as
Region based Convolutional Neural Networks (R-CNN), Fast R-CNN and You only look
once(YOLO) make use of the CNN architecture as a base for performing detection [20].
The CNN Architecture normally consist of three types of layers including the convolution
layer, pooling layer and fully connected layers. Each of these layers perform a specialised
task that is critical in the success of the algorithm [14]. A detailed breakdown of each
layer of the CNN can be found in Appendix

2.2.2 Object Detection Algorithms

Object detection algorithms can be classified into two classes namely single state-stage
detectors and two stage detectors. The most common single-stage detectors include the
Single Shot Multi-box detector(SSD) and YOLO algorithms while the most common two-
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stage detectors include R-CNN, Fast R-CNN and faster R-CNN [21].

Two stage detectors work by first identifying a region of interest (ROI) on the given
image and then feeding the ROI into a secondary stage that does object classification
and boundary box regression. Single-stage detectors take a much simpler approach by
using simple regression methods to classify and locate the given objects on a image. The
main difference between single-stage and two-stage detectors is the trade of between speed
and accuracy. Single stage detectors are generally faster than two-stage detectors which

generally have better accuracy [21].

0.6
® Faster RCNN (Inception)
0.5 @ R-FCN (ResNet)
Faster RCNN (ResNet) @ YOLOv2-608
% 04 @ 55D (VGG-500)
pek @ YOLOv3-416
3 03 ® _R-FCN ® 55D (VGG-300)
=] @ 550 (Inception)
: ® 55D (Mobilenet)
I 02 @ Tiny YOLO-608
®
0.1 Tiny YOLO-416
0 e SqueezeDet
t
o 10 20 30 40 50 60 70 80 L.

Throughput =

Figure 2.4: Average inference time vs Average Accuracy of various Object detection
models (Tested on NVIDIA Jetson Nano) [4]

Due to the superior speed in single-stage detectors they are often considered for
applications that have limited hardware resources i.e, embedded systems. However it
is worth noting that the increase in speed may severely impact the accuracy to the point
where the obtained results are sub par. Thus, Kim et al.[4] proposed a study to find
the object detection algorithm that possesses the optimal accuracy and speed trade-off
for deployment on embedded systems. Their study found that YOLO-V3 performed the
best within the given criteria with Faster R-CNN and YOLO-v4-tiny producing the best
accuracy and speed respectively. The results of their study can also be seen on figure [2.4

above.

A more traditional method of object detection is background subtraction. Background
subtraction is a simple object detection technique that works by comparing the input
image to a similar reference frame that doesn’t contain any objects. The reference image
pixel values are subtracted from the input image pixel values and then fed into a pre-

defined threshold to determine if there is an object on the frame [5].

10
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Figure 2.5: Basic structure of background subtraction algorithm [5]

Background subtraction techniques can be mainly classified into two classes namely
recursive and non-recursive techniques. Non recursive techniques work by storing previous
input frames and using them estimate to objects on future frames. The most common
non recursive techniques include frame differencing, frame differencing, median filtering
and linear predictive filter. Recursive techniques work by recursively updating a single
reference background model based on current input frames. Recursive techniques include
the approximated median filter, kalman filter and mixture of Gaussian (MoG) methods
[22]. In general recursive techniques require less hardware resources compared to non-
recursive techniques as non-recursive techniques needs to store information which consumes

resources [23].

2.3 Thermal Imaging and Infrared Cameras

2.3.1 Brief History

The existence of infrared light was first discovered by German astronomer Sir William
Herschel in the 1800s. He made his discovery whilst performing an experiment where he
passed sunlight through a glass prism to split it into various colours with the aim of
determining how much heat is contained within each colour on the visible light spectrum.
During his experiment he noticed that the amount of heat contained in each colour
increased as he moved from violet to red, thus out of curiosity he decided to measure just
beyond the visible red and found that this area was even hotter which lead to the discovery
of infrared light [24]. Sir Williams discovery ultimately led to the first form of a thermal
camera being developed by Hungarian physicist Kalman Tihany for the British military
in 1929. In the latter half of the 20th century American companies Texas Instruments,
Hughes Aircraft and Honeywell made further improvements on Tihany’s invention and

essentially laid the foundation for the wide spread application of thermal cameras and

11
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thermal imagery today [25].

2.3.2 Brief Theory

Thermal cameras make use of infrared radiation emitted from objects to create an
image. Infrared radiation occupies the area just below visible red light on the electromagnetic

spectrum and has a wavelength ranging from approximately 780nm to 1mm [26].

Thermal infrared
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Figure 2.6: A diagram indicating the position of infrared radiation on the electromagnetic
spectrum [6]

The infrared section of the electromagnetic spectrum can be further sub-devised into
various categories including Near Infrared (NIR), Short wavelength Infrared (SWIR),
Medium Wavelength Infrared (MWIR),long wavelength infrared (LWIR) and Far Infrared
(FIR). However the FIR,SWIR and NIR sections do not form part of the thermal infrared
spectrum which is the range of wavelengths used for thermal imaging, thus the the
thermal infrared spectrum occupies the range of wavelengths between 3um to 12uml[6].
Physically thermal cameras make use of an array of sensors called a focal plane array
to detect infrared radiation, the sensors then produce an electrical signal is relayed to
computer/micro-controller to produce an image. The quality of the image produced is
directly related to the amount of sensors used as well as their sensitivity. As different
temperatures produce different thermal radiation the hardware used in any given application
can be tailored to be more sensitive within a given range of infrared light for a known
situation [7]]27].
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Figure 2.7: A Diagram diagram indicating which range of infrared radiation works best
produce the best results for detecting specific temperature ranges) [7]

A detailed breakdown of the physics of thermal cameras can be found on Appendix

A2

2.3.3 Modern Application

Thermal cameras are used in a variety of modern day applications due to the unique
perception they provide of the environment. Common uses include the maintenance
of electrical wiring and equipment, Mechanical installations, security and surveillance
systems, Gas defections and a variety of medical procedures which help with the detection
of breast cancer,diabetes and nephropathy and vascular disorders [28] [29]. With the rise
of Al and computer vision over the past decade accompanied with the commercialisation
of thermal cameras it has also seen them being applied within the realm of object detection
and tracking [30].

2.4 Sensor Fusion

Sensor fusion is the process of merging information from two or more sensors to
create a more accurate representation of reality and subsequently improve the quality
and robustness of the overall system. Due to the increase in sensors available on the
market at various prices and varying functionality the use of sensor fusion has become

more popular in recent times.

According to Prajapati et al.[31] the use of sensor fusion provides four general performance

improvements. These performance improvements can be seen through a higher abstract
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2.4. SENSOR FUSION

level of the data, improved certainty and reliability of the system, improved accuracy
and noise reduction of the data as well as improved completeness of the data. However
a key issue with sensor fusion is that individual sensors often tend to have different data
structures and formats in which they provide data. The conversion of the source data to

a common reference frame is crucial to the success of the sensor fusion process [31][32].

In general sensor data can be combined in three fundamental ways namely competitive
fusion, complementary fusion and co-operative fusion. Each of these methods aim to
improve a specific aspect of the system and thus in most applications a combination of
all three methods is used [§].
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Competetive G IR Cooperative
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Figure 2.8: A Diagram diagram indicating the three fundamental ways of data
combination for sensor fusion and the improvements they make to they make to the
system [§]

Thermal imagery has brought a new dimension to object detection and tracking as
they are less sensitive to environmental changes compared to visual cameras, thus making
thermal cameras better suited for certain applications. However due to the limitations of
thermal cameras the idea of using sensor fusion to combine visual- and thermal-cameras
to increase the performance of object detection systems is one that is often proposed in

the literature.

