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Pre-Calculus and Calculus Module 7 Derivatives and Differentiation 

 

Section 7.1 Experimental Rates of Change 

Looking Back 7.1  

 Long ago, Tootsie Roll® Pops (TRP) Industries produced a commercial in which a wise Mr. Owl was 

asked: “How many licks does it take to get to the Tootsie Roll® center of a Tootsie Pop®?” (Watch the commercial 

to see Mr. Owl’s response.)  

In this section, we are going to perform a similar experiment to find rates of change. We will be analyzing 

the data from the experiment we perform to calculate the average value of the rate of change of the volume of a 

Tootsie Pop®.  

 The original experiment was conducted by a student who sucked on a Tootsie Pop® fairly uniformly for 

30-second intervals until the chewy Tootsie Roll® center was reached. At the end of each 30-second interval, the 

student wrapped dental floss around the center of the Tootsie Pop® and laid it alongside a ruler to measure its 

circumference. From the measurement of the circumference the radius and volume could be calculated. A Tootsie 

Pop® is shaped like a sphere so the formula V =
4

3
𝑟3 is used to find its volume.  

 The steps of the experiment will be reviewed in the Looking Ahead portion of this section. In the Practice 

Problems, you will conduct your own experiment.  

 Before we move on, we need to understand the tangent to a curve when the curve is a straight line. We have 

learned about average rates of change (AROC), instantaneous rates of change (IROC), and secant and tangent lines. 

We have also learned about limits. Now, let us talk about the tangent to a curve when the curve is a straight line.  

We know that the IROC is the limit of a function as ℎ approaches 0. For a linear function 𝑦 = 𝑚𝑥 + 𝑏: 

 

 

lim
ℎ→0

𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ
= lim

ℎ→0

𝑚(𝑥 + ℎ) + 𝑏 − (𝑚𝑥 + 𝑏)

ℎ
= lim

ℎ→0

𝑚ℎ

ℎ
 

 

 

Notice that at every 𝑥, the tangent to the curve when the curve is a straight line is the slope of the line. That makes 

sense because the rate of change is constant in a linear relationship.  
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Looking Ahead 7.1 

 The time and circumference from the Tootsie Pop® experiment are given below. We will complete the 

table as we continue through the steps to calculate the average value of the rate of change of the volume of a Tootsie 

Pop®. 

 

1. Complete the radius column (𝐑𝐚𝐝𝐢𝐮𝐬 𝒓 (𝐜𝐦. )) of the table. (Divide the circumference by 2 and round to 

the nearest thousandth.) 

 

2. Draw a time versus radius graph for the data. What do you expect this graph to look like?  

 

 

 

 

 

3. Find the slope of the tangent line of the time versus radius graph. What does this slope represent?  

 

 

 

 

4. Complete the volume column (𝐕𝐨𝐥𝐮𝐦𝐞 𝐕 (𝐜𝐦.𝟑 )) of the table. (Use the formula for volume of a sphere 

(V =
4

3
𝑟3) and round to the nearest ten-thousandth.) 
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5. Draw a time versus volume graph for the data. What do you expect this graph to look like?  

 

 

 

 

 

 

6. Complete the change in volume column (∆𝐕 (𝐜𝐦.𝟑 )) of the table. (Subtract the volume at each 30-second 

interval from the previous 30-second interval of volume.)  

 

 

7. Complete the change in volume over the change in time column (
∆𝐕

∆𝒕
 (

𝐜𝐦.𝟑

𝐬.
)) of the table. (Divide ∆V by ∆𝑡, 

which is 30 seconds for each interval, and round to the nearest ten-thousandth.) 

 

 

8. Draw a time versus change in volume graph for the data. What do you expect this graph to look like?  

 

 

 

 

 

 

9. Find the average of the change in volume over the change in time column (
∆V

∆𝑡
 (

cm.3

s.
)). (Add up all the 

∆V

∆𝑡
 

values and divide by the total number of values, which is 12.)  

 

 

 

10. What is the average value of the rate of change of the volume of the Tootsie Pop®? How does this compare 

to the slope of the time versus volume graph?  
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Section 7.2 Acceleration Versus Velocity Graphs 

Looking Back 7.2 

 Previously, we learned that the instantaneous rate of change is called the derivative. It is called this because 

it is derived from the slope of the tangent line at a single point on the curve.  

 Velocity is the time rate of change of an object’s position. Acceleration is the time rate of change of an 

object’s velocity. Velocity is the calculated first derivative and acceleration is the calculated second derivative.  

 We have compared distance and velocity graphs in the past. The slope of the distance graph becomes the 

velocity graph. Now, we will investigate velocity and acceleration graphs in detail and see that the slope of the 

velocity graph becomes the acceleration graph.  

 

Looking Ahead 7.2 

Let us use an airplane takeoff problem to investigate displacement, velocity, and acceleration. 

 

Example 1: Let us assume an airplane is taking off from a runway that is 100 m. Let us assume also that 

acceleration is constant. If the velocity at takeoff is 280 km./hr., what is the acceleration at takeoff?  
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Three motion equations that are related to the equation used in Example 1 are shown as follows:  

 

1) 𝑣𝑓  = 𝑣𝑖 + 𝑎𝑡 (in which 𝑣𝑖 is initial velocity and 𝑣𝑓 is final velocity, 𝑎 is acceleration and 𝑡 is time. 

 

 

 

2) 𝑣𝑓
2 = 𝑣𝑖

2 + 2𝑎𝑑 

 

 

 

3) 𝑑 = 𝑣𝑖𝑡 +
1

2
𝑎𝑡2 

 

 

 

 

 

 

Example 2: Dietrich travels at a constant velocity of 0.4 miles/minute for 8 minutes. He then decelerates at 

−0.2 miles/minute2 for 2 minutes. Use equations to determine Dietrich’s total distance traveled. Check your 

solution using a velocity versus time graph.   

 

 

 

 

 

 

 

 

 

Remember that the area under the velocity curve represents the total distance.  
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Example 3: Let us revisit the function 𝑓(𝑥) = 𝑥2. How does the graph of 𝑓′(𝑥) relate to the graph of 𝑓(𝑥)? 

 

 

 

 

 

 

 

 

 

 

 

 

 

The first derivative of the time versus distance graph is the time versus velocity graph. The area under the time 

versus velocity graph is the displacement over the same time interval.  

Example 4: Calculate the second derivative of 𝑓(𝑥) = 𝑥2. How does the graph of 𝑓"(𝑥) relate to the graph of 

𝑓(𝑥)? 

 

 

 

 

 

 

 

 

 

 

The second derivative of the time versus distance graph is the time versus acceleration graph. The area under the 

time versus acceleration graph equals the change in velocity over the same time interval.  
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Example 5: Find the average rate of change of the function 𝑦 = 2𝑥2 − 2 over the interval [−4, −2]. 

 

 

 

 

 

Let us look at the takeoff of an airplane again. This data is from a ___________________. The main 

motion is along the runway of an airport and acceleration is measured in meters per second squared. Let us look at a 

scatterplot of the acceleration versus time graph. This data is from Section 6.13 Practice Problems. 

 

 

 

 

 

 

 

 At the beginning, acceleration increases rapidly until it reaches about __________ m/s2 in which it 

remains constant up to takeoff (this is the point when it leaves the ground).  

 Because 𝑎 is equal to 
∆𝑣

∆𝑡
, we can solve for change in velocity by using the equation ∆𝑣 = 𝑎∆𝑡. Change in  

velocity is the acceleration multiplied by the length of the time interval, which is ____________________.  

 In order to get velocity as a function of time, we need to get a sum of the changes in velocity. This assumes 

velocity begins with 0. Now, we can graph time versus velocity.  

 

 

 

 

 

 

 The rise in velocity is almost linear. This corresponds to the constant portion of the acceleration graph. The  

break at the end of the graph is where the plane leaves the ground. The speed at takeoff is about __________ or  

__________. This speed is reached in less than 30 seconds.  
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 Now, we can look at the distance versus time graph to see how far the plane went in the first 5 seconds of 

takeoff and how long the runway needs to be.  

 Because 𝑣 =
∆𝑠

∆𝑡
 can be written “∆𝑠 = 𝑣 ∙ ∆𝑡,” we can follow the same steps we used previously to get a 

graph of displacement versus time. Because ∆𝑠 is the change in position, we again need to get a sum of the changes 

in displacement for a cumulative distance.  

 

 

 

 

 

 

 Previously, we learned that takeoff was ___________ seconds after start. This means the plane traveled  

about _______________ in only 30 seconds. 

 

We saw the shapes of these graphs in Section 6.13. Now, we can interpret what they mean. 
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Section 7.3 The Power Rule 

Looking Back 7.3 

 God’s universe is full of patterns. Perhaps we can find a pattern that makes finding derivatives easier. 

Moreover, perhaps we can find the instantaneous rate of change directly from the function instead of finding the 

average rate of change first.  

 Let us try to derive a formula for the instantaneous rate of change that can be used for any point 𝑐 in the 

domain of a power function and bypass the whole limit process.  

 

Looking Ahead 7.3 

Example 1: Find the average rate of change for 𝑓(𝑥) = 4𝑥3 at 𝑥 = 𝑐.  
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Example 2: Use the four functions and their derivatives below to answer the questions that follow.   

𝑓(𝑥) = 𝑥2 𝑓′(𝑥) = 2𝑥 

𝑓(𝑥) = 𝑥3 𝑓′(𝑥) = 3𝑥2 

𝑓(𝑥) = 𝑥5 𝑓′(𝑥) = 5𝑥4 

𝑓(𝑥) = 𝑥9 𝑓′(𝑥) = 9𝑥8 

a) What do you notice about the change in coefficients?  

 

 

b) What do you notice about the change in exponents?  

 

 

Example 3: Use the four functions and their derivatives below to answer the questions that follow.    

𝑓(𝑥) = 2𝑥4 𝑓′(𝑥) = 8𝑥3 

𝑓(𝑥) = 5𝑥3 𝑓′(𝑥) = 15𝑥2 

𝑓(𝑥) = 4𝑥2 𝑓′(𝑥) = 8𝑥 

𝑓(𝑥) = −5𝑥 𝑓′(𝑥) = −5 

a) Do you notice the same patterns with the coefficients as you did in Example 2?  

 

 

 

 

 

 

 

b) Do you notice the same patterns with the exponents as you did in Example 2?  
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Example 4: Look at the four functions and their derivatives below. Do these follow the same patterns as in the 

previous functions?    

𝑓(𝑥) =
1

𝑥
 𝑓′(𝑥) = −

1

𝑥2 

𝑓(𝑥) =
2

𝑥2 𝑓′(𝑥) = −
4

𝑥3 

𝑓(𝑥) = −
1

𝑥3 𝑓′(𝑥) =
3

𝑥4 

𝑓(𝑥) =
3

𝑥4 𝑓′(𝑥) = −
12

𝑥5 

These patterns in the functions and their derivatives are not as evident as in the previous examples. Let us put some 

intermediate steps in and use the rules of multiplying the exponent by the coefficient and making the exponent one 

less to see if they do.  

𝑓(𝑥) =
1

𝑥
 𝑓(𝑥) = 𝑥−1 𝑓′(𝑥) = −1𝑥−2  𝑓′(𝑥) = −

1

𝑥2 

𝑓(𝑥) =
2

𝑥2 𝑓(𝑥) = 2𝑥−2 𝑓′(𝑥) = −4𝑥−3  𝑓′(𝑥) = −
4

𝑥3 

𝑓(𝑥) = −
1

𝑥3 𝑓(𝑥) = −𝑥−3 𝑓′(𝑥) = 3𝑥−4  𝑓′(𝑥) =
3

𝑥4 

𝑓(𝑥) =
3

𝑥4 𝑓(𝑥) = 3𝑥−4 𝑓′(𝑥) = −12𝑥−5  𝑓′(𝑥) = −
12

𝑥5 

 

Let us look back at Example 1 to see if these functions follow a similar pattern to the ones in the previous examples. 

 

𝑓(𝑥) = 4𝑥3 𝑓′(𝑥) = 4 ∙ 3𝑥2  𝑓′(𝑥) = 12𝑥2 

 

 The exponent does get multiplied by the coefficient of the original function for the derivative. The 

exponent does become one less. This is called the Power Rule. The dilation factor of 4 actually stays the same but 

gets multiplied by the coefficient from the exponent.  

 Example 4 does follow the same patterns as Example 1. It is called the Power Rule.  

The Power Rule for the derivative states:  

 

‘If 𝑓(𝑥) = 𝑘𝑥𝑛 in which 𝑘 and 𝑛 are both real numbers, then 𝑓′(𝑥) is equal to 𝑘 ∙ 𝑛𝑥𝑛−1.’  

 

 In the Practice Problems section, we will use the Power Rule to find the derivative of a function when it is a 

monomial term. In the next section, we will find the derivative by using the Power Rule when the function is a 

polynomial. (You were invited to look for patterns for both of these in the previous Practice Problems section.) 
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Section 7.4 The Sum Rule  

Looking Back 7.4  

 The foundations of Calculus were laid by Gottfried Wilhelm Leibniz (1646-1716) of Germany and Sir 

Isaac Newton (1643-1727) of England.  

 Gottfried Wilhelm Leibniz is considered the author of the Power Rule. He lived in the seventeenth and 

eighteenth century and was founding Calculus around the same time Sir Isaac Newton was founding Calculus. 

Because there is debate over who discovered what and when, both are considered to be co-founders of Calculus, 

although Leibniz is considered the last of the “universal geniuses.” Denis Diderot, a French philosopher who was 

awed by Leibniz’ works, wrote in Oeuvres Complètes (Vol. 7, p. 709) that what Leibniz “composed on the world, 

God, nature, and the soul is of the most sublime eloquence.” 

 These high praises are the result of years of hard work and extensive reading from Gottfried Wilhelm 

Leibniz. When he was just six years old his father died, and he was given freedom over his extensive library. 

Therefore, he began his life by reading volumes on ancient history and the church fathers. Later, Leibniz spent four 

years in Paris in which he was tutored in philosophy, physics, and mathematics, and read the unpublished 

manuscripts of Descartes and Pascal. Eventually, all of this reading and studying led him to his work on Differential 

Calculus and the Infinite Series. Leibniz’ work with these is what makes texts like this possible.  

 Despite all his contributions, Leibniz’ writings and work were still overshadowed during his life when he 

was accused of stealing his ideas from Sir Isaac Newton. Now, it is widely believed that these two men developed 

their ideas independently. The Power Rule, however, is fully credited to Leibniz.  

 

 Previously, we have learned that if 𝑦(𝑡) is equal to 𝑡𝑛, then 𝑦′(𝑡) is equal to 𝑛𝑡𝑛−1. Another way to write 

“𝑓′” (Notation used by Newton) is “
𝑑𝑦

𝑑𝑡
” (Notation used by Leibniz) and 

𝑑𝑦

𝑑𝑡
 is the derivative of 𝑦 with respect to 𝑡, or 

the change in 𝑦 over the change in 𝑡. When the function is the polynomial 𝑦(𝑡) = 𝑦1(𝑡) + 𝑦2(𝑡), then the derivative 

is 𝑦′(𝑡) =
𝑑𝑦1

𝑑𝑡
+

𝑑𝑦2

𝑑𝑡
. This can be called the Sum Rule. 

 

Looking Ahead 7.4 

Example 1: Find the derivative of the function 𝑦(𝑡) = 3𝑡2 − 2𝑡. 

 

 

 

 

 

 

 

 



Math with Mrs. Brown Lesson Notes  Pre-Calculus and Calculus Module 7 ©2020 

13 
 

Example 2: Find the derivative of the function 𝑦(𝑡) = −5𝑡3 + 8. 

 

 

 

 

 

 

 

Example 3: Find the derivative of the function 𝑦(𝑡) = −12𝑡3 + 2𝑡2 − 4𝑡 + 0.5. 

 

 

 

 

 

 

 

 

 

 

 

In summary, if 𝑝(𝑥) is a polynomial function, then the derivative is the sum of the derivative of each of the 

monomial terms.  

 

If 𝑝(𝑥) is equal to 𝑓(𝑥) + 𝑔(𝑥) + ℎ(𝑥), etc., then 𝑝′(𝑥) is equal to 𝑓′(𝑥) + 𝑔′(𝑥) + ℎ′(𝑥), etc. 

 

If a polynomial is of degree 1, then it is a linear function and the derivative is a constant term, which is the slope of 

the line.   