In a study done at Linkoping University researchers found that the use of sensor
fusion between visual- and thermal-cameras for object detection under varying lighting
and weather conditions outperformed the cases where the sensors were used individually

[23]. Sensor fusion can however also be detrimental to the performance of the system if it
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2.4. SENSOR FUSION

isn’t applied properly. This was demonstrated in a study done by Abidi et al.[9] in which
they attempted to use visual and thermal cameras to improve facial recognition software
by making use of different sensor fusion techniques. During the study they found that
only the decision based sensor fusion method consistently produced better accuracy in
all scenarios than the use of the individual sensors. The results from their can also be

seen below in figure 2.9
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Figure 2.9: Comparison of different sensor fusion methods and their accuracy in two
different scenarios [9]
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2.5 Concluding Remarks

Through investigating the literature discussed in this chapter I have found that camera
tracking systems that make use of only visual cameras can be severely impacted by
poor lighting conditions and object occlusions due to the limitations of digital cameras.
Morask et al. [2] proposed methods to improve the performance of object detection
algorithms under extreme low light conditions but were only able to achieve a very slight
improvement. This reaffirms the notion that the problem lies with visual cameras and

their limitations rather than object detection models.

Current object detection models are mostly CNN Based a with the most popular ones
being Yolo, SSD, R-CNN, Fast R-CNN and Faster R-CNN. Out of these Faster R-CNN
is the most accurate and Yolov4-tiny is the fastest. According to Kim et al. [4] the best
model to use on devices with limited computational hardware is YoloV3 as it has the
most optimal speed-accuracy trade off. However I think in situations where real time
performance is key and the device has limited computational resources YoloV4-tiny is
the best due to the high inference time. It would also be beneficial to further investigate
the use of object detection algorithms on embedded devices in order to develop more

efficient models.

The use of sensor fusion between visual and thermal cameras has also been proposed
in the literature by Abidi et al and Bergenroth. In both studies the use of sensor
fusion between the visual and thermal camera improved the overall systems performance,
However Abiddi et al [9] showed that sensor fusion can also be detrimental to the
performance of the system in implemented incorrectly. This thesis also aims to use
sensor fusion techniques to improve the performance of object detection under poor visual
conditions, however it will make use of a low resolution thermal camera which brings along

new challenges to overcome.
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Chapter 3

Methodology

3.1 High Level Description

As mentioned in Chapter 1 the aim of this project is to produce a camera tracking
system that incorporates a visual- and low cost thermal camera. To help achieve this
goal the project followed a V-Diagram design methodology as it is a simple model that

allows for sufficient testing of subsystems and the final design.

Project Start Project End

Results and Conclusion
+ Document and comment on

Problem Statement
Development and

Project Planning the performance of the

system
+ Propose further future
improvemnents on the project

e - -\ /--»

User Acceptance

Testing

« Testto see if the system
meets al the user
requiremnents

Requirement and Test
analysis for Camera
Tracking System

+ User Requirements

+ Functional Requirements

+ Acceptance Test Procedures

e >

System Design Full System Testing

+ Full design of camera tracking « Testing of the full system for
system to satisfy all user and | ¢ \ y »  decects
functional requirements. + Bug Fixing

Subsystem Testing
+ Testing of each individual
subsystem for defects

+ Bug fixing

Subsystem Design
+ Subsyem Identication
+ Subsystem design e \ / .
+ Compement Selection for

Hardware Subsystems
+ Algolithim Developent

Implementation
+ Combination of each
f

ype of the
camera tracking system

Figure 3.1: V-Diagram showing how the planned project progression

Based on the problem statement in Chapter 1 the user requirements were extracted

and refined into functional requirements. This is an important step in the design process
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as it ensures that the final design meets all the users demands, whilst also providing a

way of breaking the system into various hardware and software subsystems.

The hardware subsystems include the design of and build of a mechanical motor
mount and housing using CAD software and 3d printing. It also includes a component
selection process which aims to select the best possible components that meet the user
requirements and maximizes performance whilst still remaining within budget constrains.
The Raspberry Pi 3B was chosen as the embedded system for this project along with the
Adafruit AMG8833 IR Thermal Camera and the 5SMP Raspberry Pi visual camera. The
motor chosen for this project is the Fitec micro 9g servo motor as it is easy to use and

power efficient whilst also being non-expensive.

The software subsystems include the design of an algorithm to detect humans objects
on a visual frame captured by the Raspberry Pi visual camera and actuate the servo motor
to centralise the object on the frame. It also includes the design of an algorithm which
makes use of sensor fusion to combine the data from the visual and thermal camera
to improve detection and object tracking of the system under poor visual conditions.
OpenCV and Python along with a custom trained YOLO-V4 Tiny object detector were

the main tools used to implement both algorithms.

To ensure the integrity of each subsystem various acceptance test protocols(ATPs)
were laid out for each subsystem. These ATP’s were specifically designed to test the

performance of each subsystem individually.

3.2 User Requirements

The following user requirements were derived from the problem statement, scope

breakdown and project objectives in Chapter 1.

Table 3.1: User requirements of Camera Tracking System

’ Requirement 1D H Requirement Text ‘

RU001 The system must be able to track at least a single object
in a visual scene

RU002 The system must incorporate a low-cost thermal camera
to improve tracking under poor visual conditions
RU003 The system must be mounted on a mechanical platform
to move the cameras and keep the target within the visual
frame with at least one degree of freedom.
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3.3 User Requirement Analysis

This section aims to refine the user requirements into functional requirements.

3.3.1 Analysis of RU001

"The system must be able to track at least a single object in a visual scene”

The system must use an object detection algorithm to identify objects on a visual

scene and actuate a motor to track the position of the object.

Req. ID Requirement Text Derived From
Development of an object detection algorithm to detect a human

FRO01 ) ) RU001
in a visual screen

FRO02 Detection algorithm should be able to actuate a motor to track RUOOL
the position of an object on a visual camera

FRO03 The system must include a visual camera which can be used RUOOL

to capture visual scenes

The system must include an embedded system which can be
FR004 used to run the algorithms, interact with the camera and actuate | RU001

the motor

Verification of FR001
The object detection algorithm will be set to detect only humans on a visual scene. This
will be tested by running the algorithm with a visual camera and checking if it draws a

boundary box around people on the frame whilst ignoring other objects.

Verification of FR002
Place an object off centre on the visual frame and if the system works as intended the
algorithm should actuate the motor to turn the camera such as to centralise the object

on the frame.

3.3.2 Analysis of RU002

"The system must incorporate a thermal camera to improve tracking under poor visual

conditions”

The system must make use of an algorithm that incorporates sensor fusion techniques

to improve the tracking performance of the visual camera under poor visual conditions.
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Req. ID Requirement Text Derived From
Development of an algorithm that uses both visual and low cost

FRO05 thermal camera data to improve performance under poor RU002
visual conditions

FRO06 The system must include a low cost thermal camera to RU002

capture infrared scenes in the environment visual conditions

Verification of FR005

Run the system under varying visual conditions with just the system with only the

visual camera (Thermal camera disabled) and then with the thermal camera enabled

(Fused System). If the sensor fusion algorithm works as intended there should be an

improvement in object detection under poor visual conditions (i.e Dark environments)

with the thermal camera enabled.