 

If a function is a constant only, the derivative is 0. 
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Section 7.5 Finding the Derivative Graphically  

Looking Back 7.5  

In the previous module, we learned that when 𝑓(𝑥) is equal to 𝑥2, then 𝑓′(𝑥) is equal to 2𝑥. The function 

was quadratic, and the derivative was linear. The derivative is found graphically by finding the slope along the 

curve.  

 

Given the table for 𝑓(𝑥) = 𝑥2, the second 

difference is the constant 2, which is the slope of the 

derivative function. The first common difference is the 

slope of the secant line between consecutive points. 

 

 

 

 

When 𝑥 is equal to 1, the slope of 𝑓(𝑥) looks to be about 2. 

 

When 𝑥 is equal to 2, the slope of 𝑓(𝑥) looks to be about 4. 

 

When 𝑥 is equal to 3, the slope of 𝑓(𝑥) looks to be about 6. 

 

 

 

If we plot the points (𝑥1, 𝑚1), (𝑥2, 𝑚2), (𝑥3, 𝑚3), which are (1, 2), (2, 4), (3, 6), it results in the following graph: 

 

 

 

 

 

 

 

 

 

𝒙 𝒇′(𝒙) 

0 0 

1 2 

2 4 

3 6 

4 8 
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The curve is now a straight line. The slope is 2 all along the curve. The first common difference is 2. The second 

derivative is 𝑓"(𝑥) = 2. The slope is constant so the graph for 𝑓"(𝑥) is a horizontal line. 

 

 

 

 

 

 

 

 

 

Let us review concavity before proceeding with our examples. By now, we have seen that the derivative 
𝑓ʹ(𝑥), graphically speaking, tells you the instantaneous slope of the function 𝑓(𝑥) at every point where 𝑓ʹ is 

defined, which means it gives you the slope of the tangent line to 𝑓 at every point in question.  

When 𝑓"(𝑥) > 0, 𝑓′(𝑥),  and the slope of 𝑓(𝑥) is increasing as 𝑥 increases. The graph of 𝑓(𝑥) will 

curve upwards. This is concave up. If 𝑓′(𝑥)>0, then the slope is positive, and 𝑓(𝑥) will curve upwards by 

becoming steeper, whereas if the slope is negative, 𝑓′(𝑥)<0, then it will curve upwards by becoming less 

steep.  

On the other hand, when 𝑓"(𝑥) < 0, 𝑓′(𝑥),  and the slope of  𝑓(𝑥) is decreasing as 𝑥 increases. The 

graph of 𝑓(𝑥) will curve downwards. This is concave down.  If 𝑓′(𝑥) < 0,  then the slope is negative, and 

𝑓(𝑥)will curve downwards by becoming steeper, whereas if the slope is positive, 𝑓′(𝑥) > 0, then it will curve 

downwards by becoming less steep. 

 𝑓′(𝑥) > 0 
𝑓 is increasing 

𝑓′(𝑥) < 0 
𝑓 is decreasing 

Concavity 

𝑓"(𝑥) > 0 

𝑓 curved upward 

 

   

𝑓"(𝑥) < 0 

𝑓 curved downward 

 

   

 

The graphical property of upward or downward is linked to 𝑓"(𝑥) > 0 and is called concavity. An upward curve is 

said to have positive concavity, and a downward curve is said to have negative concavity. Points where the 

concavity changes from one to the other are called inflection points. These always coincide with the value of 𝑥. 
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Examples of Inflection Points  

 

Three Inflection Points No Inflection Points 

Inflection Point where 𝑓"(𝑥) = 0 also 

 

No Inflection Points, but 𝑓"(𝑥) = 0 at all points 

 

 

Looking Ahead 7.5 

 

Let us investigate a function and its first and second derivative aligned vertically. 

Example 1: Use the given graph and its’ derivatives to answer the questions that follow.  

 

a) Where does 𝑓(𝑥) have an inflection point? To what does the point correspond 

with on the graphs of  𝑓′(𝑥) and 𝑓′′(𝑥)? 

b) Where does 𝑓(𝑥)  have a local minima or maxima? To what does the point 

correspond with on the graph of 𝑓′(𝑥), and how does it compare to 𝑓′′(𝑥)? 

c) Do the zeros of 𝑓(𝑥) correspond to any points of significance on 𝑓′(𝑥) or 𝑓′′(𝑥)? 

d) The graph of 𝑓′(𝑥) is negative between 𝑥 = 1 and 𝑥 = 3? What can you say 

about the graph of 𝑓(𝑥) over this same interval? 

e) The graph of 𝑓′′(𝑥) is negative to the left 𝑥 = 2 and positive to the right of it. 

What bearing does this have on the graphs of 𝑓(𝑥) and 𝑓′(𝑥) 
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Example 2: Given the graph of 𝑓(𝑥) shown below in blue, estimate the slope when 𝑥 is equal to 0, 1, 2, 3, and 

4, and then sketch the first derivative 𝑓′(𝑥) in red.  

 

 

 

 

 

 

 

 

Example 3: Given the function 𝑔(𝑥) shown below in blue, estimate the slope when 𝑥 is equal to −3, −2, −1, 

0, 1, 2, and 3 to complete the table, and then sketch the first derivative 𝑔′(𝑥) in red.  

 

𝒙 𝐒𝐥𝐨𝐩𝐞 𝐚𝐭 𝒙 𝐨𝐧 𝒈(𝒙) 

−3  

−2  

−1  

0  

1  

2  

3  

 

The slope is 0 at the local maxima and local minima when 𝑥 = −1.8 and 𝑥 = 1.8 respectively. Graphing 

(𝑥, slope of 𝑔(𝑥) at 𝑥) results in the graph of the derivative 𝑔′(𝑥) as 𝑔′(𝑥) gives the slope of 𝑔(𝑥) at 𝑥. 

The slope is positive and decreasing over the interval −∞ < 𝑥 < −1.8 for 𝑔(𝑥). So, the graph of  𝑔′(𝑥) is positive 

over that interval. Since the slope is 0 at the local maxima and local minima on 𝑔(𝑥), these are the 𝑥-intercepts. 

The slope is negative over the interval −1.8 < 𝑥 < 1.8 for 𝑔(𝑥) so 𝑔′(𝑥) is also negative over the interval, while 

negative throughout the interval, decreasing from −1.8 < 𝑥 < 0 and increasing from 0 < 𝑥 < 1.8. From −1.8 to 0, 

the slope is negative and decreasing which means it is becoming steeper but downward. From 0 to 1.8, the slope is 

negative, but increasing so it is becoming less steep. This means concavity changed at 0 and 0 is an inflection point.  

The slope is positive and increasing (getting steeper) over the interval 1.8 < 𝑥 < ∞ for 𝑔(𝑥) so it is positive and 

above the 𝑥-axis for 𝑔′(𝑥). 
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Section 7.6 The Derivatives of Sine and Cosine  

Looking Back 7.6 

 The circular functions are often called the trigonometric functions. These include sine (sin), cosine (cos), 

tangent (tan), cosecant (csc), secant (sec), and cotangent (cot). There are a few methods to finding the derivatives of 

these functions.  

 One of these methods involves using implicit differentiation. This method can be used when the rules of 

differentiation (finding the derivative) are applied. We have learned two of these rules previously.  

 

The Power Rule: If 𝑓(𝑥) is equal to 𝑘𝑥𝑛 in which 𝑛 is a non-negative integer and 𝑘 is a constant dilation factor, then 

𝑓′(𝑥) is equal to 𝑘 ∙ 𝑛𝑥𝑛−1. 

 

The Sum Rule: If 𝑝(𝑥) is equal to 𝑓(𝑥) + 𝑔(𝑥) + ℎ(𝑥), then 𝑝′(𝑥) is equal to 𝑓′(𝑥) + 𝑔′(𝑥) + ℎ′(𝑥). (This can also 

be called the Sum and Difference Rule.) 

 

 The method that involved estimating the slope at each of the various values of 𝑥 on the original function 

and then plotting the slope points (𝑥1, 𝑚1), which we learned in the previous section, is a method for finding the 

graph of the derivative function.  

Looking Ahead 7.6 

Example 1: Estimate the slope for the tangent to the curve at 𝑝1, 𝑝2, 𝑝3, 𝑝4, and 𝑝5. Draw the graph of the 

derivative function.   

 

Note: Computing the slope of the secant line between 𝑝1 and 𝑝3 would be 

an approximation for the slope of the tangent line at 𝑝2. 

 

 

 

 

 

 

 

 

 

 



Math with Mrs. Brown Lesson Notes  Pre-Calculus and Calculus Module 7 ©2020 

19 
 

Example 2: Find 
𝑑2𝑦

𝑑𝑥2 for 𝑦 = 2𝑥3 + 3𝑥2 − 2𝑥.   

 

 

 

 

 

 

 

Example 3: Let 𝑓(𝑥) be 𝑥3 + 4𝑥. Investigate 
𝑑𝑦

𝑑𝑥
 and 

𝑑2𝑦

𝑑𝑥2 when 𝑥 < 0, 𝑥 = 0, and 𝑥 > 0. Then let 𝑔(𝑥) be 

−𝑥3 − 4𝑥 and investigate 
𝑑𝑦

𝑑𝑥
 and 

𝑑2𝑦

𝑑𝑥2 when 𝑥 < 0, 𝑥 = 0, and 𝑥 > 0. Explore the slope of the tangent lines and 

concavity.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Math with Mrs. Brown Lesson Notes  Pre-Calculus and Calculus Module 7 ©2020 

20 
 

Example 4: If 𝑔(𝑥) is equal to sin 𝑥, then draw the graph of 𝑔′(𝑥) (the derivative of sin 𝑥).    

 

  

 

 

 

 

 

 

 

 

 

 

 

Connecting the points with a smooth curve results in the familiar cosine curve. The derivative of the sine 

function is the cosine function 𝑔′(𝑥) = cos 𝑥. In this Practice Problems section, we will be finding the derivative of 

the cosine function.  

If there is a constant “𝑎” and 𝑓(𝑥) is equal to sin(𝑎𝑥), then the derivative 𝑓′(𝑥) is equal to 𝑎 cos 𝑎𝑥. 

Again, in Calculus notation, if the function is 𝑦(𝑡), then the derivative is 
𝑑𝑦

𝑑𝑡
 (read “dy dt” or “the derivative of y with 

respect to t”).  

If 𝑦(𝑡) is equal to sin(𝑎𝑡), then 
𝑑𝑦

𝑑𝑡
 is equal to 𝑎 cos 𝑎𝑡. 

Another way to write the derivative with respect to 𝑥 is 
𝑑

𝑑𝑥
 (read “d dx”). 

 

𝑑

𝑑𝑥
sin 𝑎𝑥 = 𝑎 cos 𝑎𝑥 

 

𝑑

𝑑𝑥
sin 𝑥 = cos 𝑥 

 

 We will investigate the derivatives of the other circular functions after we learn the Product Rule, the 

Quotient Rule, and the Chain Rule for finding derivatives.  
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Section 7.7 Local and Global Extrema and Critical Points  

Looking Back 7.7 

 In the functions we have studied, we have used the words “local maxima” and “local minima.” These are 

different than global maxima and global minima. Global maxima or global minima (absolute maxima or absolute 

minima) are the highest or lowest values, respectively, that a given function can attain over its entire domain. A 

global extremum is therefore an upper or lower bound on the entire function: unbounded functions have no global 

extremum in the direction that they are unbounded.  

 

 

 

 

 

 

 There is a local minimum at 𝑥 = 0.574. It is a low point where the graph is decreasing and then begins 

increasing; it changes direction. There is a lower minimum at 𝑥 = −3.25. In fact, it is the lowest point on the graph 

so it is considered a global minimum (absolute minimum).  

 There is a local maximum at 𝑥 = −1.07. The graph goes from increasing to decreasing; however, there is 

not a global maximum (absolute maximum) here as the end behavior of the function continues to increase.  

 

Looking Ahead 7.7  

Example 1: Given the graph of 𝑓(𝑥), describe and sketch 𝑓′(𝑥) and 𝑓"(𝑥). In particular, focus on the 

values/intervals when 𝑥 = 𝑎, 𝑥 < 𝑎, and 𝑥 > 𝑎. 
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Example 2: Given the graph of 𝑔(𝑥), describe 𝑔′(𝑥) and 𝑔"(𝑥) when 𝑥 = 𝑎, 𝑥 < 𝑎, and 𝑥 > 𝑎.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The measure of the rate at which things change is called the derivative. Derivatives are defined as the 

limiting value of averages changes. We have been using the limiting values of the slopes of secants to derive the 

slopes of curves.  

We can analyze graphs to find exact numerical derivatives. We have been using the slopes of tangent lines 

to do this.  

In summary, the slope of a secant line is shown as follows: 

∆𝑦

∆𝑥
=

𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ
 

The slope of the graph of a point is the limit of the secant slope, which we define as the derivative, shown as follows:  

𝑓′(𝑥) = lim
ℎ→0

𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ
 

A function is differentiable at a point if the point is in the domain of the derivative. A differentiable 

function is differentiable at every point in the domain. When the derivative of a point exists, the slope is tangent to 

the curve. Sometimes, a function is not continuous and does not have a limit. In this case, as in Example 2, the 

function is not differentiable. 

There are some continuous functions that are not differentiable. If the right-sided and left-sided limits do 

not agree, then the right side of the tangent slope would not be equal to the left side of the tangent slope. In Example 

2, 𝑓"(𝑎) does not exist at 𝑎. Again, that means that some functions are not differentiable.  
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Differentiability at a point: 

 A function is said to be differentiable at a point 𝑥 = 𝑎 if the limit defining the derivative exists at 

that point. This means there are three conditions that must be met, some with sub-conditions: 

1. 𝑥 = 𝑎 must be in the domain of 𝑓(𝑥) so 𝑓(𝑎) must be defined and of finite value 

 

2. 𝑓(𝑥) must be continuous at 𝑥 = 𝑎 so lim
𝑥→𝑎

𝑓(𝑥) = 𝑓(𝑎) 

A) lim
𝑥→𝑎−

𝑓(𝑥) = 𝑓(𝑎) Left Continuous 

B) lim
𝑥→𝑎+

𝑓(𝑥) = 𝑓(𝑎) Right Continuous 

 

 

3. 𝑓(𝑥) must be converge at 𝑥 = 𝑎 so lim
𝑥→𝑎

 [lim
ℎ→0

𝑓(𝑥+ℎ)−𝑓(𝑥)

ℎ
] = 𝑓′(𝑎)  

A) lim
𝑥→𝑎−

 [lim
ℎ→0

𝑓(𝑥+ℎ)−𝑓(𝑥)

ℎ
] must exist and be finite (Left Differentiable) 

B) lim
𝑥→𝑎+

 [lim
ℎ→0

𝑓(𝑥+ℎ)−𝑓(𝑥)

ℎ
] must exist and be finite (Right Differentiable) 

C) lim
𝑥→𝑎−

 [lim
ℎ→0

𝑓(𝑥+ℎ)−𝑓(𝑥)

ℎ
] = lim

𝑥→𝑎+
 [lim

ℎ→0

𝑓(𝑥+ℎ)−𝑓(𝑥)

ℎ
]. The two must agree.  

 

If all conditions are met except for 3C, then the function is said to be semi-differentiable at that point.  

An example of this is an absolute value function, which is a non-differentiable, but continuous function. 

If all conditions are met, then the function is differentiable at the point, and 

𝑓′(𝑎) = [lim
ℎ→0

𝑓(𝑎 + ℎ) − 𝑓(𝑎)

ℎ
] 

 

The derivative is definable and unique. 

Let us investigate some examples where a function is not differentiable at a point. 

 Condition 1 is not met and 𝑥 = 𝑎 is not in the domain of 𝑓(𝑥). 

Excluded Interval Open Endpoint of Domain Removable Discontinuity 

Jump Discontinuity Vertical Asymptote Point where function is undefinable 
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 Condition 1 is met, but Condition 2 is not met and 𝑓(𝑥) is defined but not continuous at 𝑥 = 𝑎. 

Jump Discontinuity Removable 

Discontinuity 

Closed Endpoint of 

a Domain 

One side of a limit 

fails to exist 

Both Sides of a 

limit fail to exist 

  

 Condition 1 and Condition 2 are met, but Condition 3 is not met and 𝑓(𝑥) is continuous but not smooth. 

This could be a kink, corner or cusp where the right and left side limits defining the derivative exist but are 

not equal. 

     

 

A vertical cusp 

One or both of the one-sided limits defining the 

derivative is non-finite. If both are non-finite, then the 

infinite limits tend toward the opposite infinities. 