3.3.3 Analysis of RU003

"The system must be mounted on a mechanical platform to move the cameras and keep

the target within the visual frame”

The hardware design must include a housing for a the motor and any necessary

electronics needed for the system. It must also include a mounting platform to mount

both the thermal and visual cameras on the motor.

Req. ID Requirement Text Derived From
Design and building of a mechanical housing to mount

FRO07 RU003
electronics and motor
Design and building of a mechanical mount to mount both the

FRO0S visual and thermal camera onto the motor. The cameras RU003
must rotate with one degree of freedom in the x-axis only, thus
meaning they are stationary in the y and z planes respectively

FRO09 The Motor should be able' to handle the Weight of both RU003
cameras as well as the weight of the mechanical motor mount

Verification of FR007

The housing will be designed with enough space to fit all the necessary components with

dedicated mounting slots for the motor and embedded device.

Verification of FR0O0S8

The mechanical motor mount will be designed to house both cameras and the motor will

be mounted on the housing such that it rotates within the x-plane.
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3.4 Subsystem Identification

Based on the functional requirements set out above the camera tracking system can be
divided into various subsystems which will be designed and tested individually to ensure
the optimal performance of the final design. Figure below shows how the overall

system is sub-devised into subsystems.

Camera
Tracking

System

Hardware Software
Subsystems Subsystems
Y _L
Mechanical Mechanical Hardware Visual Sensor
Housing Motor Mount Circuit Tracking Fusion
Deisgn Design Design algorithm algorithm

:

Component
Selection
Process

! ' ! '

Embedded
System
Selection

#

Camera
Selection

Camera

Selection

Motor
Selection

Visual

Thermal

Figure 3.2: Subsystem Breakdown of the Camera Tracking System
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Chapter 4
Design

This chapter aims to give a detailed account of the design process for the camera
tracking system. This includes a full technical description of both the hardware- and

software-subsystem design along with suitable acceptance test protocols for each subsystem.

4.1 Hardware design

As seen in section the hardware component of the camera tracking system can
be broken up into various subsystems. This section covers the detailed design process of
each hardware subsystem whilst also proposing suitable acceptance test procedures which
aim to evaluate the subsystems performance in reference to the user demands. As this
project has budgetary constraints the main aim of this section is thus to produce suitable

hardware solutions which deliver the best possible results within the given budget.

4.1.1 Component Selection

As shown in figures [3.2] and [4.1] various components are needed in the camera tracking
system which all serve specialised roles in fulfilling specific functional requirements. As
mentioned in section this project has a budget constraint of R2000 and as such a
rigorous component selection process is required to select the best components for the
price. The selection criteria used for component selection can be seen below in order of

importance:

e Performance Quality - To ensure the best possible performance of the camera

tracking system it is preferential to have the best components on the market.

o Price - Due to budget constraints a price-performance trade off is needed

22



4.1. HARDWARE DESIGN

o Compatibility - It is important to ensure that the components are compatible

with each other and that they use similar communication protocols

o Availability - As the project has a strict deadline it is important to select components

that are readily available

o Flexibility - Due to budget constraints it would be preferential if one component

can fulfil multiple system requirements
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Figure 4.1: High level diagram showing how the hardware components are connected and
their respective communication protocols

Raspberry-Pi 3B

The Raspberry Pi 3B is a powerful micro-controller device with a Quad Core 1.2GHz
Broadcom BCM2837 64bit CPU and 1GB Ram. It also boasts 28 general input-output
(GPIO) pins including various pins with support for PWM and multiple communication
protocols including UART, 12C, and SPI build in. It also has support for serial communication
over micro USB with the micro USB port also serving as the 5V power-in port. The
dedicated CSI camera port on the raspberry pi 3B allows for the easy connection of a

raspberry pi visual camera and eliminates the need for any unnecessary overhead circuitry.

23



4.1. HARDWARE DESIGN

Due to the fact that the raspberry pi 3B provides moderately powerful performance,
supports multiple communication protocols and PWM for servo motor control, has a
dedicated CSI camera port and was readily available at no cost it was chosen as the

embedded system for this project.

Other devices Considered
The Raspberry Pi 4 and the NVIDIA Jetson Nano were also considered as possible
embedded system candidates as they are more powerful than the Raspberry Pi 3B.
However the Raspberry Pi 4 is unavailable on the market and the Jetson Nano is too

expensive.

Figure 4.2: Figure depicting the Raspberry Pi 3B [10]

Raspberry Pi 5MP(1080P) Mini Camera-Video

The Raspberry Pi camera boasts a 5SMP camera lens with 1080p video capability in
a small compact design of 25mm x 24mm x 9mm and a weight of just over 3 grams. It
communicates with the Raspberry Pi device through a dedicated CSI camera interface

and comes pre-made with 4 mounting holes.

Due to its compact and light design, 1080p video capabilities along with the ease of
communication with a Raspberry Pi 3B device through CSI the Raspberry Pi camera
Mini is the perfect visual camera for this project. It is also very inexpensive with a price
of only R165.00.

Other devices Considered The Raspberry Pi Camera Board, Version 2, Sony
IMX219 8-Megapixel device was also considered for this project. It has a better camera
module (8MP) which allows it to give clearer images than the camera selected for this
project. However it wasn’t selected as it is much more expensive and the increase in video

quality has a negligible effect on the performance of the overall system.
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Figure 4.3: Figure depicting Raspberry Pi 5MP(1080P) Mini Camera-Video[IT]

Adafruit AMGS8833 IR Thermal Camera

The Adafruit AMG8833 is a 8x8 thermal camera with the capability of measuring
temperatures ranging from 0° to 80° with an accuracy of £2.5° . It weighs approximately
6 grams with a compact board design of 25.8mm x 25.5mm x 6.0mm. The camera has
a maximum refresh rate of 10Hz and communicates with embedded devices over the 12C

communication interface. This camera module has price of R867.00.

The low resolution of 8x8 coupled with the slow refresh rate 10Hz means that the
Adafruit AMG8833 takes up minimal computational resources for image processing applications.
This important as the Raspberry Pi 3B has limited computational resources. Furthermore
the Adafruit AMGS8833 also satisfies RU002 which states that the thermal camera must

be of low-cost. Therefore it was chosen as the thermal camera for this project.

Figure 4.4: Figure depicting the Adafruit AMG8833 device[I12]

Feetech Micro 9g Servo Motor

The Feetech Micro 9g is a small servo motor that can produce a maximum torque
of 1.3 kg - ecm @ 4.8V, 600mA. It can reach a maximum rotational speed of 0.12 sec/60°
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and has a a running angle of approximately 120° . The position of the motor can be
controlled by providing it with a PWM signal with a pulse with between 900 s(Minimum
angle) and 2100 s (Maximum angle) over the control lead. The Feetech Micro 9g is very

inexpensive with each unit pricing only R68.00.

Due to the lightweight designs of both the visual and the thermal camera the motor
needed for this project doesn’t need to have a lot of torque to perform adequately. Thus

the Feetech Micro 9g is perfect as it is easy to control and very inexpensive.