A vertical tangent is when both one-sided limits tend 

toward the same infinity. This is a special case because  

though the vertical tangent line can be defined, the 

function is technically not definable at the point in 

question. 
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Example 3: Let ℎ(𝑥) =
1

4
𝑥4 +

5

3
𝑥3 + 3𝑥2. Identify the local maxima and minima of ℎ(𝑥).  

 

 

 

 

 

The 𝑥-intercepts of ℎ′(𝑥) are critical points. Do you see how the first derivative changes at the critical points? 

Determine where it is positive and where it is negative to see if there is a local maximum or a local minimum. This 

is called the First Derivative Test for Local Extrema. Test points in between these critical points and to the left and 

right. 

 

 

 

 

 

 

 By observing the sign changes of the derivative at critical points, local maxima and minima can be 

determined for the function.  

 

 

 The second derivative also tells us if the critical points are local maxima or minima or neither. A function is 

concave up if the second derivative is positive because the critical point is a minimum. A function is concave down 

if the second derivative is negative because the critical point is a maximum. This is called the Second Derivative 

Test for Local Extrema, which we will explore further in the Practice Problems section. 

 As in Example 2, we can have local extrema at a point in which the derivative of the function does not 

exist, such as 𝑓′(𝑎) = DNE. This is because of the cusp.  

 In summary, the First Derivative Test for Local Extrema states: “If the first derivative goes from negative 

to the left of a critical point to positive to the right of the critical point, then the point is a local minimum.” 
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If the first derivative goes from positive to the left of a critical point to negative to the right of the critical point, then 

the point is a local maximum.  

 

 

 

 

 

 

 

 

The Second Derivative for Local Extrema states: “If the first derivative is zero and the second derivative is negative 

at a critical point, then the point is a local maximum.” 

 

 

 

 

 

 

 

If the first derivative is zero and the second derivative is positive at a critical point, then the point is a local 

minimum.  

 

 

 

 

 

 

 

 

 

The Second Derivative Test for Local Extrema is easier to perform; however, it does not always apply when 𝑓′(𝑎) is 

equal to 0 and 𝑓"(𝑥) is equal to 0, but 𝑓 has a minimum value at 𝑎, or 𝑓 has a maximum value at 𝑎, or 𝑓 has neither 

a maximum or minimum value at 𝑎. In this case, the First Derivative Test for Local Extrema may be applied instead.  
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Section 7.8 Finding the Equation of the Tangent Line  

Looking Back 7.8 

 On the curve of any function, the tangent line makes contact with the curve at one point. The curve itself 

may be a quadratic, cubic, or exponential function, but the tangent line will be linear.  

 If a function is differentiable at 𝑥 = 𝑎, then the unique linear function containing the point (𝑎, 𝑓(𝑎)) that 

also has the slope 𝑓′(𝑎). The line may serve as a close approximation for the graph of the function when 𝑥 is close 

to 𝑎 and is the tangent to the function at  𝑥 = 𝑎. The slope of this tangent line is 𝑚 =
𝑓(𝑥)−𝑓(𝑎)

𝑥−𝑎
, which results in  

𝑓(𝑥) − 𝑓(𝑎) = 𝑚(𝑥 − 𝑎). We know that the slope is the first derivative of the function and 𝑚 = 𝑓′(𝑥). Substituting 

the first derivative for the slope gives us 𝑓(𝑥) − 𝑓(𝑎) = 𝑓′(𝑥)(𝑥 − 𝑎). 

 This linear function approximates the values of 𝑥 close to 𝑎 and is the equation of the tangent line. The 

derivative 
𝑑𝑦

𝑑𝑥
 of a function 𝑓(𝑥) is the slope of the tangent line to that function at 𝑥. 

 We can also say that the line 𝑡(𝑥) which is tangent to the curve 𝑓(𝑥) at point 𝑥 = 𝑎 must intersect the curve at that 

point and have the same slope as the curve at that point. Therefore,  

𝑚 = 𝑓′(𝑎) = lim
ℎ→0

𝑓(𝑎+ℎ)−𝑓(𝑎)

ℎ
  and  𝑡(𝑎) − 𝑓(𝑎),  

so 
𝑡(𝑥)−𝑓(𝑎)

𝑥−𝑎
= 𝑓′(𝑎) or 𝑡(𝑥) = 𝑓′(𝑎)𝑥 + (𝑓(𝑎) − 𝑎 ∙ 𝑓′(𝑎)) 

Note that the slope of 𝑡(𝑥) is 𝑓′(𝑎), and the 𝑦 − intercept is 𝑓(𝑎) − 𝑎 ∙ 𝑓′(𝑎).  

Looking Ahead 7.8 

Example 1: A line tangent to the graph of 𝑦 = 𝑓(𝑥) at 𝑥 = 2 passes through the points (1, 4) and (3, −2). Use 

this information to solve a)-c) below.   

a) Find 𝑓′(2). 

 

 

 

 

b) Find the equation of the line tangent to the function at 𝑥 = 2. 

 

 

 

 

c) Find 𝑓(2). 
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Example 2: For 𝑓(𝑥) = 3𝑥3 − 7, find the equation of the tangent line at the point (1, −4). 

 

 

 

 

 

Example 3: The graph of 𝑓(𝑥) = 3𝑥3 − 7 and the tangent line 𝑦 = 9𝑥 − 13 are shown below. Using the 

“Lists and Spreadsheets” page on the graphing calculator allows us to observe values of 𝑥 that are close to 𝑎 (which 

is 1 in this case). Call the tangent line 𝑡(𝑥) and find the amount of error between the function values 𝑓(𝑥) and the 

linear approximation at 𝑡(𝑥), which approximates the curve at that point. What do you notice about the error when 

𝑥 = 1? It vanishes! Use this information and the graph below to answer the questions that follow.   

Table I 

 

 

Table II 

 

 

 

 

 

 

Table III 

 

 

 

 

𝒙 𝒇(𝒙) = 𝟑𝒙𝟑 − 𝟕 𝒕(𝒙) = 𝟗𝒙 − 𝟏𝟑 𝐄𝐫𝐫𝐨𝐫 = 𝒕(𝒙) − 𝒇(𝒙) 

2 17 5 -12 

1.1 -3.007 -3.1 -0.093 

1.01 -3.909097 -3.91 -0.000903 

1.001 -3.990990997 -3.991 -0.000009003 

1 -4 -4 0 

𝚫𝒙 𝚫𝒇 𝚫𝒕 𝚫𝒕 − 𝚫𝒙 

1 21 9 -12 

0.1 0.993 0.9 -0.093 

0.01 0.090903 0.09 -0.00093 

0.001 0.009009003 0.009 -0.0000093 

0 0 0 0 

𝚫𝒙 𝚫𝒇

𝚫𝒙
 

𝚫𝒕

𝚫𝒙
 

𝚫𝒕

𝚫𝒙
−

𝚫𝒇

𝚫𝒙
 

1 21 9 -12 

0.1 9.93 9 -0.93 

0.01 9.0903 9 -0.0903 

0.001 9.009003 9 -0.009003 

0 9 9 0 
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Answer the following questions. 

a) Using Table I, as the point of tangency is approached, what function becomes a very good approximation 

for 𝑓(𝑥)? 

 

 

 

 

b) Using Table II, as the point of tangency is approached, what does 𝑓(𝑥) approach? 

 

 

 

c) Using Table III, if 𝑓 is approaching 𝑡, then Δ𝑓is approaching Δ𝑡, then what is 
Δ𝑓

Δ𝑥
 approaching? 

 

 

 

 

d) The ratio of 
Δ𝑓

Δ𝑥
   is approaching 

Δ𝑡

Δ𝑥
 which is approaching 9. What does this mean?  

 

 

 

 A differential is the ratio or relationship; the quantities 
Δ𝑓

Δ𝑥
 approaches the same ratio as 

Δ𝑡

Δ𝑥
, which means it 

becomes the slope of the tangent line. For our example, Δ𝑓 goes to 𝑑𝑓(the differential of 𝑓) and Δ𝑥 goes to 𝑑𝑥 (the 

differential of 𝑥). The expression 𝑑𝑓 = 9𝑑𝑥 means that in the limit as 𝑥 → 1, the difference between 𝑓(𝑥) and 

𝑓(1) = −4 will approach 9 times the difference between 𝑥 and 1. This is a relationship not algebraic quantities.  

 

  

This means our equation can be written three ways using Calculus notation to represent the tangent line: 

𝑡(𝑥) = 𝑓(𝑎) + 𝑓′(𝑎)(𝑥 − 𝑎) 

𝑡(𝑥) = 𝑓(𝑎) + 𝑓′(𝑎)𝑑𝑥 

𝑡(𝑥) = 𝑓(𝑎) + 𝑑𝑦 

Now that we have studied derivatives and tangent lines, we will revisit the average rate of change of volume for a 

Tootsie Roll® using these methods to find and compare solutions. 
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Section 7.9 The Chain Rule  

Looking Back 7.9 

The Power Rule applies to functions that are monomials. Using our newly introduced notation, the Power Rule can 

be displayed as the following equation: 

𝑑

𝑑𝑥
(𝑥𝑛) = 𝑛𝑥𝑛−1 

 The Power Rule only applies when there is one term that has a constant and an exponent; there is one 

variable and one exponent, and the exponent is not a variable but a constant.  

 When 𝑦 is equal to 𝑘𝑥𝑛 and 𝑛 > 0, we say that 𝑦 is directly proportional to 𝑥𝑛 and 𝑘 is the constant of 

proportionality or dilation factor.  

 The Power Rule cannot be applied to the equation 𝑓(𝑥) = 3𝑥 − 1 because it is a binomial. However, the 

Power Rule can be used to differentiate each of the terms given the Sum Rule… 

𝑑

𝑑𝑥
[𝑓(𝑥) + 𝑔(𝑥)] = 𝑓′(𝑥) + 𝑔′(𝑥) 

… or the Difference Rule… 

𝑑

𝑑𝑥
[𝑓(𝑥) − 𝑔(𝑥)] = 𝑓′(𝑥) − 𝑔′(𝑥) 

 The Power Rule cannot be applied to the equation 𝑔(𝑥) = 3(4)𝑥 because the variable is the exponent. 

Other rules are used to differentiate more complex functions. We will learn about those in the next few sections of 

this module. In this section, the Chain Rule will be introduced to differentiate a composition of functions.  

 But first let us review composite functions. A function is the relationship between two sets of related 

quantities. The function 𝑦(𝑥) is the function machine that turns 𝑥 into 𝑦. So if 𝑦 = 𝑥2 then every value of 𝑥 

corresponds to a unique value 𝑦 which is its’ square. As one machine is hooked to another, we pass the results of one 

function to another: 𝑥 → [𝑓] → 𝑦 means that 𝑦 = 𝑓(𝑥) We do this implicitly when we solve 𝑦 = 4(𝑥 + 3). We first 

add 3 to 𝑥 and when we get that value, we multiply that value by 4. 

 Composition of functions is particularly useful when taking the derivative. Let us say we have                 

𝑥 → [𝑓] → 𝑦 → [𝑔] → 𝑧 and each separate function is differentiable. Then 𝑓′ =
𝑑𝑦

𝑑𝑥
 gives the instantaneous rate of 

change of 𝑦 with respect to 𝑥. Also, the derivative 𝑔′ =
𝑑𝑧

𝑑𝑦
. Let us say that 𝑓′ =

𝑑𝑦

𝑑𝑥
= 2 and 𝑔′ =

𝑑𝑧

𝑑𝑦
= 3. This 

means that 𝑦 is growing 2 times as fast as 𝑥 and 𝑧 is growing 3 times as fast as 𝑦, which means that z must be 

growing 2∙3 or 6 times as fast as 𝑥. This can be written: 

𝑑𝑧

𝑑𝑥
=

𝑑𝑧

𝑑𝑦
|𝑦=𝑓(𝑥) ∙

𝑑𝑦

𝑑𝑥
 

 We perform the derivative of 𝑧 with respect to its input but in the end replace the input by 𝑓(𝑥). This 

becomes a chain of events known as the chain rule.  

 Let us try the chain rule to find the derivative for 𝑦 = (𝑥2)2. The quantities are 𝑥, 𝑦, and 𝑤 and the 

functions are 𝑓 and 𝑔. We will do it the long way to understand the algorithm first and then try the short way. 
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 Let 𝑤 = 𝑥2. Then 𝑦 = 𝑔(𝑔(𝑥)),  where 𝑤 = 𝑔(𝑥) = 𝑥2 or the inner function and 𝑦 = 𝑔(𝑤) = 𝑤2 or the 

outer function: 

𝑑𝑦

𝑑𝑥
=

𝑑𝑦

𝑑𝑤
|𝑤=𝑥2 ∙

𝑑𝑤

𝑑𝑥
 

 
𝑑𝑦

𝑑𝑤
= 

 
𝑑𝑤

𝑑𝑥
= 

  And  
𝑑𝑦

𝑑𝑥
=   Now replace 𝑤 by 𝑥2 in the result and simplify.  

  This confirms our expectations. Now for the short way. Let’s fill in the blanks for                       

𝑦 = 𝑥4 = (𝑥2)2.    

   𝑦 = (____)2 

            
𝑑𝑦

𝑑___
=  _____(_____)     

= 2( _____ )
𝑑

𝑑𝑥
(_____) 

               
𝑑𝑦

𝑑𝑥
    = 2𝑥2 ∙ 2𝑥 

               
𝑑𝑦

𝑑𝑥
    =     

 The chain rule has become taking the derivative of the outer function with respect to the inner function and 

then multiplying by the derivative of the inner function. The Chain Rule states: “For a composition of two functions, 
𝑑

𝑑𝑥
𝑓(𝑔(𝑥)) is equal to 𝑓′(𝑔(𝑥))𝑔′(𝑥).” This simply means we must find the product of the derivative of the outer 

function multiplied by the derivative of the inner function.  

Looking Ahead 7.9 

Example 1: Given 𝑓(𝑥) = (cos 𝑥)2 find 𝑓′(𝑥). (We are finding the first derivative 𝑓′(𝑥) =
𝑑𝑓

𝑑𝑥
; we are finding the 

derivative of 𝑓 with respect to 𝑥). Remember that −2sin𝑥cos𝑥 = − sin(2𝑥). That is a double angle formula from Trigonometry.  
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Example 2: Find the derivative of 𝑔(𝑥) given 𝑔(𝑥) = (−2𝑥2 + 5𝑥)
1

3. (This is a composition of functions. Call 

them 𝑔(ℎ(𝑥)). We want to find 𝑔′(ℎ(𝑥)) ∙ ℎ′(𝑥). Remember, the co-domain is the intersection of two functions. The 

co-domain of the interior and exterior functions is where they overlap. The derivative is not defined at its endpoints. 

The domain of 𝑔 is non-negative real numbers, so the domain of 𝑔(𝑥) is 0 ≤ 𝑥 ≤
5

2
 and the domain of 𝑔′(𝑥) is 0 <

𝑥 <
5

2
. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 3: Find the derivative of ℎ(𝑥) given ℎ(𝑥) = √2𝑥 + 3
3

. The domain of ℎ is non-negative real numbers 

which means the domain of ℎ(𝑥) is 𝑥 ≥ −
3

2
 and the domain of ℎ′(𝑥) is 𝑥 > −

3

2
. 
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Section 7.10 The Product Rule 

Looking Back 7.10 

 The Sum and Difference Rule states that “if 𝑓(𝑥) is equal to 𝑔(𝑥) + ℎ(𝑥), then 𝑓′(𝑥) is equal to       

𝑔′(𝑥) + ℎ′(𝑥).”  

The Calculus notation for a sum is shown as follows: 

𝑑

𝑑𝑥
[𝑓(𝑥) + 𝑔(𝑥)] = 𝑓′(𝑥) + 𝑔′(𝑥) 

 The derivative of the sum of two functions is the same as the sum of the derivatives of the two functions. 

(Try saying that backwards!)  

 Do you think this rule applies to the product of two functions? In other words, is the derivative of the 

product of two functions the same as the product of the derivative of each of the two functions?  

If 𝑓(𝑥) is equal to 𝑔(𝑥) ∙ ℎ(𝑥), is 𝑓′(𝑥) equal to 𝑔′(𝑥) ∙ ℎ′(𝑥)? 

Let 𝑔(𝑥) be equal to 𝑥3 and ℎ(𝑥) be equal to 𝑥7; then 𝑓(𝑥) is equal to 𝑥3 ∙ 𝑥7, which is equal to 𝑥10, and 𝑓′(𝑥) is 

equal to 10𝑥9. 

If 𝑔(𝑥) is equal to 𝑥3, then 𝑔′(𝑥) is equal to 3𝑥2. 