Detailed Wiring Diagram for Hardware Components

Figureld.5|below shows a detailed wiring diagram for connecting the Adafruit AMG&8833
IR Thermal camera and the servo motor to the Raspberry Pi GPIO pins. The Raspberry
Pi Camera is not included on the wiring diagram as it connects directly to the CSI

connector in the Raspberry Pi 3B device.

The power required for the servo motor can be provided by any external power supply
that can supply at least 750mA at 5V DC. The Raspberry Pi device can be powered
over the micro USB interface and requires a power supply that can provide a maximum
output of at least 1.3A at 5V DC.
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Figure 4.5: Detailed wiring diagram of hardware components for the camera tracking
system
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4.1.2 Mechanical Housing Design

As seen in Section functional requirement FRO07 states that the mechanical
housing must have enough space to fit all electronic components and possess dedicated
mounting slots for the Raspberry Pi 3B and the Feetech Micro 9g servo Motor. To fulfil
all the necessary requirements this project makes use of a three tier stack design with the
first tier housing the Raspberry Pi 3B, The second tier acting as a protective layer for the
Raspberry pi and the third tier housing the Feetech Micro 9g servo motor. All three tiers
were designed using the TinkerCad software and manufactured using the Prusca Mini 3D

printer.

The first tier if the housing is specifically designed to mount the Raspberry Pi 3B
device, thus it has 4 mounting points which align directly with its dedicated mounting
holes. The first tier also aims to provide extra space for any electronics that might be
added to the design later (i.e, External Power Supply) therefore the design incorporates
extra height elevation under the Raspberry Pi Mounting points. To encompass all the
above set parameters the first tier has the following external dimensions: 89.92mm x
61.72mm x 39.14mm.

The design file for the 2nd tier of the mechanical housing can be found on gitlab at
the following link: Base Final Design,

Figure 4.6: Figure depicting the 1st tier of the mechanical housing design

The second tier of the mechanical housing is simply designed to improve the aesthetic
of the housing and to provide a protective cover for the Raspberry Pi. It has four
mounting holes which align perfectly align with the first tier Raspberry Pi mounting
holes. Therefore the second tier of the housing has the following external dimensions:
64.18mm x 54.19mm x 16.10mm. The design file for the 2nd tier of the mechanical
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housing can be found on gitlab at the following link: |Middle final Deign|

Figure 4.7: Figure depicting the 2nd tier of the mechanical housing design

The 3rd tier of the mechanical housing is designed to house the Feetech Micro 9g
servo motor. It has 4 mounting points that perfectly align with the mounting holes of
the second tier. Thus it has the same external length and width as the second tier with
the height tailored to fit the servo motor specifically. As a result the 3rd tier has the
following external dimensions: 64.18mm x 54.19mm x 55.09mm. The design file for the
3rd tier of the mechanical housing can be found on gitlab at the following link:

Figure 4.8: Figure depicting the 3rd tier of the mechanical housing design
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4.1.3 Mechanical Motor Mount

The mechanical motor mount for this system must be able to house both the thermal
and the visual camera whilst also being lightweight to ensure that the servo motor can

still turn freely. Given these specifications the following design was produced.
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\\ B

Figure 4.9: Figure depicting the mechanical motor mount

The design in figure can be easily attached to the servo motor by fitting a screw
through the mounting hole in the middle. The Raspberry Pi- and thermal camera can
both slide into the vertical slit in any order, however the preferred configuration would
be to place the Pi-camera at the bottom. The design makes provision for the raspberry
pi ribbon cable to run out the bottom of the mount to help prevent any damage to the
cable due to sharp bending. The external dimensions of the motor mount are as follows:
26mm x 32mm x 55mm with a g3mm mounting hole. The design file for the mechanical

motor mount can be found on gitlab at the following link: Motor Mount Design
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4.1.4 Acceptance Test Protocols: Hardware Design

Table 4.1: Hardware subsystem acceptance test protocols

ATP ID | Hardware Acceptance Test Protocols(ATP) Functional
Subsystem Requirement
Satisfied
ATP1 Raspberry Pi | The device turns on correctly and the LED turns | FR004
3B on when powered on. Device can be accessed
successfully over ssh
ATP2 Raspberry Pi | LED turns on when device is powered on and | FR003
5MP(1080P) | no errors are encountered when running following
Mini Camera- | line in the raspberry pi command line: $ raspistill
Video -0 test.jpg
ATP3 Adafruit Device is detected over 12C when plugged in. | FR006
AMGS833 Device should output a 2d array of temprature
IR Thermal | values when running the following script: |Adafruat
Camera AMGS833 Test
ATP4 Feetech Micro | Device should move to three different positions | FR002,
9g Servo | when running the following script: Motor Test. | FR009
Motor Device should be able to turn effectively with
cameras and mount attached
ATP5 Mechanical The housing should have dedicated mounting | FR007
Housing positions for the servo motor and the raspberry pi
device. Housing should have space to potentially
fit in other electronics if needed.
ATP6 Mechanical Mechanical mount should be able to hold both the | FRO08

Motor Mount

thermal and the visual camera. Mount should fit

onto the Feetech 9g Servo motor
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4.2 Software Design

As seen on figure the software portion of this project can be divided into two sub-
categories. The first sub-category aims to develop an algorithm to track a human object
on a visual scene captured by the raspberry pi camera. The second sub-category aims to
improve on the visual tracking algorithm by making use of sensor fusion to incorporate

a low-cost thermal camera into the design.

4.2.1 General Design Choices

The software for this project was designed using the Python programming language
as it has extensive support for computer vision applications through the OpenCV library.
It also allows for the easy control of servo motors with minimal motor jitter by using the

pigpio library.

To perform human-object detection on visual frames this project makes use of the
YoloV4-tiny object detection algorithm. As seen on figure it has the fastest inference
time compared to other well known object detection algorithms whilst also providing
moderately good detection accuracy. The higher inference time is especially important as
it allows for faster performance on devices that have very limited computational resources

such as the Raspberry Pi.

frame

Figure 4.10: Example of a human-object detected by the Yolov4-tiny on a visual frame
captured by the Raspberry Pi camera

The poor 8x8 resolution of the AMG8833 Thermal camera doesn’t allow for the use
of a CNN based object detection model such as Yolo for human-object detection. As a

result this project makes use of the background subtraction model to perform this task.
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After testing the AMGS8833 thermal camera it was found that human-objects show up as
white spots on the RGB frame as shown in figure |4.11

Figure 4.11: Figure of a human-object captured by the AMG8833 Thermal Camera in
the RGB Color space [13]

Thus the background subtraction model works by converting the original thermal
image to gray-scale and then applying a binary mask that turns all the pixels that are

non-white completely black and all the white pixels completely white as seen in figure

412 below.

(a) Original thermal image with gray- (b) Thermal Image after Binary mask is

scale filter applied

Figure 4.12: Comparison between gray-scaled thermal image containing a human object
before and after binary mask is applied

After the binary mask is applied the model looks for the white spot with the biggest
pixel area as it is most likely the human-object in the frame. Similarly any white-object
with pixel area less than 50 pixels is ignored by the model as these are very small objects
and most likely not a human. However the model will not be able to distinguish a human
object from any other object white object with a pixel area bigger than 50. This could

possibly lead to false detections if foreign objects enter the field of view of the camera.
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4.2.2 Visual Camera Tracking Algorithm

The diagram below shows a high level logic diagram of the tracking algorithm using

the visual camera only.

+ Servo Motor
+ Raspberry Pi Camera

Program
or
i stopped
No

aaaaaa

YoloV4-tiny
Obiject (
detector Determine

\ N
-position >™_
centre_of_frame
Yes Yes \\ == No

[

End Program ‘

Figure 4.13: Logic flow diagram of the visual tracking system algorithm

The algorithm shown in figure above follows a simple logic sequence. It works
by reading in a frame from the Raspberry Pi camera and feeding it into the YoloV4-tiny
object detector. If a person is detected the algorithm will determine the x-position of
the person on the frame in terms of the pixel value. If the person is in the centre of the
frame the loop will simply move on to the next iteration, however if the person is not in
the centre the algorithm will actuate the motor to turn the camera left or right given the

x-position of the person relative to the centre of the frame.

The detailed code for this algorithm can be found at the following git repository link:

Visual Camera Tracking Algorithm

33


https://gitlab.com/Lezerick17/eee4022s-project/-/blob/main/Final%20Algorithms/Visual_Camera_Tracking.py

4.2. SOFTWARE DESIGN

4.2.3 Visual-and Thermal-camera fusion Algorithm

The diagram below shows a high level logic flow diagram of the tracking algorithm

using the visual and thermal camera.

Infinife Loop

Figure 4.14: Logic flow diagram of Visual-and Thermal-camera fusion Algorithm

As seen from figure the visual camera acts as the primary source for tracking
in the fusion algorithm with the thermal camera only being used when no human-object
is detected on the visual frame (i.e, in poor visual conditions). This is as due to the
thermal camera having a much higher chance of false detections than the YoloV4-tiny
detection on the visual camera. When a human-object is detected on the visual frame
the algorithm completely ignores the thermal camera and immediately jumps to the end
of the main loop. This is done to help reduce the amount of computational resources
used and speed up the tracking on the visual camera when the thermal camera is not
being used for tracking. The two sensors work independently to achieve tracking under

varying light conditions, thus the system makes use of the complementary sensor fusion
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technique shown of figure [2.8]

4.2. SOFTWARE DESIGN

The detailed code for the fusion algorithm can be found at the following git repository

link: Visual-and Thermal-camera fusion Algorithm

4.2.4 Acceptance Test Protocols: Software Design

Table 4.2: Software subsystem acceptance test protocols

ATP ID | Software Acceptance Test Protocols(ATP) Functional
Subsystem Requirement
Satisfied
ATP7 Visual FRO01,FR002
Camera Algorithm compiles and runs successfully
Tracking without errors
Algorithm
Algorithm is able to detect a human-object
on a visual frame
Algorithm is able to actuate the servo motor
to track a person on a visual frame
ATPS Visual-and FRO01,FR0O02,
Thermal- Algorithm compiles and runs successfully FRO05
camera. fusion without errors
Algorithm

Algorithm is able to detect a human-object

on a visual frame

Algorithm is able to detect at least one
human object on a thermal frame in poor

visual conditions

Algorithm is able to actuate the servo motor

to track object on a visual frame

Algorithm is able to actuate the servo motor

to track an object on a thermal frame
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4.3. DESIGN IMPLEMENTATION

4.3 Design Implementation

The physical construction of the final prototype for the system will be explored in this

section along eith the challenges faced during the implementation of the design.

The system followed to wiring diagram shown on figure and made use of the
female-to-female and Male-to-female pin connectors to connect the Adafruit AMGS8833
Thermal camera and the servo motor to the Raspberry Pi GPIO pins. The Raspberry
Pi camera was then connected through the CSI camera port on the Raspberry pi device.
However the ribbon cable that came included with Raspberry Pi camera was to stiff and
couldn’t bend enough to fit into the mechanical housing. As a result the casing had to

be re-design and made bigger to accommodate the cable.

All the parts of the mechanical housing and motor mount were printed using the
Prusa Mini 3d-printer. This was an iterative process as well due to some of the 3d
printed parts being very fragile and breaking easily. The legs used to interlock each part
of the mechanical housing were especially fragile as they on the original design the were
only 2mm in diameter and hollow with an inner diameter of Imm. After a few iterations
the diameter of the legs were increased to 3mm with a solid infill and this made them a

lot more durable.

Figure 4.15: image of the final implementation of the device
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4.4 Acceptance Test Protocol Results

During the design implementation phase of the project all the hardware ATP’s shown
in Table [4.1] were tested. The table below shows the outcome of each ATP.

Table 4.3: Results of hardware ATP’s

ATP ID

Result

Justification

ATP 1

Pass

The Raspberry Pi device worked as
intended and could be accessed over ssh
through Virtual Studio.

ATP2

Pass

The Raspberry pi camera was able
to capture visual frames from the
environment and feed them into the

tracking algorithm.

ATP3

Pass

The thermal camera was able to capture
thermal data from the environment and all
the data could be accessed over the 12C
interface on the Raspberry Pi.

ATP4

Pass

The servo motor responded to PWM
commands send from the Raspberry Pi
through GPIO Pin 12. The motor was also
able to turn effectively with the cameras

mounted on top.

ATP5

Pass

The housing was able successfully hold
both the Raspberry Pi device and the servo
motor as seen in figure 4.15}

ATP6

Pass

The mount fit onto the servo motor and
had enough space to fit both the visual and
the thermal camera as seen in [4.15|

The software ATP’s we tested in the results chapter of the thesis as part of the

performance of the system.
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Chapter 5

Results

The main aim of this chapter is to provide an insight into the performance of the
camera tracking system in relation to certain performance metrics. It will start off by
looking at the experimental setup used for testing the system and explain why certain
testing parameters were chosen. Thereafter it will move onto the performance metrics
used to evaluate the systems performance. Finally it will present and analyse the findings

of the experiments.

5.1 Experimental setup

To ensure the accuracy of the test results obtained during the testing phase the device
will be tested in two different environments. This will help provide a deeper insight into
the performance of the device under varying conditions. The first environment is the
CRG Lab at UCT. This environment is a big open space with little to no external factors

that could possibly generate noise on the cameras.

The second testing environment is a living room /Kitchen of a residential house as there
are a lot of devices such as computers, kettles, space heaters as well as other humans that
generate heat which could serve as possible sources of noise for the thermal camera. The
idea behind testing the device in this environment is to evaluate its performance in a

more realistic setting.

The device will also be placed at a height of approximately 1m off the ground in all
testing scenarios to allow any human that enters the frame to be in the field of view of

both cameras.
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5.2 Performance Metrics

As the two camera sensors work independently in the fusion algorithm the overall
performance of the system can be tested by evaluating the performance of each camera
module individually. As a result the following metrics will be tested to evaluate the

performance of the system:
» Noise rejection of the system
o Detection range of the visual camera tracking system
o Performance of the visual tracking algorithm under varying light conditions

o Detection range of the thermal camera object detection algorithm

o Tracking Speed of fusion tracking algorithm

5.3 Experimental Results

This section aims to present the findings of the experiments done to test the performance
of the overall system in reference to the performance metrics set out above. It will also
outline the testing procedure used to test each metric as well as provide a brief discussion

of the results obtained.