If ℎ(𝑥) is equal to 𝑥7, then ℎ′(𝑥) is equal 7𝑥6. 

That makes 𝑔′(𝑥)ℎ′(𝑥) equal to (3𝑥2)(7𝑥6). This way, 𝑓′(𝑥) is equal to 21𝑥8. 

10𝑥9 ≠ 21𝑥8 

The derivative of the product of the two functions is 10𝑥9, but the product of the derivative of each of the two 

functions is 21𝑥8. They are not the same.  

We need to find an equation for the derivative function regarding the product of two functions. This is called the 

Product Rule.  

 

Looking Ahead 7.10 

Example 1: Derive the Product Rule for 𝑓(𝑥) = 𝑔(𝑥)ℎ(𝑥).  
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Example 2: For the following function, use the Product Rule on 𝑦 to find 
𝑑𝑦

𝑑𝑥
. Let 𝑥3 be 𝑢 and 𝑥7 be 𝑣. 

𝑦 = 𝑥3 ∙ 𝑥7 = 𝑥10 ∴ 𝑦′ = 10𝑥9 

 

 

 

 

 

 

Example 3: An object vibrates so that the displacement 𝑑(𝑡) is a given number of meters from its resting 

position by the equation 𝑑(𝑡) = 𝑡 ∙ cos 𝑡 in which 𝑡 represents time in seconds. Use this information and the graph 

below to solve the problems that follow.   

 

a) How far is the object from its resting position at 7 seconds? At 8 

seconds?  

 

 

 

 

 

 

Use the “graph trace” feature on the graphing calculator: 

 When 𝑡 = 7, 𝑑(𝑡) = 5.28 m. at the point (7, 5.2). At 8 seconds, the distance is approximately −1.16 m. This 

means the object is moving away from its resting position, not towards it.  

 

b) Find the equation for the velocity of the object, 𝑣(𝑡) using the Product Rule. 

 

 

c) What is the velocity of the object at 7 seconds? At 8 seconds?  

 

By now, you realize that to differentiate means to take the derivative, which is actually finding the slope at any 

point. Hopefully, you realize the importance of slope as a rate of change as well. 
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Section 7.11 The Quotient Rule  

Looking Back 7.11 

We have now learned many rules that help you differentiate functions. 

The Constant Rule: 

𝑑

𝑑𝑥
(𝑐) = 0 

 

The Power Rule:  

𝑑

𝑑𝑥
(𝑥𝑛) = 𝑛𝑥𝑛−1 

 

The Sum Rule: 

𝑑

𝑑𝑥
[𝑓(𝑥) + 𝑔(𝑥)] = 𝑓′(𝑥) + 𝑔′(𝑥) 

 

The Difference Rule: 

𝑑

𝑑𝑥
[𝑓(𝑥) − 𝑔(𝑥)] = 𝑓′(𝑥) − 𝑔′(𝑥) 

 

The Chain Rule: 

𝑑

𝑑𝑥
𝑓(𝑔(𝑥)) = 𝑓′(𝑔(𝑥))𝑔′(𝑥) 

 

The Product Rule: 

𝑑

𝑑𝑥
[𝑓(𝑥)𝑔(𝑥)] = 𝑓(𝑥)𝑔′(𝑥) + 𝑔(𝑥)𝑓′(𝑥) 

 

Now that we have rules for differentiating sums, differences, and products, it makes sense that we should learn to 

apply one more rule- the Quotient Rule for differentiating functions.  
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Looking Ahead 7.11 

Example 1: Find the derivative of 
𝑓(𝑥)

𝑔(𝑥)
. We are looking for 

𝑑

𝑑𝑥
 [

𝑓(𝑥)

𝑔(𝑥)
], which can be written                  

“
𝑑

𝑑𝑥
(𝑓(𝑥) ∙ (𝑔(𝑥))−1).” Now we can use the Product Rule because we are multiplying values:                           

𝑑

𝑑𝑥
(𝑓(𝑥) ∙ (𝑔(𝑥))−1) = 𝑓′(𝑥)(𝑔(𝑥))−1 + 𝑓(𝑥) ∙ (𝑔′(𝑥))−1. This may also be written more formally in standard 

notation as  
𝑑𝑓

𝑑𝑥
∙ [𝑔(𝑥)]−1 + 𝑓(𝑥) ∙

𝑑

𝑑𝑥
[𝑔(𝑥)]−1. This is a composite function so we must use the Chain Rule for 

differentiation. 

  

 

 

 

 

 

 

That is called the Quotient Rule. Notice that the numerator of the Quotient Rule looks very much like the Product 

Rule, except a subt. The denominator of the Quotient Rule is the original denominator squared. Let us apply this 

knowledge in the next example! 

 

Example 2: Find 
𝑑

𝑑𝑥
 
3𝑥2

5𝑥4. Treat 𝑓(𝑥) = 3𝑥2 as the numerator functions and  𝑔(𝑥) = 5𝑥4 as the denominator.  

  

 

 

 

 

 

 

Example 3: Find the derivative of the trigonometric function tan(𝑥) =
sin( 𝑥)

cos( 𝑥)
 by recognizing that         

tan(𝑥) =
sin( 𝑥)

cos( 𝑥)
.  
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Section 7.12 Derivatives of Trigonometric Functions  

Looking Back 7.12 

Previously, we have learned that 
𝑑

𝑑𝑥
sin 𝑥 is equal to cos 𝑥 and 

𝑑

𝑑𝑥
cos 𝑥 is equal to − sin 𝑥. Though we did 

not prove these derivatives, we demonstrated them graphically by finding the slope of the tangent lines at various 

values of 𝑥. Using that same method, we could demonstrate the following: 

 

𝑑

𝑑𝑥
(− sin 𝑥) = − cos 𝑥 

𝑑

𝑑𝑥
(− cos 𝑥) = sin 𝑥 

 

Now, we are back to where we started from. It may be easier to memorize these derivatives and then solve them 

graphically each time. In Example 3 of Section 7.11, we used the Quotient Rule to differentiate the following 

function: 

 

𝑑

𝑑𝑥
 
sin 𝑥

cos 𝑥
=

1

cos2𝑥
 

 

Because tan 𝑥 is equal to 
sin 𝑥

cos 𝑥
, then 

𝑑

𝑑𝑥
tan 𝑥 =

1

cos2𝑥
 . Because 

1

cos2𝑥
 is equal to sec2𝑥, then 

𝑑

𝑑𝑥
tan 𝑥 = sec2𝑥.  

 

Other patterns emerge as we find the derivatives of the remainder of the six trigonometric functions: sin, cos, tan, 

csc, sec, and cot.  

 

We will be finding 
𝑑

𝑑𝑥
(tan 𝑥) and 

𝑑

𝑑𝑥
(cot 𝑥) in the Practice Problems section. We know that cot 𝑥 is equal to 

1

tan 𝑥
. 

Remember that sec 𝑥 is equal to 
1

cos 𝑥
, csc 𝑥 is equal to 

1

sin 𝑥
, and cot 𝑥 is equal to 

cos 𝑥

sin 𝑥
; this will be helpful when we 

find the derivatives of the other trigonometric functions. 
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Looking Ahead 7.12 

Example 1: Find 
𝑑

𝑑𝑥
csc 𝑥. We know that csc 𝑥 is equal to 

1

sin 𝑥
. We can use the Quotient Rule or chain rule to 

find 
𝑑

𝑑𝑥
(

1

sin 𝑥
). 

 

 

 

 

 

 

 

 

 

Example 2: Find the derivative of 𝑥2 + 𝑦2 = 1. We know that the graph of this equation is the unit circle 

because the unit circle is the graph of all points that satisfy this equation.  

 

 

The slope of the tangent lines at every point around the unit circle would 

give us the graph of the derivative. This equation/graph is not a function 

because for every input value of 𝑥, there are two output values for 𝑦. As we 

learned in Algebra 2, the function 𝑥2 + 𝑦2 = 1 can be written                           

“𝑦 = √1 − 𝑥2” or “𝑦 = −√1 − 𝑥2.” 

 

Then the derivatives can be taken separately using explicit differentiation. On the other hand, the derivatives can be 

found using implicit differentiation with the Chain Rule. The first step is to differentiate both sides of the equation. 

We will need to know four things at the outset. 

𝑑

𝑑𝑦
 𝑦2 =

𝑑𝑦2

𝑑𝑦
= 2𝑦  

This is because of the Power Rule and represents the derivative of 𝑦2 with respect to 𝑦. 