To better recognise the detected objects/noise on the thermal frames all the results
below display the binary mask developed from each thermal frame rather than the raw
unprocessed frame data. The differences between the raw frame and the image after the
binary mask is applied can clearly be seen on figure [4.12 The figure with the binary
mask applied clearly indicates the position of the detected object better than the raw
gray-scaled image which is filled with clutter.

5.3.1 Noise rejection of the system

Testing Procedure

To test the noise rejection capabilities of the system to environmental elements the
device was placed in an empty space without any human-objects in the field of view of

the cameras. This was be done in both the CRG Lab and Living Room environments.
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5.3. EXPERIMENTAL RESULTS

Experiment Results and Discussion

(a) Living Room area captured with (b) Living Room area captured with
visual camera at optimal lighting thermal camera with no human-object in
conditions with no human-object in the the frame

frame

Figure 5.1: The two figures above show the images captured by the visual and thermal
camera of the living room environment at optimal lighting with no human-object on the
frame

(a) CRG Lab area Captured with (b) CRG Lab area Captured with thermal
the visual camera at optimal lighting camera with no human-object in the frame
conditions with no human-object in the

frame

Figure 5.2: The two figures above show the images captured by the visual and thermal
camera of the CRG Lab environment at optimal lighting with no human-object on the
frame

Figures 0.2 and [5.1] showcase the images taken at the CRG Lab and the living room

environments in optimal lighting conditions without a human objects in the field of view
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5.3. EXPERIMENTAL RESULTS

of the cameras. This was done to test the effect of the environment on both detection

algorithms in order to see if there are any false detections.

From both [5.2la and [5.1la we can see that the visual camera performs as expected
and no false detections were made. However the thermal camera was heavily effected by
environmental noise as seen from figures [5.2lb and [5.1}b.

The noise on the thermal camera is most likely due to the camera picking up traces
of thermal radiation from the direct sunlight hitting the camera lens. This can especially
be seen in figure [5.1]b where the there is a large amount noise detected directly in the
middle of the thermal frame which correlates directly to the window on the related visual

frame.
5.3.2 Detection range of the visual camera tracking system

Testing Procedure

To test the detection range the system the visual tracking algorithm was ran with a
human-object directly in the centre of the visual frame. The person started off directly
in front of the camera and slowly moved backwards until they were outside the range of
detection. The maximum distance of detection was then be measured by taking the last

point where the object detection algorithm recognised the person on the frame.

Experimental Results and Discussion

Figure 5.3: Image showcasing a human-object detected on a visual frame captured by the
Raspberry Pi camera at a distance of 2m in optimal lighting conditions
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5.3. EXPERIMENTAL RESULTS

frame
.

Figure 5.4: Image showcasing a human-object detected on a visual frame captured by the
Raspberry Pi camera at a distance of 5m in optimal lighting conditions

frame

Figure 5.5: Image showcasing a human-object at a distance of 6m on a visual frame
captured by the Raspberry Pi camera in optimal lighting conditions

Figures[5.3} [p.4/and [5.5|above showcase the performance of the visual tracking algorithms
ability to detect human-objects over a varying distances in optimal lighting conditions.
The figures also include the confidence level of the YoloV4-tracking algorithm which is

an indication of how certain the model is of its prediction.

From figures |5.3| and [5.4| we can clearly see that the model makes suitable predictions
up to bm. However the confidence level of the prediction drops from 0.961 to 0.692 when
the person moved from 2m to 5m away from the camera. This indicates that the model

becomes less accurate the further away a target is.

From figure |5.5| we can see that the model cant detect a human object that is at 6
meters away from the camera, thus meaning that the maximum detection range of the

visual tracking algorithm is approximately 5m.
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Figure 5.6: Image showcasing a human-object detected on a visual frame captured by the
Raspberry Pi camera at a distance of 1m in optimal lighting conditions

Figure 5.7: Image showcasing a human-object captured by the Raspberry Pi camera at
a distance of 0.3m in optimal lighting conditions

From figures we can see that if the target is closer than 1 meter away from the
camera the face of the person is no longer in the frame and as a result the detection
algorithm cant detect the person on the frame. If the target is a exactly 1 meter away
from the camera the person can be detected moderately well as seen on figure [5.6, Thus
meaning a person must be at least at least 1 meter away from the camera in order for
the device to be able to track them.

5.3.3 Performance of the visual tracking algorithm under varying

light conditions
Testing procedure

To test the performance of the visual tracking algorithm under varying light conditions
the device was tested at different times of the day. In each test case a human-object was
placed at 2m away from the camera to ensure that the distance of the person away from
the camera didn’t effect the confidence level of the detection algorithm and that the only

variable was the change in lighting.
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5.3. EXPERIMENTAL RESULTS

Experiment Results and Discussion

Figure 5.8: Image showcasing a human-object detected on a visual frame captured by the
Raspberry Pi camera at a distance of 2m in optimal lighting conditions - Living Room
environment

Figure 5.9: Image showcasing a human-object detected on a visual frame captured by
the Raspberry Pi camera at a distance of 2m in dim lighting conditions - Living Room
Environment

Figure 5.10: Image showcasing a human-object detected on a visual frame captured by
the Raspberry Pi camera at a distance of 2m in a dark room - Living Room

Figures and above showcase the performance of the visual tracking

algorithms performance under varying light condition in the same environment.
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5.3. EXPERIMENTAL RESULTS

From figures and it is clear that the camera performs as expected in optimal-
and dark-lighting conditions with the model having a confidence level of 0.971 optimal
lighting conditions while no person is detected in the dark environment. Surprisingly, the
model also performed relatively well in dim lighting conditions with a detection confidence

level of 0.943 as seen on figure [5.9,

These results show that the model can perform relatively good human detection on the
visual camera within 2 meters under any lighting circumstances except in environments

with very little to no light.

5.3.4 Detection range of the thermal camera object detection

algorithm
Testing Procedure

To test the detection range of the thermal camera object detection algorithm the
device will be placed in a darkroom with a human-object directly in the centre of the
thermal cameras field of view. The person will start close to the camera and slowly move

backwards until they are outside the detection range of the algorithm

Experiment Results and Discussion

Figure 5.11: Image showcasing a human-object detected on a thermal frame captured by
the Adafruit AMGS8833 camera with at a distance of 1m in a dark room
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Figure 5.12: Image showcasing a human-object detected on a thermal frame captured by
the Adafruit AMGS8833 camera with at a distance of 2m in a dark room

Figure 5.13: Image showcasing a human-object detected on a thermal frame captured by
the Adafruit AMGS8833 camera with at a distance of 3m in a dark room

Figure 5.14: Image showcasing a human-object detected on a thermal frame captured by
the Adafruit AMGS8833 camera with at a distance of 4m in a dark room

Figures [5.11} [5.12 [5.13] and above showcase the performance of the thermal

camera detection algorithm over various distances in a dark environment.

From figures 5.11] and [5.12] it is clear that the background subtraction algorithm

detects a person perfectly on the thermal frame within 2 meters from the camera which

means that the tracking within this range functions really well.
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At 3 meters away from the camera the detection was still relatively well as the white
space in the middle which represents the human could still be distinguished with relative

ease. However some environmental noise did start to appear on the frame as seen on
figure |5.13]

The amount of environmental noise present on the frame with the target 4 meters
away from the camera completely overwhelms the tracking algorithm and as a result it

didn’t perform very well. This can clearly be seen on figure [5.14]

These results show that the background subtraction model is severely effected by
environmental noise if the target is more than 3 meters away with little to noise present
when the target is closer than 3 meters. This seems to suggest the algorithm struggles
to lock onto targets further than 3 meters away and as a result cant distinguish between
noise and the actual target in order to properly block out the noise. This means in order
to achieve optimal tracking using the thermal camera the person must be within 3 meters

of the device.

5.3.5 Tracking Speed of fusion tracking algorithm
Testing Procedure

The tracking speed of the fusion algorithm can be measured by measuring the detection
speed of the Yolov4-tiny and Background-subtraction object detectors. This will provide
an indication of how fast an object can move across the screen while still allowing enough
time for the algorithm to respond by turning the motor. To test this a timer will be
placed in the algorithm to measure the time it takes for one loop to complete while an

object is within the field of view of the cameras.
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Experiment Results and Discussion

@lez:~/Documen oject 3 python ObjectDetectionspeadiest.py
piglez:~/Doc °t 5 python ObjectDetectionspeediest.py /python3/dist-packages/gpiozerofoutput_devices.py:1532: PuNSoftwareFallback: To rd
[usr/1ib/python3/dist-packages/gpiozerofoutput_devices.py:1532: PuMsoftwareFallback: To rg
more info warnings.warn(PaMiSoftuareFallback(
warnings .warn(PwMSoftwareFallback( True
True 1.675321912765563
1.603983497619629 0.6540637016296387
0.3321661949157715
0.33344125747680664
0.3281901481781006
0.32141900062561035 : 33
0.3226184844970703
0.3327034741973877
©8.33457446@808327637
8.3258656: 63 ©.36166834831237793
0.3356814384460449 Human Detected: 396.5
0.5975561141967773 0.4583604335784912
0.674548864364624 Human Detected: 277.9
0.7191350006795654 0.45232605934143066
8.6599559783935547 Human Detected: 229.5
Human Detected: 390. Human Detected: 241.0
19.8822163309631348 ©.5686117687116699
9.3434333801269531 Hi n Detected: 223.@
Human Detected: 236.5 0.48862504959106445
Human Detected: 247. Human Detected: 222.5
0.5722577571868896 0.472919225692749
Human Detected: ! Human Detected: 221.0
Human Detected: ! ©.4854400157928467
9.5468225479125977 Human Detected: 223.6
. ©.4247274398803711
0.5208399205806385 Human Detected: 224.9
Human Detected: 237.5 0.44383859634399424.
Human Detected: 247. Human Detected: 231.0
0.601982593536377
Human Detected: 253.
0.5432001382446289 Human Detect: 1.5
Human Detected: 299.5 ©8.43949055671691895
18.48738604198970084 Human Detected: 356.5
Human Detected: 396.5 Human Detected: 357.5
Human Detected: 412.5 0.5821592807769775
©8.3246012956237793
©.3422963619232178
©8.3394947052001953

0.33612751968754395
@.32837300899658203
0.3396461009979248
*CTraceback (most recent call last): ~c ack (most recent call last):

File "/home/pi/Bocuments/Son-Project/ObjectDetectionSpeedTest.py”, line 51, in <module> File "/home/pi/Docunents/Son-Project/ObjectDetectionSpeedTest.py”, line 51, in <module>
(class_ids, scores, bboxes) = model.detect(frame) #Info from frame (class_ids, scores, bboxes) = model.detect(frane) #Info from frame
KeyboardInterrupt KeyboardInterrupt

(a) Visual tracking algorithm speed test - (b) Visual tracking algorithm speed test -
1 2

Figure 5.15: The two figures above show the time it takes for one loop to complete in the
visual tracking algorithm while its detecting a person on the frame

From we can see that when no person is detected on the visual frame it takes
approximately 0.35s for one of the algorithm to complete. However when a person is
detected on the visual frame the time it takes for one loop complete becomes approximately

0.5s. This result is consistent across both the test cases seen in [5.15]

This means that when a person detected on the visual frame the algorithm runs at a
maximum of two frames per second which severely limits the algorithms ability to track
objects moving at high speed. The poor performance of this algorithm is most likely due
to the lack of a proper GPU on the Raspberry Pi 3B as CNN object detectors such as
Yolov4-tiny are primarily designed to run on a GPU.
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(a) Thermal tracking algorithm speed test (b) Thermal tracking algorithm speed test
-1 -2

Figure 5.16: The two figures above show the time it takes for one loop to complete in the
thermal tracking algorithm while its detecting a person on the frame

Unlike the visual tracking algorithm the background subtraction model used for
tracking on the thermal camera runs at approximately 0.37s per loop consistently even
when a object is detected. This equates to approximately 2.7 frames per second, which is
also not ideal for tracking high speed objects. The algorithm does take longer to complete
the initial couple of loops which is most likely due to the initial setup required at startup

still effecting the run-time.

Overall both the visual and thermal tracking algorithms produced poor performance
in terms of detection speed which means that the fusion algorithm which makes both is

limited to tracking only slow moving targets.
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5.4 Summary of the systems performance

The table below provides a summary of the systems performance in reference to the

performance metrics laid out in section [5.2]

Table 5.1: Summary of the systems performance in reference to the performance metrics

Performance Metric System performance

Environmental Noise Rejection

e Visual Camera - Excellent noise

rejection with no false detections

o Thermal Camera - Very susceptible

to environmental noise

Detection range of the visual camera

tracking system e Minimum Range - 1m

o Maximum Range - bm

Performance of the visual tracking
algorithm under varying light conditions « Optimal lighting conditions -

Excellent detection

e Dim lighting conditions -
Adequate/Good detection

e Dark environment - No detection

(Poor performance)

Detection range of the thermal camera

object detection algorithm « Minimum Range - N/A

o Maximum Range - 3m

Tracking speed of fusion tracking | limited to tracking only really slow moving

algorithm targets
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Chapter 6
Discussion and Conlcusion

This chapter will discuss the results obtained in chapter |5| as well as make suitable
concluding remarks on based based on overall success or failure of the project in reference

to the main objectives set out in Chapter [1}

6.1 Discussion of Results

The main aim of the camera tracking system is to use data from a thermal- and
visual-camera to improve the overall tracking of the system compared to using only a
visual camera. The experiments performed in [5.3| were designed to test the extent of the

improvement.

As seen on Table the test done on the visual tracking system showed that it
has excellent environmental noise disturbance and can perform excellent tracking under
optimal and dim lighting conditions, but cant detect any human-objects in a dark room
which is expected. The algorithm also has a detection range of between 1m - 5m, but
is limited to tracking only slow moving targets due to the object detection running at

maximum speed of approximately 2 frames per second.

Similar test were done on the thermal tracking system and they showed that the
thermal camera is heavily effected by environmental noise when it has no clear target to
lock onto. The result also showed that the thermal camera has a maximum detection
range of approximately 3m before the target is to far away from the camera. Similar
to the visual tracking system the thermal tracking system also produced a poor object
detection speed of approximately 2.7 frames per second which means it is also limited to

tracking slow moving targets.

As the Visual- and Thermal-camera fusion algorithm uses the visual and thermal

tracking algorithm as part of its implementation means that it inherits all the properties
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and flaws of both algorithms. This means in optimal light conditions the fusion algorithm
will perform similar to the visual tracking algorithm and in darker environments it will

perform like the thermal tracking algorithm.