𝑑

𝑑𝑥
 𝑥2 =

𝑑𝑥2

𝑑𝑥
= 2𝑥 

This is because of the Power Rule and represents the derivative of 𝑥2 with respect to 𝑥. 

𝑑

𝑑𝑥
 1 =

𝑑(1)

𝑑𝑥
= 0 
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This is because of the Constant Rule and represents the derivative of 1 (which can be written “𝑐𝑥0” with respect to 𝑥 

in which 𝑐 is a constant.) 

𝑑

𝑑𝑥
 𝑦 =

𝑑𝑦

𝑑𝑥
 

We do not know what 
𝑑𝑦

𝑑𝑥
 is; it is what we are trying to find. By finding the derivative, 

𝑑𝑦

𝑑𝑥
, we are finding the slope 

for any point on the unit circle.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The point on the derivative curve is ( 
√2

2
,

√2

2
 ) for a 45° angle on the unit circle. 

The graph of the derivative of 𝑥2 + 𝑦2 = 1 is quite intriguing.  
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Our God is a very intriguing God. He is a God of design and order. His patterns modeled in the universe are intricate 

and detailed. How wonderful that He gives us many ways to solve problems- it is just another way He displays His 

splendor!  

 

Let us use implicit differentiation to find the derivative of an inverse trigonometric function.  

Example 3: Find the derivative of the inverse function 𝑦 = cos−1𝑥. 

 

 

 

 

 

 

 

 

 

 

 

 

Now the derivative is in terms of 𝑦, but we need it in terms of 𝑥. The trigonometric identity sin2𝑦 + cos2𝑦 = 1 will 

help us find the derivative in terms of 𝑥.  

sin2𝑦 = 1 − cos2𝑦 

sin 𝑦 = √1 − cos2𝑦  

This is useful to us because we know that cos 𝑦 is equal to 𝑥 so cos2𝑦 is equal to 𝑥2. Therefore, we can substitute 

those values under the radicand and the equation becomes  sin 𝑦 = √1 − 𝑥2.  

Now, we can go back to 
𝑑𝑦

𝑑𝑥
= −

1

sin 𝑦
 and substitute √1 − 𝑥2 for sin 𝑦, which results in the following equation: 

𝑑𝑦

𝑑𝑥
= −

1

√1 − 𝑥2
 

Now we have our derivative in terms of 𝑥. We could graph this as well. Because we know that 
𝑑

𝑑𝑥
(cos 𝑥) = − sin 𝑥 

and 
𝑑

𝑑𝑥
(cos−1𝑥) = −

1

√1−𝑥2
 and 

𝑑

𝑑𝑥
(sin 𝑥) = cos 𝑥, we can look at the patterns and understand the derivative of 

sin−1𝑥; it is 
𝑑

𝑑𝑥
(sin−1𝑥) =

1

√1−𝑥2
. 

This is yet another display of God’s design in the universe! 

(When we take the square root of both sides) 
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Section 7.13 Derivatives of Exponentials and Logarithms 

Looking Back 7.13 

 In the last section, we saw some remarkable patterns emerge for the derivatives of the trigonometric 

functions and used them to prove some of the derivatives for the inverse trigonometric functions. They are listed for 

you below. 

 

Derivatives of the Trigonometric Functions: 

 

𝑑

𝑑𝑥
(sin 𝑥) = cos 𝑥 

𝑑

𝑑𝑥
(csc 𝑥) = − csc 𝑥 cot 𝑥 

𝑑

𝑑𝑥
(cos 𝑥) = − sin 𝑥 

𝑑

𝑑𝑥
(sec 𝑥) = sec 𝑥 tan 𝑥 

𝑑

𝑑𝑥
(tan 𝑥) = sec2𝑥 

𝑑

𝑑𝑥
(cot 𝑥) = −csc2𝑥 

 

Derivatives of the Inverse of Trigonometric Functions:  

 

𝑑

𝑑𝑥
(sin−1𝑥) =

1

√1−𝑥2
 

𝑑

𝑑𝑥
(csc−1𝑥) = −

1

|𝑥|√𝑥2−1
 

𝑑

𝑑𝑥
(cos−1𝑥) = −

1

√1−𝑥2
 

𝑑

𝑑𝑥
(sec−1𝑥) =

1

|𝑥|√𝑥2−1
 

𝑑

𝑑𝑥
(tan−1𝑥) =

1

1+𝑥2 
𝑑

𝑑𝑥
(cot−1𝑥) = −

1

1+𝑥2 

 

 Now that they are listed, the patterns are easily identified. This is all evidence of orderly and intelligent 

design in our universe established by an orderly and intelligent Designer.  

 In this section, the final section of the module, we will explore the derivatives of exponentials and their 

inverses, logarithms.  

 We will investigate 𝑒 and its derivative. We learned that 𝑒 is a transcendental number much like  and 𝜑 

(phi). These numbers are found throughout the natural world and often used in real-world problem-solving. They are 

actually quite remarkable, and to me, they are powerful examples of an omnipotent Designer.  
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Looking Ahead 7.13 

Example 1: Find the derivative of 𝑒𝑥 graphically.  

 

 

 

 

 

 

 

 

 

 

 

On the graph of 𝑒𝑥, when 𝑥 is equal to 1, 𝑒1 = 𝑒; 𝑒 is just a constant 

(2.71828 …) and a constant to the first power is just a constant. Amazingly, 

when 𝑥 is equal to 1, the slope of the tangent line at 1 is also 2.71825… If we 

continued the table, we would find that the values of the slope of the tangent 

line at 𝑥 are equal to 𝑒𝑥 at each value of 𝑥. Isn’t that remarkable?! In all of 

mathematics, that is astounding. Just as 𝑦 = 𝑥 is its own inverse and the line 

of reflection for all other functions, 𝑒𝑥 is its own derivative! 

 

𝑑

𝑑𝑥
(𝑒𝑥) = 𝑒𝑥 

 

Just stop for a minute and ponder that; give an awe-inspired moment to the wonderful, intelligent Designer of the 

universe- the true author and Master of Mathematics!  
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It does not end there. Another amazing derivative is the derivative of the inverse natural logarithm function, ln 𝑥.  

 

 

 

 

 

 

 

 

 

 

Therefore, ln 𝑥 is reflected over the line 𝑦 = 𝑥, which is its own inverse! Are you making the connections to how 

vast, yet logical mathematics is! 

 

When 𝑒𝑦 = 𝑥, ln(𝑥) = log𝑒(𝑥) = 𝑦 and 𝑒 ≈ 2.718 

 

The natural logarithm function ln(𝑥) is the inverse function of the natural exponential function 𝑒𝑥 when 𝑥 > 0. 

 

𝑓(𝑓−1(𝑥)) = 𝑒ln(𝑥) = 𝑥 or 𝑓−1(𝑓(𝑥)) = ln(𝑒𝑥) = 𝑥 because log𝑒(𝑒𝑥) = 𝑦 and 𝑒𝑦 = 𝑒𝑥 so 𝑦 = 𝑥 

 

The derivative of an exponential function is: 

 

𝑑

𝑑𝑥
(𝑎𝑥) = (𝑎𝑥) ln 𝑎 

 

Using the Chain Rule, the derivative of a constant to the power of 𝑥 is the constant to the power of 𝑥 multiplied by 

the natural logarithm of the base of the exponential, which is a constant. That is true for 𝑒𝑥 as well: 

 

𝑑

𝑑𝑥
(𝑒𝑥) = (𝑒𝑥) ln 𝑒 
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We know that ln 𝑒1 is equal to 1. The inverse of the natural logarithm to the first power is just 1. Because 

 
𝑑

𝑑𝑥
(𝑒𝑥) = 𝑒𝑥 ∙ (1), we write it 

𝑑

𝑑𝑥
(𝑒𝑥) = 𝑒𝑥. 

Example 2: Differentiate 3𝑥. We want to find 
𝑑

𝑑𝑥
3𝑥 in which 𝑎 is 3. Our base is the constant 3.  

 

 

 

 

 

 

 

 

 

 

 

 

Example 3: Differentiate ℎ(𝑥) = 3𝑒cos(𝑥) sin(4𝑥). This will require us to use the product rule and the chain rule, 

in addition to what we have learned of the derivatives of trigonometric and exponential functions.  

 

 

  

 

 

 

 

 

 

 

 

 