6.2 Conclusion

The main goal of this project was to develop a camera tracking system that combines
data from a visual camera and a low-cost thermal camera. This goal was then further

refined into three main sub-objectives outlined in section

The proposed solution met all three main sub-objectives as the system was able to
track at least one human object on a visual frame and by incorporating a low-cost thermal
camera into the design the system was able to identify and track at least one person
in poor lighting conditions. The third sub-objective was met through the design and
construction of the mechanical housing and mount which housed all the main hardware

components used during the project. Thus the overall project was a success.

Even though all the main objectives for this project were met the final design didn’t
perform up to a satisfactory level. The slow tracking performance of the system is not
ideal as it means that the system cant be applied in any practical real-time scenario. The
susceptibility of the low cost thermal camera to environmental noise along with its poor
detection range suggest that it is not suitable for tracking applications and other options

should rather be explored.

6.3 Recommendations for future work

This thesis implemented a basic camera tracking system using a visual- and low cost
thermal-camera, however the final design left a lot to be desired for in terms of its

performance.

Due to budget constraints the Raspberry Pi 3B was used in this project, however
this severely impacted the speed of the Yolov4-tiny detection algorithm. To improve
the performance in the future it would better to use a embedded device like the NVIDIA
Jetson Nano which has a dedicated GPU as well as a faster CPU. This would increase the
speed of the detection algorithms and allow the device to be used in practical real-time

situations.

Another aspect of the design proposed in this thesis that negatively impacted the
performance of the system is the Adafruit AMG8833 IR Thermal camera. One of the

project objectives was to use a low cost thermal camera and as a result the Adafruit
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6.3. RECOMMENDATIONS FOR FUTURE WORK

camera was used, however the 8x8 pixel resolution makes it very difficult to perform
object detection on it. Going forward I would suggest using the Adafruit MLX90640
Thermal Camera which has a 24x32 pixel resolution. This module not only has a much
better image resolution it also keeps the same compact design found on the Adafruit

AMGS8833 IR Thermal camera which makes it easy to integrate into the design.

If the design incorporates a more powerful embedded system like the Jetson Nano
along with a better thermal camera like the Adafruit MLX90640 Thermal Camera it will
allow for the use of a custom trained YoloV4-tiny object detection algorithm on thermal
frames rather than using background subtraction methods. This would drastically improve
the noise rejection and detection range of the thermal tracking algorithm. It would also
be beneficial to include a lux sensor to better distinguish when to switch between and

thermal tracking

The 3D Printed parts of the mechanical housing are very fragile and broke a few
times during the implementation of this project. Thus for future work it would be best
to construct the casing of a stronger material or re-design it completely in order to

reinforce fragile parts.
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Appendix A

Additional Files and Schematics

A.1 Convolutional Neural Network Layers

Convolution Layer

The convolution layer is used to be perform feature extraction by making use of a
special math operation called convolution and a non-linear activation function. The
input to the convolution layer is a multidimensional array called a tensor. Within the
convolution layer the tensor is convolved with a two-dimensional array called a kernel to

produce a feature map.

Through the process of training various kernels are used in an attempt to find the one
that works best for the given dataset. However the kernel size, number of kernels, stride

and the amount of padding needed are hyper-parameters [14].

Pooling Layer

The pooling layer follows directly after the convolution layer and takes feature maps
as an input. The pooling layer is a downsampling operation which aims to reduce the
number of learnable parameters and subsequently help reduce overfitting of the data as
well as reduce the hardware resources needed to run the algorithm.

Max pooling is the most common pooling operation used for CNN algorithms and works
by looking at patches of input feature maps and producing the maximum value in
each patch as its output. Another common pooling operation is average pooling which
produces the average of the values in a given patch as an output. Average pooling has
two main advantages, it reduces the amount of learnable parameters in the algorithm

whilst also allowing the CNN to accept inputs of varying size [14][6].
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A.1. CONVOLUTIONAL NEURAL NETWORK LAYERS
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Figure A.1: A Diagram diagram displaying the process of generating a feature map by
convolving an input tensor with a kernel [14]

Fully Connected Layer

The fully connected layer is the final layer in the CNN architecture and takes the
output of the pooling layer as an input. The output data from the pooling layer is
generally fed to the final output through a subset of fully connected layers. The last fully
connected layer normally has the same number of outputs as the amount of classes the
CNN is trained for whilst also having a different type of activation function. Typical
activation functions used for the last fully connected layer include the ReLLU, sigmoid
and tanh functions [14].
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A.2. DETAILED THERMAL IMAGE THEORY
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Figure A.2: Basic structure of the CNN Architecture [15]
A.2 Detailed Thermal Image Theory

According to the Stefan-Boltzmann law all matter in the known universe emits thermal
radiation which is proportional to its absolute temperature. This relationship can also

seen in the following equation.

Er=oT* (A1)

where Ep is the radiation energy emitted, o is the constant of proportionality and T
is the absolute temperature of the object [33]. Thus by utilising Planck’s energy equation
the wavelength of the radiated signal can be determined [34].

_he

E
A

(A.2)

In the 1900s Max Planck also developed Planck’s radiation law which proposes that
an ideal object named a black body emits a spectrum of thermal radiation spanning a
across the entire electromagnetic spectrum with hotter objects emitting more energy on
the short-wavelength part of the spectrum (ultraviolet) and colder objects emitting more

energy with lower wavelengths (infrared /microwaves) [34].
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Figure A.3: A Diagram displaying the Spectral Density plots of radiation Energy emitted
for black body objects at different temperatures (The dashed lines indicate the visual light
spectrum) [6]

As the majority of objects on the planet including the internal temperature of humans
and animals are in close to ambient temperature (300k/27°C') they will emit most of
their thermal radiation in the infrared wavelength range as seen on fig: [A.3] thus making

infrared cameras extremely useful for object detection in low visibility situations.
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Appendix B

Addenda

B.1 Ethics Forms

Application for Approval of Ethics in Research [EiR) Projects
Faculty of Engineering and the Built Environment, University of Cape Town

ETHICS APPLICATION FORM

Please Note:

Any person planning o underake research in the Faculty of Englneering and the Bullt Environment (EBE) at the University
of Cape Town i required to complete this form before collecting or analysing data. The objective of submitling this
application prier to embarking on research is to ensure that the highest ethical standards in research, conducted under the
auspices of the EBE Faculty, are mel. Please ensure thal you have read, and understood the EBE Ethics in Research
Handbook (avallable from the UCT EBE, Research Ethics website) prior 1o completing this application
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APPLICANT'S DETAILS
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external applicant Lezerick Owies
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Prefered email address of applicant: owslez001 @myucl.ac.za
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If Student Research: e.q., 40
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souree of funding/sponsorship NiA
Project Title Enhanced Camera Target Tracking Using a Low-cost Thermal Camera.
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. there s no apparent legal objection to the nature or the method of research; and

. the research will not compromise staff or students or the other responsibilities of the University;

. the stated objective will be achleved, and the findings will have a high degree of validity;

. limitations and alternative interpretations will be considered;

. the findings could be subject o peer review and publicly available; and

. | will comply with the conventions of copyright and aveld any practice that would constitute plagiarism.
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Principal Researcher/
Student/External applicant Lererick Graeme Owies ‘[ }j- ﬁmf 18/08/2022
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